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Message: The relevance of perturbation theory

The distinction between “perturbative” and 
     “non-perturbative” isn’t always obvious
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Sudakov form factor – falls faster than any power:
Sum differs qualitatively from lowest order

Ex.: Electron form factor

The physics of the Sudakov form factor is understood
                                               – it is part of “perturbative physics”
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The success of PQCD in hard processes relies 
on the QCD factorization theorem, which uses 
perturbation theory even in the soft domain

σ(pp→ 2 jets) =
∑

i,j=q,g

fi/p(xi, Q
2)fj/p(xj, Q

2)σ̂(ij → k")

1

The derivation, which is privy to the expert few, gives

where the Wilson line is given 
by the path ordered exponential:
Apparently, W[x-,0] = 1 in A+ = 0 gauge, so that fq/N is given by an overlap of 

x+= 0 target wave functions, i.e., by the probability to find a quark in |N>.

Surprisingly, the last statement turned out to be incorrect.
Seeing why also helps understand the dynamics of QCD processes.

W [x−, 0] ≡ P exp

[
ig

2

∫ x−

0
dw−A+(w−)

]fq/N(xB, Q2) =
1

8π

∫
dx−e−ixBp+x−/2〈N(p)|q̄(x−)γ+ W [x−, 0]q(0)|N(p)〉x+=0

Brodsky
PH
Marchal
Peigné
Sannino
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Deep Inelastic Scattering (DIS)
    e + p –› e + X

Q2 = −q2 →∞, ν =
p · q

mp
→∞, xB =

Q2

2mpν
fixed

x± ≡ x0 ± x3 = t± z
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Remarks:
•   Vanishing light front time, x+ = t + z = 0, does not limit t or z for particles 
(like the struck quark) which move with v = c along the negative z axis.
 Photons reach us from the early universe in x+ = 0.

• Secondary interactions occurring within the coherence (’Ioffe’) length
LI of the virtual photon typically affect the DIS cross section:

LI =
1

Q
· ν

Q
=

ν

Q2 =
1

2mxB
is long at small xB

Such interactions cannot 
be turned off by a choice 
of gauge

• Diffractive DIS:
In 10% of the events the struck quark seems to
escape from the target without a string of hadrons:
A “rapidity gap” is formed.

How can color be separated over long distances?
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The LF time x+ = t + z development of DIS looks very different in proton rest
frame, depending on whether the γ* is moving along the -z or +z axis:

qz < 0: No rescattering
          in A+= 0 gauge?

qz > 0: quark-antiquark
dipole multiple scatters

The amplitudes are related by a 180° rotation around the y axis.

Lorentz transformation cannot be done since proton wave function is unknown.
Enter PQCD: Compare perturbative model calculations in the two frames, 
using a simple (quark) target.
Find: Rescattering effects persist in all frames and gauges. Gives rise to 
                                         shadowing, diffraction and spin effects in DIS.
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In about 10% of DIS events the 
proton target stays intact and is 
separated by a large rapidity gap 
from the diffractive system X.
What is this ‘Pomeron’ exchange?

Brodsky
Enberg
Hoyer
Ingelman

New view of Diffractive DIS (DDIS)

Ingelman-Schlein picture
Virtual photon probes the
pomeron as a constituent
of the proton target:

Two-gluon exchange models 
Dipole scattering, formulated 
in the qz > 0 frame:
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The QCD factorization theorem has been extended to the diffractive structure 
function:                                             where the subprocess cross section σi is

the same as in ordinary DIS, and the diffractive parton distribution ƒD parton 
has the same Q2 dependence as the inclusive ƒ.

–› DDIS involves hard scattering on a single quark or gluon

Collins
F

(D)
2 =

∑
i=q,G

fD
i/p ⊗ σ̂i

In the presence of rescattering effects, diffraction is readily understood as due to 
color neutralization from soft rescattering.

Note: Diffractive qq or gg dipole must have large size,  ~ 1 fm, to be resolved 
                            by soft secondary gluon exchange.
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Consequences of DDIS arising from soft rescattering:

•  The rescattering will not resolve hard gluon emission at  γ* vertex
 =>  Q2 evolution identical to DIS (as required by the factorization theorem)

•  The xB (or W) dependence is given by standard gluon distribution, hence

                                      is independent of xB and  Q2, in agreement with data
σDDIS(xB, Q2)

σDIS(xB, Q2)

• Note: In a Pomeron Regge model, 
the ratio would depend on xB , which 
is ruled out by the data.

