DIS 99

Event Shapes and Power Corrections in ep DIS

H.-U. Martyn I. Phys. Institut RWTH Aachen

K. Rabbertz, I. Phys. Institut, RWTH Aachen

Outline

- Definition of the Event Shape Variables
- Phase Space
- Unfolded Distributions vs. NLO
- $1/Q^p$ -Fits
- Fits à la Dokshitzer, Webber et al.
- Systematic Uncertainties
- Summary

Definition of the Event Shape Variables

QPM-type ep collision in the Breit frame.*

• Event shapes employing the boson axis \vec{q}^{\star} as event axis \vec{n} :

1-thrust:

$$\tau := 1 - \frac{\sum_{i \in CH} |\vec{p_i}^{\star} \cdot \vec{n}|}{\sum_{i \in CH} |\vec{p_i}^{\star}|} = 1 - \frac{\sum_{i \in CH} |p_{li}^{\star}|}{P^{\star}}$$

jet broadening:

$$B := \frac{\sum\limits_{i \in \mathrm{CH}} |\vec{p_i}^{\star} \times \vec{n}|}{2\sum\limits_{i \in \mathrm{CH}} |\vec{p_i}^{\star}|} = \frac{\sum\limits_{i \in \mathrm{CH}} |p_{ti}^{\star}|}{2P^{\star}}$$

 Event shapes without reference to the boson axis as event axis:

1-thrust_C:

$$\tau_C := 1 - \max_{\vec{n}, \vec{n}^2 = 1} \frac{\sum_{i \in CH} |\vec{p_i}^{\star} \cdot \vec{n}|}{\sum_{i \in CH} |\vec{p_i}^{\star}|} = 1 - \frac{\sum_{i \in CH} |\vec{p_i}^{\star} \cdot \vec{n}_T|}{P^{\star}}$$

jet mass:

$$\rho := \frac{\left(\sum_{i \in CH} p_i^{\star}\right)^2}{4\left(\sum_{i \in CH} E_i^{\star}\right)^2} = \frac{M^2}{4E^{\star 2}}$$

C parameter:

$$C := 3(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1)$$

with $\lambda_i, i = 1, 2, 3$ being the eigen values of the momentum tensor

$$\Theta_{jk}^{\star} := \frac{\sum\limits_{i \in \mathrm{CH}} \frac{p_{j_i}^{\star} p_{k_i}^{\star}}{|\vec{p}_i^{\star}|}}{\sum\limits_{i \in \mathrm{CH}} |\vec{p}_i^{\star}|}$$

• Event shapes employing jet algorithms:

Distance measures between objects, y_{ij} , and with respect to the remnant, y_{ir} , for the factorizable JADE algorithm

$$y_{ij} := \frac{2E_i^{\star}E_j^{\star}(1-\cos\theta_{ij}^{\star})}{Q^2}$$
$$y_{ir} := \frac{2E_i^{\star}xE_p^{\star}(1-\cos\theta_i^{\star})}{Q^2}$$

and the k_t algorithm

$$y_{ij} := \frac{2\min(E_i^{\star 2}, E_j^{\star 2})(1 - \cos\theta_{ij}^{\star})}{Q^2}$$
$$y_{ir} := \frac{2E_i^{\star 2}(1 - \cos\theta_i^{\star})}{Q^2}.$$

 ${y_{fJ}}$ and ${y_{k_t}}$ denote the transition values $(2+1) \rightarrow (1+1)$ jets.

Phase Space

low Q^2	high Q^2			
$\mathcal{L}_{\rm int} = 3.2\rm pb^{-1}$	$\mathcal{L}_{\rm int} = 38.2{\rm pb}^{-1}$			
$49 < Q^2 / \mathrm{GeV}^2 < 10^2$	$196 < Q^2 / \mathrm{GeV}^2 < 10^4$			
0.05 < y < 0.8				
$E_{e'} > 14 \mathrm{GeV}$	$E_{e'} > 11 \mathrm{GeV}$			
$157^\circ < \theta_{e'} < 173^\circ$	$30^\circ < \theta_{e'} < 150^\circ$			
$20^{\circ} < \theta_q$				
$E^{\star} > Q/10$				

- Cut in polar angle θ_q of QPM quark direction \Rightarrow ensure sufficient calorimeter resolution for Breit frame transformation.
- Minimal energy cut for the current hemisphere $E^{\star} > Q/10$ not applied to the y_2 variables.

Unfolded Distributions vs. NLO

1/N dn/dC

 \Rightarrow Better description of data for both y_2 variables.

Norm. diff. distributions of τ , B, τ_C and ρ .

K. Rabbertz, I. Phys. Institut, RWTH Aachen

$$1/Q^p$$
-Fits

 \Rightarrow Try ansatz

$$\langle F \rangle = \langle F \rangle^{\text{pert}} + \langle F \rangle^{\text{pow}}$$

where

$$\langle F \rangle^{\text{pert}} = c_{1,F} \, \alpha_s(Q) + c_{2,F} \, \alpha_s^2(Q) \,.$$

Note that $c_{1,F}$ and $c_{2,F}$ are x dependent! Here, power corrections are parameterized as

$$\langle F \rangle^{\mathrm{pow}} = rac{\lambda}{Q} \quad \mathrm{or} \quad \langle F \rangle^{\mathrm{pow}} = rac{\mu}{Q^2} \, .$$

