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This dissertation presents the first measurement in a hadron collider of an event
shape variable, the Dijet Transverse Thrust 7}, which is sensitive to the spatial jet
distribution on the plane perpendicular to the colliding pp beams. Ty is calculated
with the two most energetic jets reconstructed with the £, algorithm, and it ranges
from T¢ = 1, for a pencil-like configuration, to 7% = 1/2/2, for two equal energy
jets at 90°. The measurement is based on 87.3 pb~! of data collected with the
D@ detector at the Fermilab Tevatron pp Collider. The cross section is reported
as a function of 1 — 7% and log(1 — T%), which enhances the high statistics T4—1
region, and presented for four separate event energy ranges. The measurement is in
good agreement with a fixed-order O(c?) perturbative QCD prediction, except at
high T%, where resummation corrections are expected to be important, and below
Ti~ \/3/2, where the leading order diagrams contributing to T¢ are O(a?). The
data also show a very good level of agreement with a recent Next-to-Leading pQCD

three jet generator which covers the full T range, except for the T¢=1 point.
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Chapter 1

Introduction

Elementary particle physics or High Energy physics is the subject that studies the
constituents of matter and their interactions. An enormous progress has been made
in this field during the last 30 years, and series of important experimental discoveries
has established the existence of a subnuclear world. Nowadays, we view matter as
conformed of what is called elementary particles, very small on size, much smaller
than an atomic nucleus (~ 107'"m), and indivisible. These particles are grouped
into quarks and leptons. Their dynamics is believed to be described by quantum
field theories possessing local gauge symmetry. They interact through the exchange
of gauge field quanta (photons, gluons and weak boson). The descriptions of these
particles and their interactions is given by the Standard Model. It includes the elec-
troweak theory, which describes the electromagnetic and weak interactions of leptons
and quarks; and quantum chromodynamics (QCD) which describes the strong in-
teractions of quarks and gluons. The predictions of this model are day by day put
to test by means of different experimental techniques. One of the modern facilities
built for this purpose is the Tevatron (Illinois, USA), a pp collider that started op-
erations in 1985. D@ , an international collaboration of around 500 physicists from

different institutions, one of them being the University of Buenos Aires, is one of



the two experiments in the accelerator complex which has been designed to study
physics at very high energy (~ 2 TeV at the center-of-mass). A major feature
of this collider is jet production. When two hadrons collide, the outgoing quarks
and gluons hadronize to form jets of particles. Jet and event shape measurements
provide some of the cleanest tests of QCD predictions.

This work presents the first measurement of the Thrust cross section in proton—
antiproton collisions at /s = 1.8 TeV in the Tevatron using the D@ detector. This
event shape variable, previously studied at eTe™ and ep colliders, has been modified
in order to overcome the difficulties presented due to the busy environment of a
hadron collider. The actual observable is called the Dijet Transverse Thrust. Its
definition will be presented in this chapter together with a theoretical introduction.
Since the variable is measured using jets, the algorithms applied to define them are
also discussed, which special emphasis on k| jets. Chapter 2 contains the description
of the Fermilab accelerator complex and the D@ detector. The energy calibration
method developed for &, jets and the studies done to select the variable to measure
are presented in Chapters 3 and 4. The methods and techniques applied in data
analysis to obtain the physical quantity of interest are explained from Chapter 5
through 7. The latter includes also an analysis of the sources of systematic un-
certainties relevant for this work. Final results and comparisons with theoretical

predictions are presented in Chapter 8.

1.1 The Standard Model

The Standard Model [1] is a theory of interacting quantum fields, which describes
what we believe are the constituents of matter and their interactions. Within this
model, the fundamental building blocks of the universe consist of particles called
leptons and quarks. Their interaction occurs by means of force carrier particles called

bosons. The four fundamental forces acting among particles are the strong, weak,



electromagnetic and gravitational force. One of the major features of the Standard
Model is the fact that it treats the weak force and electromagnetism in a unified
manner. These two forces are often referred to collectively as the ‘electroweak’ force.

Tables 1.1 and 1.2 show the particle types of the Standard Model. They are
divided in three groups: leptons, quarks and gauge bosons. The first two are particles
of spin 1/2 and they conform what we call matter. They are grouped into three
generations, with similar properties except that masses increase with each successive
generation. Ordinary matter is composed by particles of the first generation, the
other ones are produced in high energy interactions.

Each generation of leptons is composed of a charged particle and a neutrino of the
corresponding type, which is neutral. Leptons can interact by the electromagnetic
and the weak force, while neutrinos are affected only by the weak interaction.

Quarks have two major features which qualitatively separate them from leptons.
First, they have fractional electric charge. Second, they carry color charge which
has three possible values, conventionally called ‘red,” ‘green,” and ‘blue’. They are
therefore affected by the strong force (also by the electromagnetic and weak forces),

which binds quarks together inside nuclei, and is described in more detail below.

Leptons Quarks
Symbol Name Mass Charge || Symbol | Flavor | Mass | Charge

(GeV) (e) (GeV) (e)
e electron 0.0005 -1 u up 0.003 2/3
Ve electron neutrino | < 31072 (?) 0 d down | 0.006 | —1/3
7 muon 0.106 -1 c charm 1.3 2/3
vy muon neutrino | < 1.9107% (?) 0 s strange | 0.1 | —1/3
T tau 1.777 -1 t top 175 2/3
7 tau neutrino < 0.018 (7) 0 b bottom | 4.3 -1/3

Table 1.1: The fundamental constituents of matter in the Standard Model [2].



Force Gauge Boson | Mass | Charge

Symbol | Name | (GeV) (e)
Electromagnetic ¥ photon 0 0
w w 80.425 +1
Weak
Z Z 91.187 0
Strong g gluon 0 0

Table 1.2: Gauge Bosons, the force carriers of the Standard Model [2].

Gauge bosons are responsible for the interactions between particles. Electro-
magnetism (‘quantum electrodynamics’ or ‘QED’), for example, is mediated by the
photon, which couples to particles which have electric charge. The strength of this
coupling changes with the energy involved in the interaction. This property is called
running coupling and it is a general feature of interactions in the Standard Model.
In this case it grows as the energy increases. The weak interaction is mediated by
the massive W and Z gauge bosons. The range of this force is short (~ 107! c¢m)
and, at energies of the order or above the exchanged gauge boson mass, the strength
of the interaction is comparable to the electromagnetic one.

The strong force is described by quantum chromodynamics (QCD) [3]. In an
analogy with the QED formalism, its interactions are mediated by gluons and its
strength is given by the value of the strong coupling parameter, a;. In order to
explain the existence of certain observed particles (like the A*™) satisfying the
Pauli exclusion principle, a new quantum degree of freedom is needed. Its named
is color and comes in three states, red’, ’green’ and ’blue’. QCD is a gauge field
theory with a local symmetry described by the SU(3) color group.

As it is the case for the electromagnetic interaction, the value of the strong
coupling runs. However, the direction of the effect is different: as the energy of
the interaction increases, the strength of the coupling gets smaller. This important

property, called asymptotic freedom, allows quarks to behave nearly like free parti-



cles at very high energies (F 2 10GeV), allowing the application of perturbative
techniques, as the ones used for electromagnetism. That is the realm of pQCD (per-
turbative QCD). QCD cross sections are calculated as power series on the strong
coupling constant. The contributions of each order can be represented by Feynman
diagrams, which are combination of fundamental interaction vertices joined by prop-
agators. The fundamental vertices are shown in Figure 1.1. Quarks are represented
by straight solid lines and gluons by helixes. Since gluons are coloured, they can
interact with each other giving rise to vertices of three and four gluons. A given
cross section is obtained as the absolute value squared of the sum of all contributing

matrix elements integrated over the available phase space.

\ag \ag s

Figure 1.1: Fundamental QCD vertices.

The fact that the strength of the strong interaction increases as the energy of
the interaction decreases, or equivalently, as the distance scale of the interaction
increases, indicates that at large distances, quarks and gluons (often collectively
called partons) are always bound together due to the strength of the coupling be-
tween them, and can never be seen as isolated particles. This is referred to as color
confinement [4] and it states that only color—neutral states, color singlets, can exists

at large distances. Quarks bind together creating hundreds of composite particles



called hadrons, divided in baryons, composed of three quarks, and mesons, consist-
ing of a quark and an antiquark.

The other force, gravity, is supposed to be mediated by the graviton but so far there
is no evidence of its existence. At present there is no workable theory of quantum
gravity.

The set of elementary particles listed in 1.1 is completed with the anti—particles
associated with each type. There is another boson, the Higgs , which awaits dis-
covery. While the photon, which carries electromagnetic forces, is massless, the Z
and W particles are heavy. The Higgs boson field is the mechanism which extends
the Standard Model to explain how particles (fermions and gauge bosons) acquire
the properties associated with mass. The Higgs boson is the exchanged particle
represented this field. It is expected to be found in Run II of the Tevatron at Fer-
milab or when the Large Hadron Collider starts operations at CERN (European

Organization for Nuclear Research).

1.2 Jet Physics

As it was stated before, the Standard Model proposes a scheme where matter is
composed of elementary particles called leptons and quarks. Quarks and gluons,
the mediators of the strong force, are bound into colorless states, called baryons
and mesons. The hard scattering among partons can be calculated using pQCD
techniques. However, color confinement does not allow a direct experimental test of
the parton level hard scattering.

A high energy hadron collision will result in a hard scattering of typically one parton
of each hadron. As the distance between an ejected parton and the parent hadron
increases, the strong coupling potential grows large enough to generate dozens of
new gluons and quark-antiquark pairs that subsequently recombine into stable, col-

orless hadrons. This non perturbative process called hadronization results in a jet



of particles in which most of the energy flows along the original parton direction.

After the hard interaction, the initial hadrons have lost the color charge associated
with the interacting partons. They are no longer stable, colorless objects. The ad-
ditional hadronic products resulting from the “spectator partons” are collectively
called the underlying event. When study jets its contributions are usually removed.
The perturbative component of the hard scattering can be calculated analytically.