σRegge
DDIS(xB, Q2)

σRegge
DIS (xB, Q2)

= x
1−αIP
B

• Similarly, we would have
if both gluons were hard, which
is also ruled out. 

fD
q/p(xB, Q2) ∝

[
fq/p(xB, Q2)

]2
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Remarks on hard diffraction via soft rescattering

• Rescattering amplitudes are dominantly imaginary, as expected for diffraction
cf. Ingelman-Schlein constituent pomeron model: Real amplitude

• Rescattering happens within the Ioffe length (in the proton), long before 
     Lorentz-dilated hadronization time t ~ ν (1 fm)2 
     => Secondary gluon can shield the color of the primary gluon
          This is not a Final State effect in the usual  sense of the word!

• This scenario is quite similar to the “Soft Color Interaction” (SCI) model 
   developed previously, implemented in Monte Carlo and successfully 
   tested on data on hard diffraction in both DIS and pp.

• Note: Hard diffraction in pp occurs 1/10 as often as in DIS. This rules out
            the (universal) Ingelman-Schlein constituent pomeron model.
• Note: Factorization theorem does not apply to diffraction in pp collisions,
                due to color interactions between projectile and target spectators.
                                          This is similar to the present rescattering picture.

Edin
Ingelman
Rathsman
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CDF  Phys. Rev. Lett. 84, 5043 2000
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and next a quite different application of PQCD:
PH
PeignéPerturbative Parton Dressing

Aim: • Use formally exact PQCD expansion
• Expand around a nontrivial (condensate) configuration

Find: • Quark and gluon propagators with a novel analytic structure
•  Partons removed from in- and out-states (no pole at p2 = 0)
• Gauge invariance maintained: Photon pole at p2 = 0 remains
• Chiral symmetry breaking solution for quark propagator

Method: Consider the shift                                             of the gluon field in LQCD 
•  Green functions unchanged, since 
•  Perturbative expansion is modified.
•  Quark term in LQCD  generates
•  New term is gauge invariant under q –› Uq  provided

Aµ(x)→ Aµ(x) + Φµ∫
D[Aµ] =

∫
D[Aµ + Φµ]

q̄iD/ q → q̄iD/ q − g q̄Φ/ q

Φµ→ UΦµU†
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•  We take          to be independent of x, and average over its values with
    a gaussian weight with a
    mass parameter Λ.

Φµ ∫ ∞
−∞

∏
µ

dΦµ exp

[
1

Λ2 Tr(ΦµΦµ)

]
So far everything was formally exact. Now we dress the (massless) quark 
propagator by summing all its interactions with the shift field        , at leading 
order in the N –› ∞ limit of a large number of colors.

Typical (planar) diagrams which contribute to the dressing:

Φµ

pp
q q

!
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The diagrams can be directly summed, or one may note that it 
satisfies a Dyson-Schwinger type equation for quark propagator

S (p) =  =  g
p

+

where   µ2 = g2 N Λ2 . This equation is algebraic and can be solved exactly.
With the general ansatz

we find two solutions.

Sg(p) =
1

p/
− 1

2 µ2 1

p/
γµSg(p)γµSg(p)

1

Sg(p) = a(p2) p/ + b(p2)

1
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Dressed quark propagator (1):
Sg1(p) =

2p/

p2 +
√

p2(p2 − 4µ2)

1

which reduces to the standard perturbative one for  p2 → ∞ . 

At p2  = 0 it has a branch point singularity, rather than a pole.

Hence the quark does not propagate to asymptotic times:

|Sg1(t, !p)| ∼
|t|→∞

O
(
1/

√
|t|

)

1

Thus the interactions with the zero-momentum gluons in the perturbative 
vacuum effectively prevent the quark from propagating very far.

NOTE: The novel analytic structure is only seen when the vacuum interactions 
are summed to all orders! 
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Dressed quark propagator (2):

Sg2(p) = − 1

µ2

(
p/ ±

√
p2 + 1

2µ
2

)

1

Breaks chiral invariance!  (Diverges for  µ  → 0)

Does not reduce to the standard perturbative propagator for p2 → ∞ .