 \Rightarrow expect $\lambda, \mu > 0$ except for y_2 where $\lambda, \mu \leq 0!$

x-Dependence of $\langle au angle$ in NLO

Two-parameter Fits acc. to simple 1/Q Power Corrections

H1 Preliminary							
$\langle F \rangle$	$\alpha_s(M_Z)$	$\lambda/{ m GeV}$	χ^2_n	$\kappa/\%$			
$\langle \tau \rangle$	0.132	-0.04	0.6	-99			
$\langle B \rangle$	0.120	0.53	0.8	-92			
$\langle \tau_C \rangle$	0.157	-0.15	1.3	-99			
$\langle \rho \rangle$	0.165	-0.09	0.5	-99			
$\langle C \rangle$	0.161	-1.39	2.0	-99			
$\langle y_{fJ} \rangle$	0.114	-0.08	1.6	-97			
$\langle y_{k_t} \rangle$	0.122	-0.45	1.6	-99			

- $\Rightarrow \chi^2 \text{ per dof acceptable, but large correlations } \kappa$ between $\alpha_s(M_Z)$ and λ .
- \Rightarrow Negative fit values of λ for τ , τ_C , ρ and C.

 \Rightarrow x-dependent λ ?

Fits à la Dokshitzer, Webber et al.

$$\langle F \rangle^{\text{pow}} = a_F \frac{32}{3\pi^2} \frac{\mathcal{M}}{p} \left(\frac{\mu_I}{Q}\right)^p$$
$$\left[\overline{\alpha}_{p-1}(\mu_I) - \alpha_s(Q) - \frac{\beta_0}{2\pi} \left(\ln\frac{Q}{\mu_I} + \frac{K}{\beta_0} + \frac{1}{p}\right) \alpha_s^2(Q)\right]$$

with

- a_F : calculable F dependent constant Note: Add. factor for $B \propto 1/\sqrt{\alpha_s} + \text{const.}!$
- p: power p = 1 except for y_{k_t} where p = 2
- $2/\pi \cdot \mathcal{M} \approx 1.14$: 2-loop correction (Milan factor)
- μ_I : infrared matching scale, $\mu_I = 2 \text{ GeV}$
- $\overline{\alpha}_{p-1}(\mu_I)$: universal (?) non-pert. parameter to fit

Fits to Means of au, B, au_C and ho

Fits to Means of C and y_{fJ}

Two-parameter Fits acc. to Dokshitzer, Webber et al.

	$\kappa/^{0}_{0}$		-56	+19	+	+0.00	-09	
H1 Preliminary	χ^2/n	0.5	0.7	1.3	1.2	0.9	1.9	
	$lpha_s(M_Z)$	$0.1174 \pm 0.0030 \ ^{+0.0097}_{-0.0081}$	$0.1106 \pm 0.0012 \ ^{+0.0060}_{-0.0057}$	$0.1284 \pm 0.0014 \ ^{+0.0100}_{-0.0092}$	$0.1347\pm 0.0015 \ ^{+0.0111}_{-0.0100}$	$0.1273 \pm 0.0009 \ ^{+0.0104}_{-0.0093}$	0.104 ± 0.002	
	$\overline{\alpha}_0(\mu_I = 2 \mathrm{GeV})$	$0.480 \pm 0.028 \ ^{+0.048}_{-0.062}$	$0.491 \pm 0.005 {}^{+0.032}_{-0.036}$	$0.475 \pm 0.003 \ ^{+0.044}_{-0.048}$	$0.561 \pm 0.004 \ ^{+0.051}_{-0.058}$	$0.425 \pm 0.002 \ ^{+0.033}_{-0.039}$	0.258 ± 0.004	
	a_F	1	$1/2\cdot a'_B$	1	1/2	$3\pi/2$	1	
	$\langle F \rangle$	$\langle \tau \rangle$	$\langle B \rangle$	$\langle au_C angle$	$\langle \phi \rangle$	$\langle C \rangle$	$\langle y_{fJ} \rangle$	

- Very low value of $\overline{\alpha}_0(\mu_I=2\,{\rm GeV})$ for $y_{fJ}.$ All 1/Q fits including B work reasonable. ↑ ↑
- $(a'_B \propto 1/\sqrt{lpha_s} + {
 m const.})$

Consistency Check

corrections?

Fit to Means of y_{fJ} ($a_{y_{fJ}} = -1/4$)

Fit to Means of y_{k_t} ($\alpha_s(M_Z)$ only)

1/Q fit unsatisfactory, 3-par. $1/Q^2$ fit instable, but acceptable fit for y_{k_t} without power term.

Systematic Uncertainties

Summary

- Substantially improved and extended analysis of event shape means, new variables, much more data.
- τ , B, ρ , τ_C , C sizably affected by hadronization, y_{fJ} and y_{kt} exhibit small, negative hadronization corrections.
- Simple $\langle F \rangle^{\text{pert}} + \lambda/Q$ or μ/Q^2 fits unsatisfactory $\Rightarrow x$ dependent λ, μ ?
- Power correction fits to Dokshitzer-Webber model much better, $\overline{\alpha_0} \approx 0.5 \pm 20\%$, but uncomfortably large spread in $\alpha_s(M_Z)$.
- New *B* coefficient works reasonably.
- Conjectured $a_{y_{fJ}} = 1$ coeff. excluded, -1/4 favoured.
- 1/Q fit unsatisfact. for ⟨y_{kt}⟩, 3-par. 1/Q² fit instable.
 ⇒ More work to be done for y₂ variables.