The contribution of each order is represented by Feynman diagrams. Figure 1.2

2
s

shows examples of QCD process of order af. Leading order perturbative calcu-
lations do not include any internal loops. However, at higher orders in «;, loop
integrals become divergent at large momenta. These ultraviolet divergences can be
isolated by the regularization procedure [5], and absorbed into the definition of the

coupling strength via the renormalization process, introducing a new scale, ug.

Figure 1.2: Examples of QCD processes of order o?.
Quarks and gluons interact non—perturbately (at low energies) with one another
within hadrons. So, the initial momentum of the partons in a hard scattering inter-

action is not known. However, for a given hadron, the distribution of the momenta

of the various constituent partons can be determined. The PDF, parton distribu-



tion function, f;/s(x) is defined such that f;/,(z) dz gives the number of parton i in
hadron A carrying a fraction between = and x + dx of the parent hadron momentum,
where z is defined as: = pparton/Phadron- The PDF are independent of the specific
interaction and can be experimentally measured.

A cross section involving partons in the initial state is given by the product of
the PDF and the partonic cross section, summed over all contributing partons and
integrating over all values of x. This procedure, called factorization of the pertur-
bative and non—perturbative processes, introduces a scale parameter g, which sets
the boundary between the two.

Thus, at the final state of an hadronic collision, QCD predicts the appearance of
highly collimated sprays of particles, which are called jets and which are the manifes-
tations of the hard—scattered partons. The production of hadronic jets is the dom-
inant process at energies greater than 10 GeV. The Fermilab Tevatron pp collider
started operations in 1985 at a CM energy of 1.8 TeV. Today, it is the highest CM
energy hadron collider offering an excellent opportunity to study jets and their prop-
erties. The comparison of experimental measurements and theoretical predictions
provides of an enormous source of information about the interaction between par-
tons and the structure of hadrons as well as tests the perturbative QCD predictions
for hard scattering. Especially suited for such studies are infrared and colinear safe

“jet observables” like event shape, jet rates and jet cross sections.

1.3 Jet Definition

Different algorithms has been developed to define jets. This issue is non-trivial both
theoretically and experimentally. The role of these algorithms is to associate clusters
of “particles”, which can be detector elements or hadrons at the experimental level
or partons in a pQCD calculation, into jets such that the kinematic properties of

the jets can be related to the corresponding properties of the energetic partons



produced in the hard scattering process. Figure 1.3 schematizes the jet production
process in a hadron collider. The outgoing partons generate showers of quarks
and gluons, which hadronize into particles that interact with the detector leaving
energy deposits. Parton jets are defined prior to hadronization while particle jets
are defined before particles enter the detector, where jets are conform by the energy
deposits. Jet algorithms should yield similar results if applied to any of these steps.
Experiments typically correct their measurements from detector to particle level.
Theoretical predictions are usually made at parton level. At hadron colliders, the
non perturbative hadronization process is regarded as non important, in the sense

that it does not modify the jet observables.
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Figure 1.3: Scheme of jet production in a hadron collider.



In general, a jet algorithm must be [6]:

e Fully specified: The jet selection process, the jet kinematic variables and the

various corrections should be clearly and completely defined.
e Theoretically well behaved: They should be infrared and collinear safe.

e Lorentz boost invariant: The algorithm should find the same solution inde-

pendent of boosts in the longitudinal direction.
e Detector Independent: It should not depend on detector type, size,etc.

e Consistent: Equivalence at the theoretical and detector level.

The first three criteria should be satisfied by every algorithm. The last two can
probably never be totally true, since it is not possible to completely remove the

dependence on the particular apparatus used in the experiment.

1.3.1 Jet Kinematics

In order for the kinematic variables to accurately represent those of the partons,
all particles inside the jet must be summed to give global jet quantities, such as
energy and momentum. High energy hadron—hadron collisions at symmetric colliders
occur in the hadronic CM frame, however, the constituent partons undergoing hard
interaction are not usually in their CM frame, as they may carry different fractions
of the incoming parent hadron’s momentum. The final state emerging from parton—
parton scattering is randomly boosted for each event along the direction of the
colliding hadrons. In order to optimize the detection and reconstruction of the jets
in the final state, it is desirable to use a set of Lorentz z—boost invariant variables
for jet kinematics. The usual choice is: jet transverse momentum (pr), azimuthal

angle (¢), rapidity (y) and mass (m). The rapidity is defined as:

1. E+p, »
y=5 In Z tz = tanh™* (%) (1.1)

10



Under a Lorentz boost along the direction of the colliding particles to a frame
with velocity 3, it transforms as y — y — tanh™"' 3, yielding a boost-independent
distribution dN/dy. The distance between two jets AR = \/ (Ay)? + (AP)? is z—

boost independent. In the limit of high energies, when the mass of the jet can be

neglected with respect to its energy, y is reduced to the pseudorapidity n defined as:

o) a3

which is a purely angular coordinate. In the experiment, the directly measured jet

quantities are energy (F), pseudorapidity and azimuth.

1.3.2 The Cone Algorithm

Historically cone algorithms [7] have been preferred for hadron-hadron colliders.
The idea is to find cones with base area mR? that maximize the energy contained
within them. The implementation follows an iterative process which starts from
cones centered about the most energetic vectors in the event (“seeds”). It maximizes
energy within an area A = 7R? in n—¢ space, where R is the “jet radius”. The jet
axis, defined as the Fr weighted centroid of the cone, are then used as seeds for
new cones. The procedure is iterated until the centroids are stable. This algorithm
contains an arbitrary parameter, R, known as the cone size.

The fixed cone jet algorithm has several disadvantages. It allows cones to overlap, so
a single vector may belong to two or more cone jets. As a result, a procedure must
be included in the cone algorithm to specify how to split or merge overlapping cones.
In theoretical calculations an ad hoc parameter, R, [8], chosen to fit the data, is
required to simulate the role of seeds and splitting/merging in the experimentally
applied algorithm. Even worse, the cone algorithm with seeds is sensitive to soft
radiation [9]. For example, consider the case where two partons are located at

opposite sides of a single cone (see Figure 1.4). The cone algorithm will reconstruct

11



two jets. However, at NNLO, a soft gluon can be radiated, serving as a seed from

which the algorithm will reconstruct a single jet !

Figure 1.4: An illustration of infrared sensitivity in cone clustering. Jet clustering
begins around seed particles. The presence of soft radiation between the two jets

may cause the merging of jets that would otherwise not occur.

1.3.3 The £k, algorithm

The k, algorithm has been developed inspired in the way partons radiate in QCD. By
design, it can be applied in the same way to partons from fixed order or resummed
calculations in QCD, partons or particles in a Monte Carlo event generator, or energy
deposits (or tracks) in a detector. These different alternatives will be collectively

“vectors”. It is also infrared and collinear safe to all orders of calcu-

referred to as
lation.

This algorithm successively merges pairs of vectors in order of increasing relative
transverse momentum. This is illustrated in Figure 1.5. k, associates vectors with
low d &~ min(py 4, pF ) X AR} p, so this parameter is proportional to the softness
and the collinearity of the two vectors. It contains a single parameter, which con-

trols when merging stops. All vectors remaining after the clustering process are then

called jets. Thus by definition, every vector in the event is assigned uniquely to a

1The cone algorithm with “midpoints” solves the infrared safeness problem [6].

12



k, jet.

There are various variants of the algorithm for hadron colliders [10, 11, 12]. They
differ mainly on the method used to merge vectors and the criteria that determine
when clustering stops. D@ has chosen the Ellis and Soper algorithm [12] based on its
flexibility and because it allows relatively simple comparisons with previous results
obtained with the fixed cone algorithm. It chooses as the recombination process, the
covariant E scheme, which corresponds to addition of four-momenta. It is the most
straightforward, has no energy defect [13] and is better suited to the calibration
method described in section 3.1.

The DO jet algorithm starts with a list of preclusters formed by detector elements
(in order to reduce computer processing time, see section 2.4.1.1), or equivalently
from partons or particles in a Monte Carlo event generator or pQCD calculation.

Each precluster is assigned a vector:
(E,p) = Epreciuster(1,cos ¢sin @, sin ¢ sin 4, cos ) (1.3)

where 6 is the angle with respect to the beam axis, and where we define p2. = p2+ pi.

The steps of the algorithm are:

1. For each pair of particles, ¢ and 7, we calculate

. AR;;?
dij = minimum (pr.*, pry”) =g ARy = (= )" + (8= 6" (14)
and for each single particle 7,
di = pT,Z-Q. (15)

2. The minimum d,;, of all d; and d;; is found.

3. If dmin is a d;j;, particles ¢ and j are merged into a new, pseudo-particle k with

four vector: P* = P* + P;. Then:

Erg = Pry =P}y + Py,

13



() (b) )

. <1/$ Beam - %<:i Beam

(c) (d) *

—7 Beam — \ Beam
(e) / (f)

- 4/\?'

Figure 1.5: A simplified example of the final state of a collision between two beam
of hadrons. The open arrows represent vectors in the event, and the solid arrows
represent the final jets reconstructed by the k, algorithm. The six diagrams show
successive iterations of the algorithm. In each diagram, either a jet is defined (when
its vector is well separated from all other vectors), or two vectors are merged (when
they have small relative transverse momentum). The asterisk labels the relevant

vector(s) at each step.

14



O Py

m = —1In (tan 5), ¢ = arctan %,
and ), = arccos —=~. (1.6)

| Py |

4. If dpn is a d; (i-e. Rif > D? for all j ), then the particle is deemed not
“mergeable” and it is removed from the list of particles and placed in the list

of jets.

5. Loop back to step 1. Repeat steps 1-4 until all particles have been merged

into jets (i.e. R;;> > D? for all ij pairs ).