However,  Sg2(p) = Sg1(p)  for  p2 = – µ2/2 . Hence in a loop integral we 
may skip between solutions:

Sg2(p) for −
√

p2 − µ2/2 ≤ p0 ≤
√

p2 − µ2/2

Sg1(p) elsewhere

1

which will give Green functions that break chiral symmetry.
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Dressed quark-photon vertex

= +=
k

k

(k,k)g

Γµ
g (k, k̄) = γµ−1

2µ
2 γνSg(k)Γµ

g (k, k̄)Sg(k̄)γν

1

Linear equation with unique solution, given the quark propagator Sg .
For Sg1(k) we find

Γµ
g (k, k̄) =

1

1 + 2fk · k̄ + f 2k2k̄2

{
(1 + fk · k̄)γµ − fiγ5 εµνρσγνkρk̄σ

+
2f 2

1− f 2k2k̄2
(kµk/k̄2 + k̄µk̄/k2) +

f(1 + f 2k2k̄2)

1− f 2k2k̄2
(kµk̄/ + k̄µk/)

}

1

where and ap ≡
(

1−
√

1− 4µ2/p2

)
/2µ2

1

f ≡ µ2akak̄

1
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pµΓµ(k, k̄) = S(k)−1 − S(k̄)−1

1

By direct calculation we may verify the Ward-Takahashi identity:
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k

k

The photon self-energy: Does the photon acquire a mass?

Using the p → 0 form 
of the W-T identity,

          we have

which shows that p2 Πg(p2) → 0 for p2 → 0, hence that mγ = 0. 

This may also be verified directly from the explicit expressions.

Γµ
g (k, k) =

∂S−1
g (k)

∂kµ
= −S−1

g (k)

[
∂Sg(k)

∂kµ

]
S−1

g (k)

1

Πµ
gµ(p = 0) = −ie2N

∫
dDk

(2π)D
∂

∂kµ
Tr [γµSg(k)] = 0

1

Πµν
g (p) = ie2N

∫
dDk

(2π)D
Tr

[
γνSg(k)Γµ

g (k, k̄)Sg(k̄)
]

= Πg(p
2) (p2gµν − pµpν) since (WT) pµΠ

µν
g (p) = 0

1
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Φµ

Aµ(x)→ Aµ(x) + Φµ

The        – gluon coupling   

The shift                                          generates                            , where
has several, separately gauge invariant terms.

We have studied the simplest one:                                            , where

Lg → Lg + LΦ LΦ

L(1)
Φ = −Tr

(
FµνF

µν
Φ

)
Fµν

Φ = ∂µΦν−∂νΦµ+ig
([

Φµ, Aν
]− [

Φν, Aµ
])

transforms into                  under a gauge transformation U. 
Taking         constant in the covariant gauge                   we sum over all planar 
gluon dressings of the form 

UFµν
Φ U†

pp
g

!

g
p

!

Φµ ∂µAµ = 0
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The dressed gluon propagator is

where

iDab
g,µν(p) =

i

p2

(
−gµν +

pµpν

p2

)
d(−2µ2/p2)

d(−2µ2/p2) =
p2

4µ2

[
2F1(−1

2,
1
2; 2;−32µ2/p2)− 1

]
and 2F1 is a hypergeometric function. The dressed propagator thus has a cut 

for -32 µ2 ≤ p2 ≤ 0 , and has the asymptotic limits

d(−2µ2/p2) → 1 for p2 →∞

d(−2µ2/p2) → 4

3π

√
p2

µ
for p2 → 0
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F.D.R. Bonnet, et al, Phys. Rev. D64, 034501

Interestingly, the general shape of the dressed gluon propagator resembles 
lattice results:
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Summary
Dynamics of hard QCD processes is still incompletely understood

• Relation of parton distributions to target wave function

• Importance of interference between rescattering amplitudes
     – Transverse spin effect in DIS
     – Nuclear shadowing
     – Diffraction

The Pomeron is not a constituent of the target
– it arises from soft rescattering
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PQCD helps to  cast light even on confinement physics

• Color confinement may result from long distance propagation in
   condensate, rather than from αs > 1 

• We may perturb around a non-empty gluon field configuration

• Method presented above maintains good features of usual PQCD,
  adding novel features at low p2

• Its usefulness for understanding qualitative (analyticity, unitarity, ...)
   and quantitative aspects of hadron physics merits further study.


