

fastilo Recent Developments

Daniel Britzger, **Klaus Rabbertz**, Georg Sieber, Fred Stober, Markus Wobisch (DESY, KIT, KIT, Uni Hamburg, Louisiana Tech University)

Klaus Rabbertz

- fastNLO uses extra tables for µ_f variation with fixed scale factors
 - straightforward also @ NNLO
 - avoids additional integrations
 - increases table size
- In fastNLO v2.3 can also use HOPPET for µ_f variation
 - Continuous fast variation at NLO
 - Same method as used in APPLgrid

APPLgrid, T. Carli et al., EPJC 66 (2010) 503.

Calculations with fastNLO in NNLO

- Problem
 - Scale variations become more difficult in NNLO than in NLO
- Current available implementations for NLO calculations
 Renormalization scale variations
 - Scale variations applying RGE
 - Use LO matrix elements times $n\beta_0 \ln(c_r)$
 - Flexible-scale implementation
 - Store scale-independent weights:

Factorization scale variations

- Calculate LO DGLAP splitting functions using HOPPET
- Store coefficients for desired scale factors
- Flexible-scale implementation
- Scale variations for NNLO calculations
 - renormalization scale variations become more complicated
 - NLO splitting functions are needed for factorization scale variations e.g. with HOPPET
 - Calculations become slower again => Not desired for fast repeated calculations

- Storage of scale-independent weights enable full scale flexibility also in NNLO
 - Additional logs in NNLO

 $\omega(\mu_{R},\mu_{F}) = \omega_{0} + \log(\mu_{R}^{2})\omega_{R} + \log(\mu_{F}^{2})\omega_{F} + \log^{2}(\mu_{R}^{2})\omega_{RR} + \log^{2}(\mu_{F}^{2})\omega_{FF} + \log(\mu_{R}^{2})\log(\mu_{F}^{2})\omega_{RF}$ log's for NLO additional log's in NNLO

- Store weights: w_0 , w_R , w_F , w_{RR} , w_{FF} , w_{RF} for order α_s^{n+2} contributions

Advantages

- Renormalization and factorization scale can be varied *independently* and by *any* factor
 - No time-consuming 're-calculation' of splitting functions in NLO necessary
- Only small increase in amount of stored coefficients

fastNLO implementation

- Two different observables can be used for the scales
 - e.g.: H_T and $p_{T,max}$
 - or e.g.: p_T and |y|
 - ..
- Any function of those two observables can be used for calculating scales

'Flexible-scale concept': Best choice for performant NNLO calculations

Klaus Rabbertz

Flexible-scale tables in DIS

fastnlo @ HepForge

Note: All HERA tables are flexible-scale tables ==> The C++ reader versions must be used.

Tables from H1
multi-jet study
use $\sqrt{Q^2}$ and pT

Use of this method in fastNLO dates back to 2011 when going from v1.4 to v2.1. Useful for DIS, now also for pp, e.g. with scales M_z and pT_z .

	HERA: ep @ sqrt(s) = 319 GeV							
ſ	fnh5001_l1301218	H1 inclusive jet HERA-II (kt and anti-kt); LO, NLO						
		inSPIRE HepData	no RIVET analysis available					
	fnh5002_l1301218	H1 dijet HERA-II (kt and anti-kt); LO, NLO						
		inSPIRE HepData	no RIVET analysis available					
	fnh5003kt_11301218	H1 trijet HERA-II (kt); LO, NLO						
		inSPIRE HepData	no RIVET analysis available					
	fnh5003ak_l1301218	H1 trijet HERA-II (anti-kt); LO, NLO						
L		inSPIRE HepData	no RIVET analysis available					
I	fnh4002_1875006	ZEUS inclusive dijet HERA-I+II (kt); LO, NLO						
		inSPIRE no HepData	no RIVET analysis available					
		(Note: This table only works with the new fastnlo_toolkit reader, but not yet with the old fastnlo_reader.)						
	fnn5201_1838435	H1 Inclusive jets at low Q^2 HERA-I (kt); LO, NLO						
		INSPIRE NO HEPData	no RIVET analysis available					
	5-55 401 J010707	(Note: This table only works with the new fastnlo_toolkit reader, but not yet with the old fastnlo_reader.)						
	1005401_1818707	HI Inclusive jets at high Q ⁻² HERA-I (kt); LO, NLO						
		(Nate: This table apply works with the pay factor)	a all the sector with the ald factale reader.					
	fpb5101 1752051	(Note: This table only works with the new fast no_cookit reader, but not yet with the old fast no_reader.)						
	11115101_1/55551	inSPIRE HenData	no RIVET analysis available					
		(Note: This table only works with the new fastolo t	oolkit reader, but not vet with the old fastolo, reader.)					
	fph4401 1724050	ZEUS inclusive jets HERA-I (kt): LO. NLO	ookiereadel, baenoeyee warrene old laseno_readel.,					
		inSPIRE HepData	no RIVET analysis available					
		(Note: This table only works with the new fastnlo t	oolkit reader, but not vet with the old fastnlo reader.)					
		HERA: ep @ sqrt(s) = 3	00 GeV					
	fnh4301_1593409	ZEUS inclusive jets HERA (kt); LO, NLO						
		inSPIRE HepData	no RIVET analysis available					
		(Note: This table only works with the new fastnlo_t	oolkit reader, but not yet with the old fastnlo_reader.)					

