New Results on Nucleon Spin Structure

Naomi C.R. Makins

University of Illinois at Urbana-Champaign QNP 2004, Bloomington, USA, May 24 - 28, 2004

Outline

- Some phenomenlogical models
- Quark polarization: status
- Gluon polarization: new results
- Transversity & Friends: new structures to explore
- New transverse-spin data

New results from several experiments!

- This talk: HERMES, SMC, STAR, PHENIX
- COMPASS talk by F. Bradamante

JLAB 📥 talk by Z.-E. Mezziani

Flavor Structure of the Proton

- quark degrees of freedom in a pion mean-field
- nucleon = chiral soliton
- one parameter: dynamically-generated quark mass
- expand in $1/N_c$

'tHooft instanton vertex $\sim \overline{u}_R u_L \overline{d}_R d_L$

Spin Structure of the Proton

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Parton Distribution Functions

unpolarized:

polarized:

$$q(x) = q^{\uparrow}(x) + q^{\downarrow}(x)$$
$$\Delta q(x) = q^{\uparrow}(x) - q^{\downarrow}(x)$$

Constituent Quark Model

$$\Delta u = +\frac{4}{3}, \ \Delta d = -\frac{1}{3} \rightarrow \quad \Delta \Sigma = 1$$

Relativistic Quark Model

relativistic *current quarks* with light masses, orbital angular momentum is important

 $\Delta \Sigma \simeq 0.60 - 0.75 \qquad L_q = \frac{1}{2}(1 - \Delta \Sigma)$

Neutron/Hyperon β **-decay Constants**

give 2 conserved moments:

$$a_3 = \Delta u - \Delta d = 1.267$$
$$a_8 = \Delta u + \Delta d - 2\Delta s = 0.585$$

• Neglecting sea quarks entirely,

$$\Delta \Sigma = \Delta u + \Delta d = a_8 = 0.59$$

Now add sea: $\Delta u \rightarrow \Delta u_v + \Delta u_s + \Delta \overline{u}$

• Assuming SU(3)-symmetric sea ,

$$\Delta u_s = \Delta \overline{u} = \Delta d_s = \Delta \overline{d} = \Delta s = \Delta \overline{s},$$

$$\Delta u_v = (a_8 + a_3)/2 = +0.93$$
$$\Delta d_v = (a_8 - a_3)/2 = -0.34$$

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s = a_8 + 6 \, \Delta \overline{q} = ?$

Anti-quark Spin in the Proton

Meson Cloud Models

Li, Cheng, hep-ph/9709293

"Higher-order" cloud of vector mesons can generate a small $\Delta \overline{q}$ polarization.

Chiral-Quark Soliton Model

Goeke et al, hep-ph/0003324

Light anti-quarks polarized:

Instanton Mechanism

'tHooft instanton vertex $\sim \overline{u}_R u_L \overline{d}_R d_L$ transfers helicity from valence u quarks to $d\overline{d}$ pairs

Polarized Deep-Inelastic Scattering

Measure g_1 structure function

$$g_1(x,Q^2) = \frac{1}{2} \sum_q e_q^2 \Delta q(x,Q^2)$$

via inclusive double-spin asymmetries

$$A_1 = \frac{\sigma_{J=1/2} - \sigma_{J=3/2}}{\sigma_{J=1/2} + \sigma_{J=3/2}} = \frac{g_1}{F_1}$$

 $\Gamma_1^p = \int g_1^p \, dx = 0.118 \pm 0.008$

Assuming flavour-symmetric sea,

$$\Gamma_1^p = \frac{1}{6} \left[\frac{a_3}{2} + \frac{5 a_8}{6} + 4 \Delta \overline{q} \right]$$
$$\Delta \overline{q} \simeq -0.10 \quad \Rightarrow \quad \Delta \Sigma \simeq 0!$$

i.e., the "Spin Crisis" ... but we can do a lot better than this analysis ... !