1.4 Event Shape Variables: Thrust

Event shape variables have been extensively used in eé and ep collider experiments
to study the spatial distribution of hadronic final states, to test the predictions
of perturbative QCD and to extract a precise value of the coupling constant a.
Over the last few years, they have attracted considerable interest because they have
proved to be a fruitful testing ground for recent QCD developments like resummation

calculations and non-perturbative corrections.

This thesis presents the first study performed in a hadron collider of an event
shape variable, the thrust. This measurement is interesting both experimentally,
as it complements previous e€ and ep data at a higher energy scale (@) where
poorly known non-perturbative effects (of order 1/@Q)) are expected to be smaller,
and theoretically, because its description solely involves QCD, as opposed to ee
and ep, where QCD enters as a higher order correction to the lowest order QED

interaction.
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1.4.1 Thrust in ee and ep colliders

There are several variables X that can be chosen to characterize the spatial distribu-
tion of the jets produced in a hard collision, the so—called event ‘shape’, for example
whether the distribution of the particles produced is pencil-like, planar, spherical,
etc. The distribution do/dX, called differential cross section (rate of events in finite
intervals of X), is then measured and compared with the theoretical pQCD predic-
tion. In order to be calculable by perturbation theory, the variable chosen should be
infrared safe, i.e. insensitive to the emission of soft or collinear gluons. In particular,
if p; is any momentum occurring in its definition, it must be invariant under the
branching p; — p;pr whenever p; and p; are parallel or one of them is small. This
requires the quantity to be made out of a linear sum of momenta. A widely used

variable that meets this requirement is the Thrust, defined as
i |pi - 1
> |pil

where the sum is done over all partons, particles or detector elements in the event.

T = maz, (1.7)

The unit vector n that maximizes the sum ratio is called the thrust axis.

The values of Thrust range from 7" = 0.5 for a perfectly spherical event, to T" =1
for a pencil-like event, when all emitted particles are collinear. In this latter case,
the thrust axis lies along the direction of the particles.

The measurements performed in ee and ep collider experiments [14] have been
found to be in very good agreement, over most of the kinematic range, with the
O(a?) perturbative QCD corrections to the lowest order QED diagram that governs
the interaction. Fixed order QCD calculations are found to fail however when two
widely different energy scales are involved in the event, leading to the appearance of
large logarithmic terms at all order in the perturbative expansion [15]. This happens
for instance in the limit of the 2-jet back-to-back configuration, when 7" — 1. This
cases are handled by a special pQCD technique, called Resummation, which consists

in identifying the explicit large logarithms in each order of perturbation theory and
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summing their contribution to all orders. Figure 1.6 shows as an example the ex-

cellent agreement found in Delphi, once resummation and hadronization corrections

are added to the O(a?) QCD prediction [16].
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Figure 1.6: Resummed prediction for the thrust distribution in Z° — hadrons,
corrected for hadronization, fitted to data of the DELPHI collaboration. The lower

curves show the detector and hadronization correction factors.
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1.4.2 Thrust in Hadron Colliders

There are two aspects that have to be considered before measuring thrust in hadron
collisions, as compared to ee and ep: (a) the parton-parton center—of-mass frame
is boosted from event to event with respect to the laboratory frame; (b) a fraction
of the energy deposited in the detector is not associated with the primary hard
interaction, but originates from the physics underlying event (contributions due to
soft interactions between spectator partons), additional pp interactions, signals from
previous crossings (pile—up) and noise.

Since the thrust is not invariant under boosts along the beam direction, the in-
tuitive physical interpretation of the 7" — 0.5 and 7" — 1 limits looses its meaning
in a pp collider. As an example, different events which have two jets back-to-back in
the parton-parton c.m system, and that correspond to the same pencil like topology
(T = 1), will appear in the lab frame with a wide range of values of thrust, depend-
ing on the particular momentum fractions of the colliding partons. This problem
does not arise in ee, where the c.m frame is the lab frame, nor in ep, where the
electron-parton c.m system is known by measuring the momenta of the incoming
and scattered electrons.

In order to avoid these ambiguities, we introduce the “Transverse Thrust”, T,
a Lorentz invariant quantity under z-boosts, which is obtained as in Eq 1.7 but in
terms of transverse momenta.

T = maz, ="~ —
" Zz |pT¢|

(1.8)

Transverse thrust ranges from 7% = 1 to T* = 2/7 ({| cosf|)) for a back-to-
back and a circularly symmetric distribution of particles in the transverse plane,
respectively.

A second problem to deal with in hadron colliders, is that thrust cannot be

calculated directly from energy deposits in the detector, because only a fraction is
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associated with the hard interaction itself. Again, this problem does not show up
in eé colliders, where there is no underlying event and the environment is much
cleaner, nor in ep collisions, where a transformation to the Breit frame divides the
space into two, a hard interaction and a proton remnant, hemispheres [14].

In order to single out the genuine energy arising from the hard interaction in
the noisy environment of a pp collider, we have decided to depart from the eé¢ and
ep approach, that uses the energy deposited in each single detector element, and
to calculate instead the thrust from reconstructed jets. The advantage of jet over
raw energy deposits is that we are able to work out a correction that eliminates on
average the energy contributions from sources other than the hard interaction itself
(chapter 3). The jets were reconstructed with the &, algorithm because, as opposed
to cone, it is infrared safe and well defined to all orders. This is a major feature
for thrust because, as it is discussed below in section 1.5, a calculation to O(a})
corresponds to a LO prediction for low thrust values and a NLO one for the rest of

the spectrum.

1.4.3 Dijet Transverse Thrust

We have explained in the previous section that, because of our ignorance of the
partonic CM frame and the noisy nature of the pp environment, a convenient variable
to study in a hadron collider is the transverse thrust calculated using jets in the
event. The Jet Momentum Scale (chapter 3) subtracts the contributions from noise
and corrects the energy, on average, back to the particle level. Although it has been
derived for jets whose energy is above 5 GeV, low energy jets, in addition to being
poorly measured, have a very high probability to originate 100% from background
contributions, not related at all to the hard interaction itself. This contamination
is not considered in the Jet Momentum Scale, which only corrects for the added

energy to genuine jets.
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In Chapter 4 it will be illustrated from Monte Carlo studies how these low energy
background jets, when included in the calculation of the event thrust, highly distort
the shape of the physical distribution. It thus has been decided to ignore all but the
two highest energy jets in the event. The inclusion or not of a third jet, required
a careful analysis, as they have a large probability of being spurious. A two jet
thrust measurement is indeed fully meaningful because the spatial configuration of
the two leading jets inherits the information of the rest of the particles produced
in the event. For example, in the typical ‘Mercedes’ topology, shown in Figure 1.7,
two equal energy jets at 120° necessarily imply at least a third jet opposite to them,
or a number of low energy jets whose momentum is equivalent to such a third jet.
Including the third jet could compromise the observable becoming more sensitive
to noise effects. However, when calculating the energy scale of the event, it is
necessary to take it into account. In the example, not including the third jet would

have incurred in a 30% error.

120°

Figure 1.7: Scheme of three jets distributed in a ‘Mercedes’ topology.

In view of the evidence to be presented, it was decided to use the Dijet Transverse
Thrust (only two jets are included in the calculation) as the physics observable to be
measured. The additional physics to be gained by including a third jet did not justify
the price to be paid on noise dependence. On the other hand, the third jet has been
kept when calculating the energy scale of the event, Q ~ HT3 = Er+ Er o+ Er 5.

Here the presence of the third jet cannot be inferred from the sum Er; + E7r .
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The Dijet Transverse Thrust ranges from T = 1 for a back-to-back topology, to
T = \/2/2, for two equal energy jets at 90° as it is shown in Figure 1.8. In this case
the calculation is reduced to:

A %maxﬂcos@ﬂ—i—h:os&ﬂ)

v where for 0 < #; < 90 and Ay = 90 — #; isequal to :

> maz(| cos ;] + |sin6;]) =

: - :%(2§):§ for 6, = 45°

Figure 1.8: Scheme of two equal energy jets at 90° and the corresponding T} calcu-

lation.

1.5 Theoretical Predictions

The cross section in bins of 7% in a pp collision is calculated as the convolution
between the parton distribution functions and the partonic cross section which is
obtained by calculating the matrix elements of the contributing processes. It can be

written as:

do do;;
a7t = ZZ/dfh/dﬂJQ fz'/H(fEb,UF) fj/H(l"Q,MF)d—jji(%,@,NR,NF,%(NR))
2 i g 2
(1.9)
where the sum is over all the parton species in the proton and antiproton, x,() is
the fraction of the proton (antiproton) momentum carried by the scattered partons,
fiji (21, pr) represent the parton distribution functions of the proton (antiproton,H)
defined at factorization scale up and do;;/dT4 is the partonic cross section which

depends on the coupling constant evaluated at the renormalization scale pgr. Cal-

culations at fixed order where it is required only two, three or in general a given
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number of partons at final state, diverge. The infrared divergences cancel when all

terms are taken into account.

The partonic cross section and the convolution 1.9 are calculated numerically in
programs like JETRAD [17] which is an a? QCD event generator and NLOJET++ [18],
an of NLO three jet generator. At D@, the k; and cone algorithms have been
implemented in the JETRAD framework. This program requires the user to set
several parameters such as the renormalization and factorization scales, g and ug
respectively. The scales should be chosen of the same order as the hard scale that
characterizes the parton scattering. The larger the number of terms included in the
perturbative expansion the smaller the dependence on these scales. Typically, ug

maz

and pg are set to the same value, p7%* /2, where p'** refers to the pr of the leading

jet in an event.

The parton distribution function and the jet clustering algorithm also have to
be chosen. In this analysis, jets were reconstructed using the £, algorithm, applied
to the final state partons with the same definition than for collider data, no modi-
fications or additional parameters have to be introduced. The CTEQ [19] family of

parton distribution functions (PDF) were used for this work.