Flexible-scale tables in DIS

fastnlo @ HepForge

Tables from H1 multi-jet study use $\sqrt{Q^2}$ and pT

Use of this method in fastNLO dates back to 2011 when going from v1.4 to v2.1. Useful for DIS, now also for pp, e.g. with scales M_z and pT_z .

,	Note: All HERA tables are flexible-scale tables $==>$ The C++ reader versions must be used.						
	HERA: ep @ sqrt(s) = 319 GeV						
	fnh5001_l1301218	H1 inclusi	ve jet HERA-II (kt and anti-kt); LO, NLC)			
		Inspire	HepData		no RIVET analysis available		
	fnh5002_l1301218	H1 dijet HI	ERA-II (kt and anti-kt); LO, NLO				
		INSPIRE	HepData		no RIVET analysis available		
	fnh5003kt_l1301218	H1 trijet H	ERA-II (kt); LO, NLO				
		INSPIRE	HepData		no RIVET analysis available		
	fnh5003ak_11301218	H1 trijet H	EPA II (anti-kt); L				
		INSPIRE	HepData CICK		no RIVET analysis available		
	fnh4002_1875006	ZEUS inclu	JS IVE dijet HERA				
		INSPIRE	no HepData		no RIVET analysis available		
	(Note: This table only works with the new fastnlo_toolkit reader, but not yet with the old fastnlo_reader.)						
1	fnh5201_1838435	H1 inclusi	ve jets at low Q^2 HERA-I (kt); LO, NL	0			
		INSPIRE	no HepData		no RIVET analysis available		
	(Note: This table only works with the new fastnlo_toolkit reader, but not yet with the old fastnlo_reader.)						
	fnh5401_l818707 H1 inclusive jets at high Q^2 HERA-I (kt); LO, NLO						
		INSPIRE	no HepData, only normalized x sect	ion publ.	no RIVET analysis available		
		(Note: Thi	s table only works with the new fastr	ilo_toolkit reader, but n	ot yet with the old fastnlo_reader.)		
	fnh5101_1/53951	H1 Inclusi	ve jets HERA-I (kt); LO, NLO				
			HepData	le he ell'h ee eden he he	no RIVET analysis available		
	fpb4401 1724050	(Note: Thi	s table only works with the new fastr	nio_tooikit reader, but h	ot yet with the old fasthio_reader.)		
	1004401_1724050		HerpDate		no RIVET analysis available		
		(Noto, Thi	nepula s table only works with the new fastr	la taalkit raadar, but p	no River analysis available		
	or yet with the old last lio_readel.)						
HERA: ep @ sqrt(s) = 300 GeV							
	11114301_1333403	inSPIRE	HenData		no RIVET analysis available		
		(Note: Thi	s table only works with the new fastr	lo toolkit reader, but p	ot vet with the old fastplo_reader.)		
(Note: This table only works with the new fastilo_cookic reader, but hot yet with the old fastilo_i					or yet with the old labello_reducity		

Tables in Durham HepData

Following a discussion I had with Frank Krauss and a follow-up at the Benasque PDF Workshop, tables can now be stored with data

The Durham HepData Project

REACTION DATABASE • DATA REVIEWS • PDF PLOTTER

Reaction Database Full Record Display

View short record or as: input, plain text, AIDA, PyROOT, YODA, ROOT, mpl, ScaVis or MarcXML

ANDREEV 2014 — Measurement of Multijet Production in ep Collisions at High Q² and Determination of the Strong Coupling alpha_s

Experiment: DESY-HERA-H1 (H1) Preprinted as DESY-14-089 Archived as: ARXIV:1406.4709 Record in: INSPIRE Record in: CERN Document Server