NLO pQCD Fits to World Data on g_1^p , g_1^n , g_1^d

$$g_1^{p(n)}(x,Q^2) = \frac{1}{9} \left(C_{NS} \otimes \left[\pm \frac{3}{4} \Delta q_3 + \frac{1}{4} \Delta q_8 \right] + C_S \otimes \Delta \Sigma + 2N_f C_g \otimes \Delta G \right)$$

Ingredients:

- Parametrization at some scale μ_0 , e.g. $\Delta q(x,\mu_0^2) = N \, x^{\alpha} (1-x)^{\beta} q(x,\mu_0^2)$
- Moments from β -decay:

$$\begin{array}{l} a_3 = 1.267 = \Delta U + \Delta D \\ a_8 = 0.585 = \Delta U + \Delta D - 2\Delta S \\ \text{where } Q \equiv q + \overline{q} \end{array}$$

• Sea-flavour assumption:

(a)
$$\Delta u_s = \Delta \overline{u} = \Delta d_s = \Delta \overline{d} = \dots$$

(GRSV-standard, AAC, BB, HERMES)

(b) $\Delta \overline{d} / \Delta \overline{u} = \Delta u / \Delta d$ $\Delta s = \Delta \overline{s} = 0$ (GRSV-valence)

- Factorization scheme (usu. $\overline{\mathrm{MS}}$)
- Optional: higher-twist terms $\sim 1/Q$

NLO pQCD Fits to g_1 : **Quark-Polarization Results**

First moments at $Q^2 = 4.0 \text{ GeV}^2$:

SU(3)-symmetric sea assumption:

(all: $\Delta u_v = 0.93 \pm 0.07$, $\Delta d_v = -0.34 \pm 0.12$)

	$\Delta \overline{q}$	$\Delta\Sigma$
GRSV 2000 std	-0.064	0.197
BB 2002	-0.072 ± 0.015	0.153 ± 0.093
AAC 2003	-0.062 ± 0.023	0.213 ± 0.138
HERMES prelim	-0.064 ± 0.021	0.201 ± 0.119

GRSV "valence" scenario:

	$\Delta \overline{u}$	$\Delta \overline{d}$	$\Delta\Sigma$
GRSV 2000 valence	0.085	-0.235	0.273

 χ^2 /dof cannot distinguish between SU(3)-symmetric sea (GRSV-"standard") and fully flavour-broken "valence" scenario

Quark Polarization from Semi-Inclusive DIS

In <u>semi-inclusive DIS</u> a hadron h is detected in coincidence with the scattered lepton ...

Goal: flavor separation of quark and antiquark helicity distributions

Technique: Flavor Tagging

The flavor content of final state hadrons is related to the flavor of the struck quark via the fragmentation functions $D_q^h(z, Q^2)$. In LO QCD:

$$A_1^h(x,Q^2) = \frac{\int_{z_{\min}}^1 dz \sum_q e_q^2 \,\Delta q(x,Q^2) \cdot D_q^h(z,Q^2)}{\int_{z_{\min}}^1 dz \sum_q e_q^2 \,q(x,Q^2) \cdot D_q^h(z,Q^2)} = \sum_q P_q^h(x,z) \frac{\Delta q(x)}{q(x)}$$

Purity matrix P_q^h is spin-independent & may be computed by Monte Carlo

Final HERMES Δq Measurement from SIDIS

- input: $A_{1,p}$, $A_{1,p}^{\pi^{\pm}}$, $A_{1,d}$, $A_{1,d}^{\pi^{\pm}}$, $A_{1,d}^{K^{\pm}}$
- Assumption: $\Delta \overline{s} = 0 \pm 1/\sqrt{3}$

First 5-flavor fit to
$$\Delta q(x)$$

No significant \overline{q} polarization seen

... but ...