The NLOJET++ predictions presented here were provided by his author as the
code has been recently developed and is not available for us to be run. It is a new
NLO event generator for calculating jet observables in hadron—hadron collision (it

can also be used for ete™ annihilation and in deep inelastic scattering).

JETRAD results, which have at most 3 partons in the final state, provide the
LO prediction for T}, except for T4 = 1 where it is NLO. It includes all terms
of third order in «, but does not include hadronization effects. It is clear from
the kinematics that the O(a?) calculation cannot cover the whole physical range of
TE. The lowest value of thrust is attained when 2 leading jets are at the largest

transverse angular separation, 120°, which corresponds to 7% = 4/3/2. This means
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that in the range v/2/2 < T¢ < v/3/2 the LO perturbative contribution is of order
O(a?). Tt is interesting to remark that this analysis is the only measurement in the
D@ experiment that is leading order in «;.

Figure 1.9 shows the JETRAD prediction for one bin of HT3, where the arrow
indicates the position of the “cut off” in the theory. Since the thrust adopts values
from ~ 0.7 to 1, we chose, following the approach at LEP, to plot the cross sections

as a function of 1 — T3, a variable which ranges between 0 and ~ 0.3.

do/dT (nb)

10°%F

1020 —— 160 < HT3 <260

10 .

+

10 I I I I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 ‘0.14 0.16 0.18 0.2

1-sqtr(3)/2 1T

Figure 1.9: JETRAD T} distribution. The cut off is indicated with an arrow.

It is not expected to have an agreement neither around (i.e., close to the kine-
matic threshold) nor below the “cut off” value. JETRAD prediction are also expected
to fail in the high thrust range of our measurement. This is due to terms of order
(csIn®*(1 — T))", which are large at all orders in the perturbative expansion when
T — 1. This is a well known problem in pQCD, that arises whenever two different
energy scales are relevant for a process. In our case, a T" — 1 event corresponds to

two opposite high energy jets, with a third low energy soft jet that slightly imbal-
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ances them out from the back-to-back configuration. The calculations of order O(c?)
done by JETRAD consists of two parts: two to two parton processes at one-loop (vir-
tual terms) and two to three parton processes (real emission terms) at tree-level.
Both contributions are infrared singular. Only the sum of the two is infrared finite
and meaningful [20]. Therefore, in order to get a trustworthy prediction it is neces-
sary to consider an observable which is inclusive enough, in our case this means to
integrate over a region near 7' = 1, including this point in a suitably large bin.

In order to study the behavior of the theoretical prediction when T gets close
to 1, a logarithm scale is preferred since it excludes the 7% = 1 point. In this case,
the calculations only involve the real emission terms. These processes are infrared
singular when two partons become collinear or when a parton becomes very soft.
The terms can be split into two parts, “hard emissions” when all partons are well
resolved and the “infrared” part. The hard emission parts are computed by means
of Monte Carlo integration. By analytically combining unresolved real emissions
with the virtual terms, a finite contribution is obtained which can be integrated
numerically. The latter will contribute only to the point 7" = 1. The phase space
slicing method used by JETRAD to implement the infrared cancellation, employs a

resolution criterion $,,;,. It is a cut on the two parton invariant masses:
Sij = 2 Ez Ej (1 — COS am) (110)

Clusters of partons with invariant mass less than s,,;, are treated as a single parton.
The criteria simultaneously regulates both soft (E; — 0 or E; — 0) and collinear
(cosf;; — 1) emissions. S, is an arbitrary parameter required only for the com-
puter implementation of the calculation, thus, the prediction should be independent
of it. In order to choose its value properly, it needs to be taken into account that as
Smin become smaller, the infrared approximations of the matrix elements becomes
more accurate. However, the concern is the numerical convergence of the calcula-

tions. As S, is made smaller it becomes harder to engineer the cancellation to the
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precision to which one would like to compute the cross section. Besides, it can not be
so large that it begins to interfere with jet clustering. In the case of T¢ , Figure 1.10
shows three JETRAD distributions for different s,,;, values. A dependence of the
predictions on the parameter can be observed. The selected s,,;, value will depend
on how close to 7" = 1 the analysis will go, which is determined by experimental
limitations like the finite detector resolutions (this issue is discussed in section 7.3).

In our case a value of s,,;, = 1 GeV? proved to be sufficient.
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Figure 1.10: JETRAD predictions for different s,,;, values. The full circles correspond
t0 Smin = 1 GeV?Z, the open ones to S, = 2 GeV? and the full triangles to sy, = 10

GeV?2.

NLOJET++ is an af NLO three jet generator. It comprises one-loop 2 — 3 and
tree-level 2 — 4 processes. The implementation of the two—loop 2 — 2 terms is
still missing. Thus it is not possible to get a prediction of order O(af) for the
bin which includes T¢ = 1. However, it provides the LO prediction for the range
V2/2 < T} < +/3/2 and the NLO correction for /3/2 < T¢ < 1, as it is shown in

Figure 1.11. Note that the bin including 7%} = 1 is missing for NLOJET++ .
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Figure 1.11: Comparison of JETRAD and NLOJET++ predictions.

Since it is a fixed order calculation, it will fail in the limit of the 2-jet back-to-
back. However, being a higher order pQCD calculation than JETRAD, it is expected
to yield a better agreement with data over a larger 7% range. Figure 1.12 shows
JETRAD and NLOJET++ T% cross sections in a logarithmic scale, for one HT3 bin.
At lower HT3, NLOJET++ predicts smaller values of the cross section than JETRAD.

A discussion on this issue is presented in chapter 8.

1.6 Monte Carlo Event Generator

Monte Carlo Event Generators are widely used in high energy experiments. They
help to understand the detector behavior providing an excellent tool for jet based
analysis. In this work we have used HERWIG [21], a general-purpose particle physics
event, generator which includes the simulation of hard lepton—lepton, lepton—hadron
and hadron-hadron scattering in one package. Soft hadron—hadron collisions are also

included and they can be optionally suppressed. It uses the parton—shower approach
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Figure 1.12: Comparison of JETRAD and NLOJET++ predictions at small 1 — 7.

for initial-state and final-state QCD radiation and a model of the hadronization
process for the conversion of colored partons into the colorless objects observed in

the experiment.

Fixed order perturbative calculations fail to predict details of the jet structure
observed in experiments. Event generators use the “parton shower” approach to
take into account higher order QCD effects. Following the leading order calculation,
parton emissions are performed based on soft and collinear approximations [22],
distributing the energy fractions according to the leading order DGLAP splitting
functions. The parton showers are terminated when the parton momentum falls

below a cut off parameter, (0o, which is typically set to the order of 1 GeV.

The non perturbative evolution is described by a phenomenological hadronization
model which turns the final state partons into hadrons locally in phase space. The
hadronization process is independent of the hard process because of the cut off of

the parton cascade. HERWIG’s “cluster model” for jet hadronization is based on
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non-perturbative gluon splitting [23]. A similar cluster model is used for soft and
underlying hadronic events.

In this analysis, we have generated samples with QCD 2 — 2 process. As
an example, Figure 1.13 shows the T¢ distribution at particle level. Jets have been
reconstructed with the &k, algorithm, applied to the final state particles. The “parton
shower” approach takes into account higher order QCD effects allowing comparison

with data over the whole T} range.
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Figure 1.13: Particle level normalized Dijet Transverse Thrust distribution obtained

from a HERWIG MC sample.

Although MC event generators do not fully reproduce the global characteristics
of jet events, like for instance its pr spectrum, they are an essential tool to simulate
realistic collider events. In this thesis will use it to study the distortion introduced
in the thrust distribution by background and detector effects, and the correction to

jet energies and positions due to noise and other detector features.
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Chapter 2

The Experiment

The basic steps in the acceleration process at Fermilab and a brief review of the DO
detector are presented in this chapter. A more detailed discussion on the Fermilab
accelerator complex can be found in [24]. The description of the D@ detector is

based on [25] *.

2.1 The Fermilab Tevatron

The Tevatron, located at the Enrico Fermi National Laboratory (Fermilab, USA),
is currently the world’s highest center-of-mass (CM) energy proton—antiproton col-
liding beam accelerator. The Fermilab accelerator complex employs several accel-
erators and storage rings to produce pp collisions with an energy of 1.8 TeV in the
center of mass. The Tevatron itself is the last accelerator in the chain which started
operations in the mid 1980s. Figure 2.1 shows an scheme of the Fermilab complex.

From the preaccelerator, a 750 GeV beam of negative hydrogen ions emerges (ac-

celerated by a Cockroft-Walton electrostatic accelerator) and enters into the Linac.

1The detector and the accelerator have undergone an upgrade process which finish on the year
2002. The descriptions presented here correspond to the period during which the data for this

analysis was taken.

29



PBar
Debuncher

PreAcc
Booster

Tevatron Extraction
for Fixed Target Experiments

PBar Injection

MR P Injection

Tevatron
PBar

Target

Main Ring
CDF

Main Ring RF

P and PBar
\W Aborts
CO
Tevatron) p
Injection

DO detector

Figure 2.1: Schematic view of the Fermilab accelerator complex. Although the

Tevatron and the Main Ring have the same radius, they are shown separated for
clarity.
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The Linac is a linear accelerator, aproximately 150 m long, from which H~ ions
emerge with an energy of 400 MeV. The ions are then striped of the electrons by
a carbon foil, leaving only the proton cores which are injected into the Booster, a
synchrotron, where they are accelerated to 8 GeV. The next step is the Main Ring
(MR). It is a synchrotron of 2 km of diameter which consists of 1000 magnets that
bend and focus the protons. They can be accelerated to either 120 or 150 GeV
depending on their destination.

The antiproton beam creation starts with a bunch of protons, extracted from
the MR at 120 GeV, which is directed onto a tungsten target producing antiprotons
with wide momentum spread. This spread is reduced in a small synchrotron, the
Debuncher. They are finally sent to a storage ring, the Accumulator, where they
stay until there are enough of them to be transferred to the Main Ring.

