How to subtract underlying event from jets?

Tancredi Carli, Pavel Starovoitov

CERN, NCPHEP

June 6, 2006

Outline

- Plan
- 2 How much energy do UE add
- 3 UE energy map
- 4 Energy Flows
- Subtraction
- 6 Next steps

Plan

 Future: We want to study uncertainties for different Jet Algorithms: Cone & K_T

- Today: We study Underlying Events
 - Definition
 - UE: collision of beam remnants (subtraction is needed to compare to NLO calculations)
 - ★ MB(Minimal Bias): soft hadron collisions in same bunch crossing (subtraction is needed to measure the cross section)
 - ★ Pile-up: soft hadron collisions from diffrent bunch crossing
 - ▶ We use UE as a template for MB since problems are similar

$$\frac{1}{N} \frac{dE_T^{jet}}{d\eta^{jet}} \ \frac{1}{N} \frac{dE_T^{jet}}{d\varphi^{jet}}$$

Generator: Sherpa-1.0.8

Jet cut: $E_T^{jet} > 100 \; GeV; \; \left| \eta^{jet} \right| \leq 5$

Jet Algorithm: MidPoint

Hard Scale HS+UE Difference

Cross section

Hard Scale HS+UE Difference

$< E_T >$ of Underlying Events in $\eta - \varphi$

- UE map is flat in φ
- UE map varies in η (phase space)

How to deal with UE

- Assumption: Hard Scale and UE are uncorrelated
- Two possible biases
 - ▶ Jet Algorithm sees UE to define a jet
 - UE has structure at event-by-event basis
- Look at Energy Flows
 - ▶ $\frac{dE_T}{d\Delta R_i}$ where $\Delta R_i = \sqrt{(\eta_{jet} \eta_i)^2 (\varphi_{jet} \varphi_i)^2}$
 - $\frac{dE_T}{d\Delta\varphi}$ where $\Delta\varphi=|\varphi_{jet}-\varphi_i|$

Energy Flow $\frac{dE_T}{d\Delta R_i}$ around jet with maximal E_T

Hard Scale HS+UE Difference UEPartons only

Energy Flow $\frac{dE_T}{d\Delta R_i}$ around four leading jets

Energy Flow $\frac{dE_T}{d\Delta R_i}$ around four leading jets

Energy Flow $\frac{dE_T}{d\Delta\varphi}$ around jet with maximal E_T

Hard Scale HS+UE Difference UEPartons only

11 / 16

Energy Flow $\frac{dE_T}{d\Delta\varphi}$ around four leading jets

Energy Flow $\frac{dE_T}{d\Delta\varphi}$ around four leading jets

Subtraction

Possible strategy to subtract UE:

- measure MB and determine the average E_T in a cone around a random jet axis and subtract this from each jet
- However, this is not possible for K_T algorithm
 - Use sum of the constituents (to be studied)

Subtraction II

Map: $\langle E_T \rangle$ in GeV of UE partons at Shower level

 E_T in a Cone using UEMap E_T in a Cone on event-by-event basis

$$\frac{\langle E_T \rangle}{\langle E_T \rangle} \approx 1.28$$

- correlation on event-by-event basis important?
- need to fold in true η_{iet} distribution?

Conclusions & Next Steps

- Jets at HS+UE becomes broader
- Jet axis in HS+UE is not the same as in HS.
- UE changes the response of the jet algorithm
 - ▶ UE produce a bias to the Jet Algorithms