Link to fastNLO v2.1 table (inclusive jet, kT and anti-kT) Link to fastNLO v2.1 table (dijet, kT and anti-kT) Link to fastNLO v2.1 table (trijet, kT) Link to fastNLO v2.1 table (trijet, anti-kT)

Klaus Rabbertz

London, UK, 02.09.2015

Thanks to Graeme Watt

QCD@LHC 2015

ABOUT HEPDATA • SUBMITTING DATA

Differential ttbar in approx. NNLO: $d\sigma/dp_T$, $d\sigma/dy$

Precision study of fastNLO tables over DiffTop standalone vs. no. of x nodes

(total uncertainty: quadr. sum of PDF, scale, α_s , m_t variations)

- I. Prepared Toolkit library for creating & evaluating fastNLO interpolation tables
 - Independent of any generator
- ✓ 2. Facilitated use with extensible steering files
- 3. Being asked at DIS we put together an example of Fortranbased access to the C++ library
- ✓ 4. Interface even more theory programs …
 - NLO for higher multiplicities
 - NNLO e.g. Z+jet, jets
 - ÷ ...

Simple example for use of Toolkit

Convenient implementation of fastNLO into any (N)NLO program possible!

Klaus Rabbertz

London, UK, 02.09.2015

QCD@LHC 2015

11

- fastNLO Toolkit access implemented:
 - Events generated with Sherpa 2.1.1/2.2.0
 - Two analyses from Rivet 2.2.0 tested
 - MCgrid 2.0 for cross section projection into grids (to be released)
 - Same toolkit functions accessed either via direct calls from MCgrid-enabled Rivet analysis or via steering file
 - Usable with large number of processes available via Sherpa and one-loop generators

like Sherpa, T. Gleisberg et al., JHEP02, 2004; JHEP02, 2009. BlackHat, C.F. Berger et al., PRD78, 2008. GoSam, G. Cullen et al., EPJC72, 2012. OpenLoops, F. Cascioli et al., PRL108, 2012. NJET, S. Badger et al., CPC184, 2013.

Snippets of Rivet+MCgrid analysis #include "Rivet/Analysis.hh" #include "mcarid/mcarid.hh" . . . **Setup Rivet** namespace Rivet { with MCgrid /// CDF Z boson rapidity modified to generate grid files class MCgrid CDF 2009 S8383952 : public Analysis { public: using namespace MCgrid: Histo1DPtr hist yZ; // Rivet histogram gridPtr grid yZ; // Corresponding grid // Init phase subprocessConfig subproc("DY-ppbar.str", BEAM PROTON, BEAM ANTIPROTON); **Book & config** fastnloGridArch arch(50, 1, "Lagrange", "OneNode", "sgrtlog10", "linear"); fastnloConfig config(0, subproc, arch, 1960.0); grid and histos hist yZ = bookHisto1D(2, 1, 1);// Book Rivet grid yZ = bookGrid(hist yZ, histoDir(), config); // Book MCgrid/fastNLO // Analyse phase PDFHandler::HandleEvent(event, histoDir()); // Update subprocess statistics Fill events in _hist_yZ->fill(yZ, weight); // Fill Rivet // Fill MCgrid/fastNLO grid yZ->fill(yZ, event); event loop. // Finalise phase **Final check out,** scale(hist yZ, normalisation); // Scale Rivet normalize, write grid yZ->scale(normalisation); // Scale MCgrid/fastNL0 PDFHandler::CheckOutAnalysis(histoDir()); // Finalise table.

Klaus Rabbertz

London, UK, 02.09.2015

QCD@LHC 2015

Test with inclusive Jets

Previously:

Drell-Yan Z rapidity @ Tevatron

- 1M (phase space) / 10M (fill) events
- Constant scale \rightarrow interpolation in x only
- Agreement at sub-permille level

NEW HERE:

Inclusive Jets @ LHC

- Dynamic scale \rightarrow interpolation in x & Q
- Problem in interface MCgrid-fastNLO fixed
- Agreement at sub-permille level

Comparison to NLOJet++

Note: Both calculations use an event-wise dynamical scale, pTmax, jet-wise scales not possible currently with Sherpa-MCgrid

lusive jets, 2.0 < |y| < 2.5

Agreement with NLOJet++ and Data except at low pT since NP corrections not included here (Stat. fluctuations still there, of course.)

Klaus Rabbertz

London, UK, 02.09.2015

last year with Peter Skands. Can be used to provide NLO histograms with

uncertainty to MCPLOTS web site.

Started as a CERN Summer student (S. Tyros)project

RIVET, A. Buckley et al., CPC184 (2013), rivet.hepforge.org, voda.hepforge.org.