The final stage of the process occurs in the Tevatron. It receives six bunches
of 150 GeV protons and antiprotons from the MR and accelerates them to 900
GeV to provide a CM energy of 1.8 TeV. This third synchrotron consists of 1000
superconducting magnets which guide the beams. The p and p bunches, which
circulate in opposite directions, can collide in two interactions points, B@ (CDF)

and D@, every 3.5us.

2.2 The D@ Detector

The DO detector is a multipurpose apparatus designed to study proton-antiproton
collisions with an energy of 2 TeV in the center of mass. It was built to cover a
wide spectrum of physics topics by providing accurate measurements to test the
Standard Model predictions and search for new phenomena. The strength of the
detector resides in its excellent calorimetry. It has been designed to accomplish good
measurement, of high pr jets through finely segmented, hermetic, linear and nearly

compensating calorimeters, precise determination of the missing transverse energy in
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the calorimeters as a way of detecting neutrinos and possible other non-interacting
particles, and an accurate identification and measurement of electrons and muons.
Fully assembled, the detector stands 13 m in height, 11 m in width, and 17 m in
length, with a total weight of about 5500 tons. The first data taking period, or Run,
with the DO detector started in 1992 and continued through 1995 (Run I). A general
view of the Run I D@ detector is shown in Figure 2.2. A right handed coordinate
system is adopted in which the z-axis is along the proton direction and the y-axis is
upward. The angles ¢ and € are the azimuthal and polar angles, respectively. The
radial coordinate r is the distance from the beam line.

In the following sections, the different components of the detector are described,
based on [25]. The description of the calorimeters is more detailed since they con-

stitute the principal tool for jet measurements.

2.2.1 The Central Detector

The Central Detector is a system of concentric tracking and transition radiation
chambers. It is illustrated in Figure 2.3. It is located between the Tevatron beam
line and the inner cylindrical aperture of the calorimeters. It extends 270 cm along
the z-axis, centered at z = 0 and it has a radius of 78 cm. Its main purpose is to re-
construct the three-dimensional trajectories of charged particles which pass through
them. The tracking detectors are wire drift chambers. The innermost chamber,
which surrounds the beam pipe, is the Vertex Chamber (VTX). It reconstructs
tracks around the interaction point and measure the vertex position in the plane
perpendicular to the beam direction with a typical resolution of 50um. The next
detector is the Transition Radiation Detector which distinguish between electrons
and pions. The Central Drift Chamber is the outermost tracking detector. It pro-
vides coverage for tracks at large angles while the Forward Chambers, which cap

the other central detectors, provides coverage down to 5°.
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Figure 2.2: A general view of the Run I DO detector
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Figure 2.3: The Central Detectors.

2.2.2 The Calorimeters

The DO calorimeters are the most important tool for jet detection. They provide
energy measurement for electrons, photons and jets. Other roles of the calorimeters

are particle identification and the determination of the Missing Transverse Energy
(£r)-

As energetic particles enter and transverse the calorimeters they initiate cascades
of particles, electromagnetic or hadronic showers, caused by interactions along the
path of the primary ones. The characteristics of the incoming particle are recon-
structed based on the precise identification and measurement of the induced shower
in the material. Calorimeters can be used to measure not only the energy but also

the spatial position, direction and, in some cases, the nature of the primary particle.

The DO calorimeters correspond to a sampling design using liquid argon (LAr)

as the active medium. A general view is shown in Figure 2.4. In order to have
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access to the Central Detectors, they are housed in three separated double-walled
stainless steel cryostats, one central and two end-caps, the latter two being mirror
images of each other. Excellent containment and hermicity are achieved with the
Central Calorimeters (CC) providing coverage for roughly |n| < 1.0, and the two
End Calorimeters (EC) up to || ~ 4. The number of nuclear absorption lengths,
A, is typically 7 for the CC and 9 for the EC.

D¢ LIQUID ARGON CALORIMETER

END CALORIMETER

Outer Hadronic
(Coarse)

Middle Hadronic
(Fine & Coarse)

CENTRAL
CALORIMETER

Electromagnetic

Inner Hadronic Fine Hadronic

(Fine & Coarse) Coarse Hadronic

Electromagnetic

Figure 2.4: General view of the D@ calorimeters.

The basic detector unit of these sampling calorimeters is the calorimeter cell.
An schematic view is shown in Figure 2.5. It consists of a grounded metal absorber
plate and a signal board (anode). These two elements are separated by a gap filled
with liquid argon as the active material. The particles, as they enter the calorimeter,
interact with the array of absorber plates producing a shower of particles and losing
most of their energy. A small fraction is deposited in the gaps as the particles ionize

argon atoms. To collect liberated electrons, an electric field is applied across the
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gap (the signal board is kept at +2 kV potential). The charges drift towards the
anode, inducing an electric signal which can be detected and read out. The signal

is calibrated to the incoming particle energy.

4 Absorber Plate Pad Resistive Coat Liquid Argon )
G10 Insulator \l Gap
R
| = I —
\_<€<——— UnitCel ———> )

Figure 2.5: Schematic view of a calorimeter cell.

One distinct characteristic of the D@ calorimeter is its pseudo-projective ge-
ometry. Straight lines can be drawn from the interaction point through the cen-
ters of an array of cells forming a tower. Typical transverse sizes of towers are

An x A¢ = 0.1 x 0.1 radians, providing excellent shower position resolution (the

typical jet size is \/ (A@)? + (An)?2 = 0.5). The pseudo-projective nature of the
calorimeter towers is illustrated in Figure 2.6. The entire calorimeter is segmented
into ~ 6000 towers.

The central calorimeters actually consist of three concentric cylindrical modules:
an electromagnetic (EM) section of modules which are thick enough to contain
most electromagnetic showers, a fine (FH) and a coarse hadronic (CH) section (see
Figure 2.4). The EM consists of four longitudinal read out layers which have 2,2,7
and 10 radiation lengths, X, in depth. The segmentation of the third layer is
Anx A¢ = 0.05 x 0.05 to provide better transverse measurement at electron shower
maximum. The FH has three longitudinal layers with a total width of 3.2\ while
the CH consist of one read out layer with the same total depth.
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Figure 2.6: Side view of calorimeter towers.
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The end calorimeters are similar to the CC. The electromagnetic module (ECEM)
is divided into four read out sections with a total length of ~ 20X,. There is one
Inner Hadronic module (ECIH) with four read out sections each about 1.1\ thick
and one coarse hadronic segment of 4.1\ in depth. Outside the ECEM and ECIH
there are concentric rings of 16 Middle (ECMH) and Outer (ECOH) modules. Each
ECMH module has four FH read out sections of about 0.9\ deep and one 4.4\
thick CH section. The ECOH modules have three CH readout layers and a total
longitudinal depth of about 4.4\.

2.2.3 Masless Gaps and InterCryostat Detectors

The region defined by 0.8 < |n| < 1.4 is instrumented with the Masless Gaps and
the InterCryostat Detectors. The ICD’s are a set of scintillation counters mounted
on the front surface of the EC cryostats. The MG are located inside the CC and
EC cryostats. They are copper readout boards identical to single-cell structures.
They provide additional sampling of the showers leaving the CC and entering the
EC cryostat.

2.2.4 Calorimeter Readout

The signal induced on the readout pads are pulses with widths of ~ 500 ns. The
collected electrons are integrated to produce a signal which peaks ~ 2us after a
pp bunch crossing with a decay time of ~ 30us. Each cell is sampled twice, one at
the time of the bunch crossing (base) and again 2us later (peak). The raw energy
in the cell is defined as the difference between the two voltages. The actual reading
for the base sample depends on previous bunch crossings since the signal decay
time is much longer than the accelerator bunch spacing (3.5us). This luminosity
dependent effect is called pile-up and leads to an average negative contribution to

the measured cell’s energy. Also multiple pp interactions within the same accelerator
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bunch crossing (luminosity dependent) contribute to the energy offset.

The average energy of individual cells is not zero even in the absence of an exter-
nal particle flux. This is due to Uranium decay and electronic noise. For each cell,
a distribution of this pedestal energy was measured. The mean pedestal energy was
calculated and subtracted online. In order to save processing time, cells containing
energy within two o of the mean pedestal energy were not read out or recorded (zero—
suppression). Since, electronic pulse shaping made the distribution asymmetric, the

zero-suppression contributes with a positive offset to the raw energies.

2.2.5 Calorimeter Performance

Among important characteristics of the calorimeter performance, the ones often
quoted are their response linearity as a function of incoming energy and their energy
resolution. Test beam studies show that the energy response to both electrons (above
10 GeV) and pions (above 20 GeV) is linear to within 0.5%. The e/7 response ratio
falls from about 1.11 at 10 GeV to 1.04 at 150 GeV.

The sampling calorimeter fractional energy resolution oy /FE is expected to im-
prove as 1/ V'E because it is dominated by the statistical fluctuations in the number
of sampled charged tracks, which is directly proportional to the incoming energy.
Contributions from the noise become increasingly important at low energies. The
dead material and calibration errors contribute with a constant term. Thus, the
fractional energy resolution is parametrized as the sum in quadrature of these three

terms:

) = 4+ 2.1
(E) E2+E+C (2.1)

where N represents contribution from noise, S is the sampling term and C the
constant offset term. Test beam studies show that the calorimeter energy resolution
is approximately 15%/v/'E for electrons and 50%/+/E for pions. The calorimeter

energy resolution for jets is measured from collider data. It will be discussed in
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Chapter 6.