- Results **perfectly consistent** with **inclusive** fits $\Rightarrow \chi^2/\text{dof} = 0.6 - 1.6 \text{ vs}$ BB (SU3-sym) <u>and</u> GRSV-valence \odot
- In **measured range** (x = .023 .6),

$$\int \Delta \overline{u} = -0.002 \pm 0.043$$

$$\int \Delta \overline{d} = -0.054 \pm 0.035$$

 $\int \Delta s = +0.028 \pm 0.034$

Flavor-Asymmetry of Sea & Future Data on $\Delta q(x)$

Comparison with Chiral-Quark Soliton Model calculation "not great" ...

Lack of flavor-asym $\Delta \overline{u} \neq \Delta \overline{d}$ more reminiscent of *meson-cloud picture* ...

More SIDIS data coming from COMPASS!

New channel coming from RHIC \Rightarrow *W*-production!

Gluon Polarization from NLO Fits to $g_1(x, Q^2)$

$$g_1^{p(n)}(x,Q^2) = \frac{1}{9} \left(C_{NS} \otimes \left[\pm \frac{3}{4} \Delta q_3 + \frac{1}{4} \Delta q_8 \right] + C_S \otimes \Delta \Sigma + 2N_f C_g \otimes \Delta G \right)$$

Gluon Polarization from SIDIS

Find SIDIS channel that enhances Photon-Gluon Fusion process

(1) Charm production > COMPASS talk (F. Bradamante)!

(2) High-pT hadron-pair production

• HERMES 1997: $Q^2 \approx 0$, $\sum p_T > 2.5 \text{ GeV}$

 $\Delta G/G = +0.41 \pm 0.18 \pm 0.03$ at $\langle x_G \rangle = 0.17$

• **new** SMC analysis #1:
$$Q^2 > 1$$
, $\sum p_T^2 > 2.5 \text{ GeV}^2$

 $\Delta G/G = -0.07 \pm 0.40 \pm 0.12$ at $\langle x_G \rangle = 0.09$

new SMC analysis #2: $Q^2 > 1$, neural-net cuts

 $\Delta G/G = -0.20 \pm 0.28 \pm 0.10$ at $\langle x_G \rangle = 0.07$

Channels: 1 Direct-photon 2 Heavy-quark production 3 Jet / hadron production

Uncomfortable scale-dependence of hadron-pair xsec at HERMES and COMPASS kinematics ...

Happier situation at RHIC: much less scale-dependence ... π^0 xsec well explained by NLO-pQCD:

New Results from PHENIX! $A_{LL}^{\pi^0}$ at mid-rapidity

Jäger, Stratmann, Kretzer, Vogelsang, PRL 92 (2004) 121803

PH^{*}ENIX

Many subprocesses ... but only $gg \rightarrow q\overline{q}$ has negative subprocess asymmetry $\hat{a}_{LL} < 0$...

Interpretation of PHENIX $A_{LL}^{\pi^0}$

-0.1

10

10⁻²

10⁻¹

х

Answers await more statistics \rightarrow higher p_T coverage

New Spin-Structure Function: Transversity $\delta q(x)$

Proton Matrix Elements vector charge $\langle PS|\overline{\psi}\gamma^{\mu}\psi|PS\rangle = \int_{0}^{1} dx \ q(x) - \overline{q}(x) \rightarrow \#$ valence quarks axial charge $\langle PS|\overline{\psi}\gamma^{\mu}\gamma_{5}\psi|PS\rangle = \int_{0}^{1} dx \ \Delta q(x) + \Delta \overline{q}(x) \rightarrow \text{net quark spin}$ tensor charge $\langle PS|\overline{\psi}\sigma^{\mu\nu}\gamma_{5}\psi|PS\rangle = \int_{0}^{1} dx \ \delta q(x) - \delta \overline{q}(x) \rightarrow ???$

Forward Helicity Amplitudes

(optical theorem applied to DIS)

Properties of Transversity

In Non-Relativistic Case, boosts and rotations commute:

... but bound quarks are highly *relativistic* in nature

No Gluons

Angular momentum conservation: $\Lambda - \lambda = \Lambda' - \lambda'$

- \Rightarrow transversity has **no gluon** component
- \Rightarrow different Q^2 evolution than $\Delta q(x)$

Chiral Odd

Helicity flip amplitudes occur only at $\mathcal{O}(m_q/Q)$ in inclusive DIS ...

but they are observable in e.g. semi-inclusive reactions

 $\delta q(x) = \Delta q(x)$

Single-Spin Asymmetries at Hard Scales

T-odd observables

SSA observables $\sim \vec{J} \cdot (\vec{p_1} \times \vec{p_2})$ \Rightarrow *odd* under naive *time-reversal*

Since QCD amplitudes are T-even, must arise from **interference** between **spin-flip** and non-flip amplitudes with **different phases**

Suppressed in pQCD hard-scattering

- q helicity flip suppressed by m_q/\sqrt{s}
- need α_s -suppressed loop-diagram to generate necessary phase

At hard (enough) scales, SSA's must arise from soft physics: T-odd distribution / fragmentation functions **Results from STAR:** $A_N^{\pi^0}$ at forward rapidity

Was E704 at a hard-enough scale for reliable pQCD analysis? well RHIC certainly is!

Clear evidence of analyzing power

Xsec well-described by pQCD

Asymmetry shows similar rise with x_F as observed at E704

Possible Mechanism #1: The "Collins Effect"

 $H_1^{\perp}(z, k_T)$ T-odd fragmentation func

- intrinsically k_T -dependent
- chiral-odd, like transversity

based on Lund-string fragmentation picture

Artru model

Collins

Effect

Possible Mechanism #2: The "Sivers Effect"

New type of DF: T-odd, and depends **intrinsically** on **quark transverse-momentum**

 \Rightarrow on quark orbital motion

Forward π^+ produced from orbiting u_v quark by recombination at *front surface* of beam

How to Separate?

Until 2002, it was believed that the <u>Sivers</u> effect could <u>not exist</u> in <u>DIS</u> → requires T-odd interference effect in initial state ...

The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f_{1T}^{\perp} <u>must</u> arise from <u>interference</u> ... but a distribution function is just a forward scattering amplitude, how can it contain an interference?

Brodsky, Hwang, & Schmidt 2002

It <u>looks</u> like higher-twist ... but <u>no</u>, these are <u>soft gluons</u> = "gauge links" required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are *final (or initial) state interactions* ... and may be *process dependent* ! I new *universality issues*

T-odd Distribution vs Fragmentation Function

First Data from HERMES Run 2

Transverse Hydrogen target installed in 2001

"Collins" Moments

Interpretation of Collins Results

HERMES

****π**+**

The Collins results for π^+ , π^- , π^0 show an unexpected pattern ...

Interpretation: Minimal Assumptions

- $A_{\rm UT}^{\rm Collins}$ is *leading twist*
- Collins FF obeys *favored / disfav* symmetry:

$$H_{\text{fav}} \equiv H_{1\perp}^{u \to \pi^+} = H_{1\perp}^{d \to \pi^-} = H_{1\perp}^{\overline{u} \to \pi^-} = H_{1\perp}^{\overline{d} \to \pi^+}$$
$$H_{\text{dis}} \equiv H_{1\perp}^{u \to \pi^-} = H_{1\perp}^{d \to \pi^+} = H_{1\perp}^{\overline{u} \to \pi^+} = H_{1\perp}^{\overline{d} \to \pi^-}$$
$$\Rightarrow A^{\pi^+} = k \frac{(4\delta u + \delta \overline{d})H_{\text{fav}} + (\delta d + 4\delta \overline{u})H_{\text{dis}}}{(4u + \overline{d})D_{\text{fav}} + (d + 4\overline{u})D_{\text{dis}}}$$