Use with Rivet 2 & YODA Format

Outlook

- The toolkit provides simple access to full capability of fastNLO
- Creating, filling, reading, and evaluating fast interpolation tables in the fastNLO format
- A simplified interface to NLOJet++ is publically available
- Flexible-scale table format ideally suited for NNLO
- Tested at (approx.) NNLO with DiffTop and by BlackHat
 => first applications @ NNLO
- Other theory programs can be/have been interfaced
- Demonstrated new application with MCgrid and Sherpa
- Will be synchronized with new release of MCgrid
- Progress with further theory interfaces ...!

Backup Slides

Klaus Rabbertz

London, UK, 02.09.2015

QCD@LHC 2015

19

Use of alternative α_s evolutions

- ✓ CRunDec 08/2012
 - included in fastNLO
- ✓ QCDNUM v17-00-06
 - … [--with-qcdnum=/path/...]
 - Makefiles adapted, need -fPIC on x86_64 systems
- HOPPET v1.1.5
 - … [--with-hoppet=/path/...]

RunDec, B. Schmidt, M. Steinhauser, CPC183, 2012;
K. Chetyrkin, J. Kühn, M. Steinhauser, CPC133, 2000.
QCDNUM, M. Botje, CPC182, 2011.
HOPPET, G. Salam, J. Rojo, CPC180, 2009.

Klaus Rabbertz

Excerpt of steering.str


```
# Name and describe scenario
ScenarioName fnl2342b I902309 v23 flex
ScenarioDescription {
    "d2sigma-jet_dpT_dy_[pb_GeV]"
JetAlgo
                               2
                                              # fastjet jet algorithm: 0,1,2=kT,CA,anti-kT
Riet
                               0.5
                                              # Jet size parameter: Required for all jets
                                              # Minimal jet pT
ptjmin
                              18.
                               0.0
                                              # Minimal jet rapidity
yjmin
                               3.0
                                              # Maximal jet rapidity
yjmax
... extensible
LeadingOrder
                                  2
                                              # Number of jets for the LO process
                                  2
DifferentialDimension
                                              # Dimensionality of binning
                                              # Labels (symbol and unit) for dimensions
DimensionLabels {
                                              # Defines the observables to be calculated!
   "|y|"
   "pT [GeV]"
}
FlexibleScaleTable
                                              # Create table fully flexible in mu_f
                               true
                               "pT jet [GeV]" # This defines the scale to be used
ScaleDescriptionScale1
ScaleDescriptionScale2
                                "pT_max_[GeV]" # Specify 2nd scale name and unit
DoubleDifferentialBinning {{
                         "----- Array of bin-grid for 2nd dimension -----"
  1stDimLo
            1stDimUp
                                 21.
                                       24. 28. 32. 37. 43. 49.
   0.0
              0.5
                           18.
                                                                           56. ....
       Running any other scenario can be as simple as adapting some
}}
       kinematical cuts & binning, often not even a recompile necessary!
        Klaus Rabbertz
                                London, UK, 02.09.2015
                                                                                       21
                                                                QCD@LHC 2015
```

Demo plot using Python extension

#! /usr/bin/env python2 **Setup Python** with fastNLO from fastnlo import fastNLOLHAPDF import matplotlib import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import axes3d import numpy as np Select table, fnlo = fastNLOLHAPDF('fnlotable.tab') fnlo.SetLHAPDFFilename('CT10nlo.LHgrid') PDF & mem. fnlo.SetLHAPDFMember(0) **Define** μ_r , μ_f mufs = np.arange(0.1, 1.5, 0.10)murs = np.arange(0.1, 1.5, 0.10)xs = np.zeros((mufs.size, murs.size)) ranges for i, muf in enumerate(mufs): Loop over for j, mur in enumerate(murs): fnlo.SetScaleFactorsMuRMuF(mur, muf) μ_r , μ_f fnlo.CalcCrossSection() xs[i][j] = np.array(fnlo.GetCrossSection())[0] fig = plt.figure(figsize=(13,13)) Plot ... plotting details ax.set_ylabel('Scale factor \$\mu_F\$') ax.set_xlabel('Scale factor \$\mu_R\$') ax.set_zlabel('Cross Section [pb/GeV]') plt.show() ... plotting details

Derived from one fastNLO flexible-scale table

Klaus Rabbertz

Extra slide: ATLAS dijet mass

Central scale: µ = pT_{max}

Central scale: $\mu = pT_{max} \cdot exp(0.3 y^*)$

Derived from one fastNLO flexible-scale table

Klaus Rabbertz