2.2.6 The Muon System

The Muon system is placed right outside the calorimeters and consist of a set of
saturated iron magnets and proportional drift tube (PDT) chambers. It is used to
identify muons emerging from pp interactions and to determine their momenta and
trajectories. There are two main sets of chambers: the Wide Angle Muon Cham-
ber (WAMUS) which provides coverage at large angles and the Small Angle Muon
Chambers (SAMUS) for small angles. They consist of three layers of individual
chambers: the A layer before the iron toroids and the B and C layers after the mag-
nets. The magnetic field of 2 Tesla bends the muons in the » — z plane. The muon
direction is measure before and after the magnets and the momenta is obtained from
the bending angle. The muon system may be used in jet analyses to detect cosmic

shower contamination and leakage outside the calorimeters.

2.3 Trigger and Data Acquisition Systems

The event readout rate at the D@ detector is about 300 kHz. Since, it is not possible
to log and handle each interaction, a selection process is implemented to keep only
those events of physics interest. This system is known as the “trigger”. There three
trigger levels involving hardware and software decisions, which are able to reduce the
event rate to 2 Hz, rate at which events can be written to tape. The following is a

description of the different trigger levels with an emphasis on calorimeter triggering.

2.3.1 The Level @ Trigger

It is the first hardware trigger stage. Its main purpose is the detection of an inelastic

pp collision. It also provides a measurement of the z position of the interaction vertex
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and of the instantaneous luminosity. It reduces the event rate from 300 kHz to ~ 20

kHz.

It consists of two scintillating hodoscopes, located on the inside faces of the
end cap cryostats, perpendicular to the beam, which provide coverage for 1.9 <
In| < 4.3. Coincidence between the signals from the two scintillator arrays indicates
the presence of inelastic collisions with nearly 100% efficiency. By comparing the
arrival times of the signals from the two arrays, the approximate z—position of the

interaction vertex is obtained (with a 3.5 ¢cm resolution).

2.3.2 The Level 1 Trigger

The aim of the Level 1 Trigger is to filter out uninteresting events within a very
short time of the beam crossing reducing the rate from 20 kHz to 200 Hz. It accepts
information from the Level @ , the calorimeter and the muon systems. It reads up to
256 input trigger variables which are combined into 32 outputs (trigger bits). In the
case of the calorimeters, these triggers compare the sum up of analog signals in the
trigger towers, regions defined by a 0.2 x 0.2 solid angle in n-¢ space with thresholds
set by the user. The sums are done over all the electromagnetic and fine hadronic
layers in the range |n| < 4. It thus identifies electron/photon and jet candidates.
Using the Level O fast z vertex information the missing transverse energy of the
event is calculated. Based on this information, the Level 1 Trigger checks if the
event satisfies one or more of the 32 available trigger requirements. If it does, the

event is passed on to the next trigger level, otherwise is discarded.

Some of the trigger bits are passed too often and saturate the next trigger level.
In order to reduce the amount of data these trigger bits are prescaled, meaning that

only one out of a fixed number of passed events will actually pass the Level 1 trigger.
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2.3.3 The Level 2 Trigger

The Level 2 Trigger is a farm of a large number of VAX workstations working in
parallel. The event candidates are further reconstructed using the information from
the entire DO detector, focusing on the areas identified in the Level 1. Simplified
algorithms are used to reconstruct the Level 2 physics objects, like electrons, muons
and jets. There are 128 software filters connected to the 32 trigger bits of the Level
1 which can also be prescaled. The Level 2 Trigger reduces the event rate to about

2 Hz.

2.3.4 The Jet Triggers

In this analysis the inclusive Jet Triggers were used. They exist in the Level 1 and
Level 2. In the hardware level, jet triggers required a certain number of triggers
towers or large trigger tiles (0.8 x 1.6 in n-¢ space) to have transverse energy (Er)
above a desired threshold value. If Level 1 accepts an event, it passes the information
onto Level 2. In the software filter level, the fast jet finding algorithm starts from
the Level 1 “seed” tower list drawing a box of 1.4 x 1.4 in n-¢ around each seed
centroid. The E; weighted centroid of this box is taken as the Level 2 jet center. All
trigger towers not included into other Level 2 jets are summed up within a fixed cone
radius of 0.7 in n-¢ around the Level 2 jet centroid. If at least one jet passes a preset
threshold for the designated jet filter, the corresponding trigger bit is set on and the
event is accepted. Table 2.1 summarizes the Level 1 and Level 2 requirements for

all the jet triggers used in this analysis.

2.4 Offline Reconstruction

D@ data go through a complicated computing process before they are ready to be

analyzed in the production of physics results. At the raw level the data consist of dig-
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Trigger Name Run Level 1 (GeV)  Level 2 (GeV)

Number - 1 tile with - -1 L2 jet with -
Jet_Min all Er >3 Er > 20
Jet_30 all Er > 15 Er > 30
< 77824 Er > 35
Jet_50 77825 < run < 85226 Er > 25 Er > 50
> 85227 Er > 15
Jet_85 77824 < Er > 60 Er > 85
> 85227 Er > 35
< 77824 Er > 60
Jet_Max 77825 < run < 85226 Er > 35 Er > 115
> 85227 Er > 45

Table 2.1: Level 1 and Level 2 inclusive trigger configurations.

itized detector electronic signals. The D reconstruction program (D@RECO [26])
turns raw data into hits, tracks and energy deposits. In a second step, DORECO
uses a set, of algorithms to identify physics signatures, like electrons, photons, muons,
jets and F,. The fundamental physics quantities associated with them are also cal-

culated and stored.

2.4.1 Jet Reconstruction Algorithms

The algorithms used at D@ to reconstruct jets were described in section 1.3.3
and 1.3.2. Since, the detector consists on ~ 6000 calorimeter towers, a method
has to be applied to reduce the number of inputs of the algorithms and in this way

to limit the computer processing time.

43



2.4.1.1 Preclustering

The k; jet algorithm is an O(n?) algorithm [11], where n is the number of vectors
in the event. Limiting computer processing time does not allow this algorithm to
run on the ~ 6000 towers of the D@ calorimeters. Thus, a preclustering procedure
is used [27] to reduce the number of inputs to the algorithm. Essentially, towers are
merged if they are close together in n-¢ space or if they have small (or negative) pr.
An identical algorithm is also applied to particles in a Monte Carlo generator, in
order to perform consistent comparisons between the data and the simulated events.
The procedure removes cells with pr < —500 MeV. Cells with a small negative
energy are allowed due to pile-up effects in the calorimeter. Starting at n = —9 and

¢ = 0, closest towers are combined into preclusters, such that no two preclusters are

within AR = \/An? + A¢* = 0.2, following the Snowmass prescription:
Er = Er; + E7

_ Erini+ Brym
Er;+ Er;

b= Er; ¢i + E1j ¢;
Er;+ Er;

The procedure continues in the ¢ direction and it is iterated over increasing 7.
Preclusters with Ep < 200 MeV are redistributed to neighboring preclusters in order

to produce ~ 200 of them per event (to fit processing time constraints).

In the case of the cone algorithm, calorimeter towers are first sorted in Ep .
Starting with the highest Ep tower, preclusters are formed from contiguous towers
within a radius of 0.3 in n—¢ space until all towers with £ > 1 GeV have been

assigned to a seed cluster.
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2.4.1.2 £k, Jet Sample

The implementation of the k, algorithm for offline event reconstruction was done
as part of the DQfix software package. This package was not used for previous
analysis which applied the fixed cone algorithms. It contains modifications from
the standard reconstruction program, DORECO. The D@fix code provides data
samples for the £, and the cone algorithms in a simultaneous way. The parameters

used were D =1 for k; and R = 0.7 for cone.

2.4.2 Determination of the Interaction Vertex

A precise determination of the interaction vertex is essential to obtain the E and n
of the jets. Its position in the z —y plane is determined from tracks reconstructed by
the VTX with a resolution of 50um . The z-vertex resolution varies within the range
0.65 — 0.95 cm depending on the number of tracks in the event and their angular
distribution. In events with more than two reconstructed vertices, the vertex finding

algorithm determines the interaction point from the candidate with more tracks [28].

2.4.3 Determination of the Event Missing Transverse En-

ergy

The event missing transverse energy is defined as:

cells cells
= (8, ;Ey):(—zEz,i;—zE,i) (22)
i i
where the sum is over all calorimeter cells including the ICD and massless gaps.
In an ideal calorimeter, a non-zero K indicates that there is a neutrino and/or a
muon in the event. Neutrinos do not interact within the D@ calorimeters and high
prmuons only deposit a small portion of their energy. In a real calorimeter, the £
also includes the effect of the noise and the energy and position resolutions. In QCD

events small values of }, are expected.
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2.4.4 Detector Simulation

Monte Carlo Event Generators and Detector Simulation programs are widely used at
D@ to help understand the detector behavior under known conditions. The Event
Generator used on this analysis is HERWIG [21](see section 1.6). The D@ Monte
Carlo simulation program is based on the GEANT [29] package developed at CERN.
This tool allows to track particles through an experimental setup for simulation
of detector response. The full Monte Carlo simulation of hadronic showers, while
desirable for realistic evaluation of detector performance, is very time consuming of
computer resources. The SHOWERLIB method [30] consists of using the full detector
(full description of the geometry and composition of the entire D@ detector) and
shower simulation only once to make a library of single particle shower. In subse-
quent simulations, a particle produced in the Monte Carlo is replaced by a shower

recorded in the library based on its energy and position in the calorimeter.
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Chapter 3

The Jet Momentum Scale

As it was discussed in detail in Chapter 1, this analysis is based on the &k, algorithm
for jet reconstruction. This choice is founded on its good theoretical properties,
because it is infrared safe at all orders in pQCD and it can be consistently applied
in an identical way at all levels, be it theoretical partons, physical particles or
experimental calorimeter towers. These two properties are not shared by the cone
algorithm, which has nevertheless been chosen in the past in hadron colliders due
to its relatively simpler energy calibration. The k, jets calibration is in effect more
involved in the busy environment of pp collisions, where a substantial fraction of
the energy deposited in the detectors is not associated with the hard interaction,
because, unlike the cone case, they do not have a well predetermined size and shape.
A major part of this thesis has thus been devoted to study this problem and to design
a new procedure that could be applied to &k, jets. This section presents these studies,

the method we have developed and the obtained results.
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3.1 Jet Momentum Calibration

The jet momentum measured by the calorimeters is distorted by experimental effects
and the physics underlying event (the contributions due to soft interactions between
partons which do not participate in the hard scattering). The correction that on
average restores the momentum back to the final state particle level jet momentum
(before the interaction with the calorimeter) is referred to as the Jet Momentum
Scale. Hadronization effects are not taken into account as there is no intention to
correct the measured jet momentum to the parton level.