Some definitions

$$r \equiv \frac{d + 4\overline{u}}{u + \overline{d}/4} \qquad \eta \equiv \frac{D_{\text{dis}}}{D_{\text{fav}}}$$
$$\delta r \equiv \frac{\delta d + 4\delta\overline{u}}{\delta u + \delta\overline{d}/4} \quad \eta_H \equiv \frac{H_{\text{dis}}}{H_{\text{fav}}}$$

Consider Asymmetry Ratios

$$\alpha^{-} \equiv \frac{A^{\pi^{-}}}{A^{\pi^{+}}} = \left(\frac{4\eta_{H} + \delta r}{4\eta + r}\right) \left(\frac{4 + r\eta}{4 + \delta r\eta_{H}}\right), \quad \alpha^{0} \equiv \frac{A^{\pi^{0}}}{A^{\pi^{+}}} = \frac{(4 + \delta r)(1 + \eta_{H})}{(4 + r)(1 + \eta)} \left(\frac{4 + r\eta}{4 + \delta r\eta_{H}}\right)$$

 \Rightarrow Leads to Constraint Equⁿ involving <u>only unpolarized</u> quantities

$$\alpha^{-}C = \alpha^{0}(1+C) - 1$$
 where $C \equiv \frac{4\eta + r}{4 + \eta r}$

 \Rightarrow Solution Space in η_H vs δr can be determined:

$$\eta_H = \frac{\delta r - 4(\alpha^- C)}{(\alpha^- C)\delta r - 4} \quad \text{and} \quad \eta_H = \frac{\delta r - 4(\alpha^0(1 + C) - 1)}{(\alpha^0(1 + C) - 1)\delta r - 4}$$

Interpretation of Collins Results

(1) Constraint equation: well satisified by both weighted and unweighted asymmetries (within 1σ statistical) \rightarrow no problem with internal consistency

<u>Neglecting</u> possible diffractive contamination , there seems to be a pronounced indication that $H_{\rm fav} \approx -H_{
m dis}$

Interpretation of Collins Results

<u>Artru model</u>, based on phenomenological Lund string-fragmentation model and ³ P_0 hypothesis for $q\overline{q}$ -pair formation

I leading π^+ = *favored* transition, heads *into page*Subleading pcle (prob π^-) = *disfavored* transition, heads *out of page Perhaps* $H_{dis} \approx -H_{fav}$ *is not only reasonable, but likely ?*

1-2 -- 1- -

Universality of k_T -dependent Functions

Expectation: T-odd functions will change sign between spacelike (SIDIS) and time-like (e^+e^- and DY) processes

BELLE e^+e^- **Experiment**

- Analysis of *Collins function* from high-statistics BELLE data in progress!
- Critical for providing *normalization point* for SIDIS and *pp* data $\sim h_1 H_1^{\perp}$

Universality of E704 / RHIC $p^{\uparrow}p \rightarrow \pi X$ not yet clear ...

3 "soft blobs" ... gauge-link topology more complex

Conclusions: A lot has happened in the past year!

Sea-Quark Polarization

- Inclusive DIS data favour Δq_s of about -6% per flavor ... but can't separate by flavor
- Final HERMES **SIDIS data** place **new constraints** on $\Delta \overline{u}$, $\Delta \overline{d}$, Δs

Gluon Polarization

First A_{LL} data from <u>PHENIX</u>: Unexpectedly, asymmetry favors negative sign, origin not yet understood

Transverse Effects & Single-Spin Asymmetries

- First A_{UT} data from <u>HERMES</u>: <u>Sivers</u> effect <u>non-zero</u>
 ... but <u>Collins</u> function shows unexpected behavior
- **STAR** $A_N^{\pi^0}$ confirms "E704 effect" at forward rapidity
- Mid-rapidity A_N^h at **PHENIX** is zero, not surplising, ... but **unexpected** $A_N^n \approx -10\%$ seen at 0°

And this is only the beginning ! 🙂