Given the measured jet momentum (p7,;*°), the corresponding particle level mo-

mentum ( zﬁl) is obtained through:

meas

tcl p]et pO(nJEt o [’)
or =
” Rjer(n7e, p7 )

where £ corresponds to the instantaneous luminosity and 7/¢* and p;et to the jet

(3.1)

pseudo-rapidity and transverse momentum, respectively. The offset, p,, removes
the additive contributions due to the underlying event and noise, and R;., takes
into account the calorimeter response to jets. In what follows, each component is

discussed in detail.

3.1.1 The Offset Correction

A hard interaction is defined as a high Q? elastic parton—parton scattering, while a
hard pp interaction includes also the soft interactions between the spectator partons.
The offset corresponds to the additive contributions to the measured energy which

are not associated to the hard interaction itself. It is divided in two parts:
Dbo = Oue + Ozb (32)

where O, is the offset due to the physics underlying event (energy associated with

the spectator partons) and O, is the offset due to the experimental environment
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which consists in uranium noise, pile-up and additional pp interactions in the same
crossing.

At DO, a crossing triggered as a high pr event can be modelled as the sum of a
hard pp interaction and a Zero Bias event (ZB) at the same luminosity. Zero Bias
data consists just in random pp bunch crossings and corresponds to the contribu-
tions of uranium noise, pile-up and additional pp interactions. In the case of the
cone algorithm, where jets have a fixed area, the offset correction O, is obtained
by measuring the energy density (D) in ZB events. The energy which has to be
subtracted from the jet, can then be calculated as D x A, where A is the area of
the jet in n—¢ space (A = m R?). Since k, jets have no fixed shape, the determina-
tion of the offset correction cannot be pursued in this way. We have developed a
new method [32], based on the techniques used to derive the fixed cone jet energy
scale [31]. The calibration described in this section corresponds to the k; jet algo-
rithm detailed in section 1.3.3 with D = 1. A description of the procedure used for

the cone algorithm is also included for comparison purposes and crosschecks.

3.1.1.1 The Cone Jet Energy Scale: Offset Correction

In the case of the cone algorithm, the calibration has been derived almost entirely
from collider data [33]. The results were implemented in a computer program, hence-

forth referred to as CAFIX.

Physics Underlying Event

The correction associated with the contributions from the spectator partons is mea-
sured in a Minimum Bias (MB) sample. An event is called MB if it passes the
Level O trigger condition, that is a crossing with an inelastic pp collision. Since the
average inelastic pp collision corresponds to a glancing parton interaction, the Er

density (Dasp) is a good estimator of the physics underlying event. The contribu-
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tions from uranium noise and pile—up, also present in this data, are derived from
ZBnoL® samples, events which do not pass the Level ) trigger (no inelastic inter-
action). Low luminosity ZBnoL{) and MB samples were used to suppress multiple
interaction events.

The energy density due to the physics underlying event, D,., is obtained using the

relation:

Due = DMB - DE%Q (33)

where D259 is the energy density measured in the ZBnoL® samples. The energy

subtracted from the jet is then calculated as D,, X A, where A is the area of the jet

in n—¢ space.

Uranium Noise, Pile—up and Extra Interactions

The offset contribution from uranium noise, pile-—up and extra interactions is ob-
tained by measuring the Ep density (Dy) in ZB events. This is not an approx-
imation, as opposed to the D,. determination, where MB data only mimics the
contributions from the underlying event. Zero-suppressed (ZS) samples were used
to get this correction. As it was mentioned in section 2.2.4, this cut leaves, on aver-
age, some positive energy in each cell. The magnitude of this effect depends on the
number of cells suppressed in an event. The occupancy factor (F) is the number of
cells read out in a given volume. It is different within a jet and in a ZB event. It
also depends on the size of the cone jet because a smaller cone has a higher fraction
of its cells read out. Since the offset subtraction is applied to jets, a correction has
to be applied to take into account the difference between the suppression contribu-
tions. Thus, the density contribution to the offset due to noise, pile-—up and extra

pp interactions is given by:

Dg = Dgg - 5ZB + 6jet (34)
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where DZ%, is the measured density in a ZB sample, 6,5 is the E; density contri-
bution of the ZS cut in a ZB sample, and ;. is the Er density contribution of the
ZS cut within a jet. In order to measure 05 and d.;, non zero-suppressed samples
(NZS) are needed. Since no jet triggers were defined in the NZS sample, and know-
ing that the difference between the two is due to the occupancy factors (Fje: and

Fzg), a prediction for d . is derived from 6,5 following the relation:

]:ZB
fjet

5jet = 5ZB X (35)

Fzp is obtained as the number cells read out in a particular n—¢ bin divided
by the total number of cells in that area. Fj is calculated in the same way but
within a jet. Figure 3.1 shows the occupancy for 0.7 cone jets as a function of
pseudorapidity and for different jet E7ranges. The Er dependence was considered
not large enough to require a separate parametrization. The prediction of §;¢; was
found in agreement with the measurement obtained in a MB sample where jets were
reconstructed (~ 5000 events).

The Dy results were fit to an eight-parameter function:
Dy = a1 + asn + az[sin (asn + a5)] + ag[sin (a7n + ag)] (3.6)

The parametrizations are shown in Figure 3.2 as a function of pseudorapidity, for

different luminosities.

3.1.1.2 The offset correction for the %, algorithm

The method used for the cone algorithm, which consists in measuring the energy
density in different samples of D@ noise data, can not be used for &, jets. They do
not have a fixed area in n—¢ space. In order to determine the offset a new method
has been developed as part of this thesis work. It basically consists on overlaying
actual DO noise data on Monte Carlo simulated physics events. The data with and

without noise overlayed is processed through the reconstruction programs obtaining
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Figure 3.1: 0.7 cone jet By dependence of the occupancy as a function of pseudo-

rapidity, for jets found in Minimum Bias data.

basically the same jets with and without noise contribution. The offset is then
calculated by measuring the difference in jet pr between the two samples. Three

different types of D@ data are used. They are:

e ZB : Zero Bias data, which consists in random pp bunch crossings.

e ZBnoL® : Zero Bias data not passing the Level @ Trigger (random crossing

with no inelastic interaction)
e MB : Minimum Bias data, which corresponds to a random inelastic pp collision.

7B data corresponds to the contributions from uranium noise, pile-up and multiple
interactions. The samples overlayed with ZB are used to get the O,, offset. MB
data, being basically low Q? pp collisions, mimics the contributions of the physics
underlying event. Thus, samples overlayed with MB are used to measure the offset

corresponding to the energy associated to the spectator partons. The energy from
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Figure 3.2: Energy density, Dy. It corresponds to the contributions from uranium

noise, pile-up and extra pp interactions. The parametrizations correspond to R =

0.7 cone jets.

uranium noise and pile—up, which are also present on MB data, is subtracted using
the ZBnoL® samples. Low luminosity MB and ZBnoL() samples were used to
suppress events with multiple interactions.

The Monte Carlo events were generated with HERWIG [34] with 2 — 2 parton pr
thresholds of 30, 50, 75, 100 and 150 GeV, and underlying event switched off. The
samples were processed through the GEANT detector simulation package [29] which
provides a cell-level simulation of the calorimeter response and resolution. The dig-
itized Monte Carlo (MC) events were passed through the calorimeter reconstruction
and jet finding packages, obtaining the first sample of jets. In the cases where DO
data was overlayed, the cell energies were added cell-by—cell to the energies in sim-
ulated MC jet events. Since the D@ data samples had to be non zero—suppressed,

the summed cell energies were zero—suppressed offline and then passed through the
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calorimeter reconstruction and jet finding packages, producing a second sample of
jets. The process to generate these samples is very time consuming. Although the
best scenario would be to have various samples with different luminosities covering
the whole range in pseudorapidity, only 5 different luminosities samples could be
generated and with a range on pseudorapidity up to |n| < 1. A sample with mixed
luminosities was generated extending up to || < 3 in order to get the functional
form of the offset for the forward region (|n| > 1). Table 3.1 shows the different DO

data samples used to overlay MC events.

Type of | Herwig Threshold Luminosity Jet n

Overlay Er (GeV) L (10%cm2s71) Range
none | 30, 50, 75, 100, 150 N/A 0.0< || <3.0
ZB 30 5 (average) 0.0< |n| <3.0
7B 30, 50, 75, 100, 150 | 0.1, 3, 5, 10, 14 | 0.0< |n| <1.0

ZBnoL® | 30, 50, 75, 100, 150 0.1 0.0< || <1.0
MB | 30, 50, 75, 100, 150 0.1 0.0< || <1.0

Table 3.1: Availability of Er, luminosity and 7 for overlayed Monte Carlo data.

Uranium Noise, Pile—up and Multiple Interactions

In order to measure the offset due to noise, pile—up and multiple interactions, a MC
sample overlayed with ZB data and one without overlay are compared, on an event—
by—-event basis, associating the two most energetic jets in each sample. Figure 3.3
shows the distance in 7-¢ space (AR) between the leading jet (the most energetic
one) in a MC sample with no overlay and the closest jet in the ZB sample. Two
jets are then associated (“matched”) when their distance is AR < 0.5. The offset
and its statistical error are extracted from the mean and RMS of the distributions

of the pr difference between matched jets (see Figure 3.4). Figure 3.5 shows the
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Figure 3.3: Distance in n—¢ space from the leading &, jet in the MC sample without
D@ data overlay to the closest jet in the sample overlayed with ZB data (£ = 5).

B00 [ b
250
200
150

100

50

IR R

20 30

Owwww‘A\\\J\_A
-30 -20 -10

Figure 3.4: Distribution of pr differences between corresponding &, jets in the MC

sample overlay with ZB data (£ = 5) and the one without overlay.
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offset O,; as a function of pseudorapidity. The results for cone, obtained using the
same method as for k£, , is shown for comparison. As it can be seen, in the central
detector region, the offset is around 50% larger for k£, than for cone. The curve
obtained as a fit to the points has the same functional form that the one used for

the cone calibration (see equation 3.6).
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Figure 3.5: O, offset as a function of 7 for &, jets (full circles) with 30 < Er < 50
GeV (mixed luminosities). The result for cones are shown for comparison (open

circles).

The measured O, values for || < 1 and for various luminosities are shown in
Figure 3.6. The same functional dependence as the one obtained from Figure 3.5
has been used to estimate O, for the region |n| > 1. The curves correspond to the
eight parameter function, fitted to the points and scaled with luminosity. Linear
interpolations are done to extract the values for luminosities between the ones listed

in Figure 3.6.
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Figure 3.6: Parametrizations of the O,; offset as a function of 7 for &, jets with

30 < Er < 50 GeV, for various luminosities.

The Er dependence of the offset is shown in Figures 3.7 and 3.8. Very little
dependence is observed and it becomes weaker as luminosity increases. Exponential
fits were done for luminosities lower than £ = 5. A third degree polynomial is used

to extract the dependence with 7 of the fits parameters.
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Figure 3.7: O, offset as a function of E; at £ = 0.1 and several n bins, for &k, jets.
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Test of the Method

The method was tested by comparing the offset for the fixed cone jet algorithm
calculated with our own method to the standard CAFiX results. Figure 3.9 shows
the Er dependence of O,,. While CAFIX results were considered Fr independent,
our new results show a drop with momentum. We believe this effect is real and that
it was not fully appreciated in the cone analysis. Let us review how this conclusions
were reached.

We think the discrepancy is due to zero—suppression (ZS) effects which depend on
the number of suppressed cells. This is related with the occupancy F, the fraction
of cells read out inside the cone. The occupancy was measured for 0.7 cone jets in
a MC sample overlayed with MB data and found in good agreement with the one
calculated with jets taken from pure MB data (see Figures 3.1 and 3.10), showing
that the overlay method correctly models the effects of underlying event and noise.
By the time CAFIX results were derived, the occupancy was considered to be Er
independent. However, under close examination, an Er dependence can be observed
in Figure 3.1. When this effect is taken into account by varying the occupancy
values on equation 3.5, a 30% of the O,, Er dependence can be explained (because
ZS effects were not well understood, a large error was included in CAFIX). Since the
Er dependence of 0.7 cone jets cannot be confirmed with pure DO data, a 70% of

the Fr dependence correction for k£, jets was introduced as an error.
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Figure 3.9: O, offset for &, (full circles) and 0.7 cone jets (stars), reconstructed
in Monte Carlo data overlayed with Zero Bias (at £ = 5) as a function of E; for
different 7 bins. The CAFIX result is shown for comparison on the left (open box),

but no Er is associated with it.
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Figure 3.10: 0.7 cone jet Ep dependence of the occupancy as a function of jet
pseudorapidity, for jets found in Monte Carlo events overlayed with Minimum Bias

data.

Final Results

The final results, which consider together the £ and 1 dependence, are shown in
Figures 3.11 and 3.12. The main source of uncertainty is the error arising from the
disagreement in the E7 dependence between the results of O,, for cone jets and the
ones from CAFIX. This uncertainty increases with energy and for low luminosities
values. It can be as large as 15%. The functional form extracted from Figure 3.5
contributes with an error of 0.2 GeV calculated as the average of the largest differ-
ences between the points and the fits for each curve in Figure 3.6. No measurements
exist for energies greater than 200 GeV. An additional uncertainty was introduced
which rises smoothly from 0.0 to 0.2 GeV between 120 GeV and 270 GeV and above

this value it remains flat.
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Physics Underlying Event

In order to measure the contributions from the physics underlying event, jets are
matched (AR < 0.5) between the MB and ZBnoL{ samples and their energy sub-
tracted. The dependence on Er is shown in Figure 3.13. There is no evidence of an

Er dependence, therefore the correction is only applied as a function of 7.
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Figure 3.13: Physics underlying event offset, O,., as a function of Ep for k, jets.

The result for cone is shown for comparison.
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The functional form of the correction for regions other than the central one
(In| > 1) is based on cone results [31]. The cone offset was calculated using the
overlay method and compared with the result from CArix. The good agreement
obtained provides another successful test for the method and it allows to use CAFIX
results to derive the 1 dependence of O, for k, jets (see Figure 3.14). The average
difference between the &k, and cone offset was calculated and then added to the
CAFIX points normalized to our cone results. The final underlying event offset, O,
is shown in Figure 3.15. A 10% error comes from the quadrature sum of 0.1 GeV
uncertainty due to the normalization process and an equal amount to accommodate
a possible Ep dependence. This error was enlarged to 15% for the region |n| > 1

where no measurement of O, for &k, jets is available.
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Figure 3.14: Physics underlying event offset, Oy, as a function of n for k&, jets (solid

circles) and cone jets (triangles), together with the results from CAFIX (open circles).
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k, jets with D = 1. The solid curve (middle) is the fit to the points, motivated by

the functional form in [31], and the band represents the systematic errors.

3.1.1.3 Summary

The jet momentum measured by the calorimeters is distorted by experimental effects.
The energy contributions from the physics underlying event, uranium noise, pile—
up and multiple interactions (offset) have to be subtracted. Since &k, jets do not
have a fixed area, a new method was developed to calibrate these jets based on the
experience with the cone algorithm. Basically, the offset is calculated by measuring
the difference in jet pr between two MC samples, where one them has been overlayed
with actual D@ noise data in order to simulate the physics underlying event and
noise contributions. The total measured offset in the central part of the detector is
around 4 GeV with an approximated 10% error, for an instantaneous luminosity of
L = 5103 cm~2s~!. This value decreases for the forward regions and increases for

larger L.

67



Offsets for k; (for D = 1) have proved to be in general between 50% to 75% larger
than the offsets for the fixed cone jet algorithm (with R = 0.7). The k, algorithm
clusters everything into jets “pulling” more noise and underlying event than a fixed

cone (which excludes all energy outside the cone radius).

3.1.2 The Response Correction

The jet momentum response in the D@ experiment is measured from collider data
using pr conservation in photon—jet (y—jet) events. In an ideal calorimeter, the
total missing transverse energy should be zero. However, in real calorimeters, the
measured photon and jet transverse momenta may not balance perfectly. The photon
momentum scale is determined from Z — ete™, J/1 and 7° data samples using the
masses of these known resonances. After calibration and recalculation of the event

E,., the calorimeter response to jets (Rje) can be derived from :
Ph + Rjew 77" = ~Fr (37)

By projecting along the transverse direction of the photon (unit vector ., ) and
using the transverse momenta balance relation at the particle level (p = —n,- P JTe t),

equation 3.7 can be rewritten as:

7

Rjg=1+"2"7T =14 MPF (3.8)

pr

The missing Er projection fraction, or MPF, is the fraction of the K projected
onto the direction of the photon.

The jet response is expected to be momentum dependent. In order to avoid
resolution and trigger biases, Rj; is binned in terms of E' = p7. cosh e, and then
mapped onto pje. E' depends only on photon variables and jet pseudorapidity,

which are quantities measured with very good resolution. Figure 3.16 shows the
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calorimeter response to k| jets (Rje) as a function of p,.;. The data is fit with the

functional form R;.; = a+b Inp+c In’p (see [32]).
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Figure 3.16: The calorimeter response correction, Rj;, for k; jets with D =1, as
a function of jet momentum. The Monte Carlo point is used to constrain the fit

(solid) at high jet momentum. The dashed curves denote the systematic error.

3.1.3 Monte Carlo Closure

In order to test the method, the corrections were derived for a Monte Carlo direct
photon sample. The £k, jets were then reconstructed and their momentum corrected.
Figure 3.17 shows the ratio of the corrected jet momentum to the corresponding

particle jet momentum. The result is consistent with unity.
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Chapter 4

Selection of the Observable

Since there was no prior experience on event shapes analyses in hadron colliders,
a considerable part of the work involved in this thesis consisted in the election
of the observable to measure. This task was done in collaboration with members
of the Fermilab Theoretical Physics Department. In particular, we would like to
thanks Walter Giele and Keith Ellis for their invaluable contributions and fruitful

discussions. This chapter summarizes these studies and conclusions.

4.1 Introduction

As it was mentioned in section 1.4, event shapes have been previously studied in
eeé and ep, however, hadron colliders presents a different environment that difficults
these measurements. There are two factors that need to be taken into account.
First, the parton-parton center—of-mass frame is boosted from event to event with
respect to the laboratory frame and second, a fraction of the energy deposited in the
detector is not associated with the primary hard interaction, but originates from the
physics underlying event (contributions due to soft interactions between spectator

partons), additional pp interactions, signals from previous crossings (pile-up) and
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noise. In order to overcome these two problems, we have decided:

e to replace the momenta by the transverse momenta, making the variable
Lorentz invariant under z-boosts

e to measure Thrust using jets for which we derived a correction that removes
in average noise and other experimental effects from the measured momenta

(chapter 3).

We have conducted several prospective studies to define the variable to measure
using HERWIG, a MC event generator. This program, together with the D@ re-
construction software, allows to compare generated events at particle level with
reconstructed ones at the calorimeter. In this way, it is possible to analyze the de-
tector performance to reconstruct events and to study the distortions introduced to
the kinematic and physics variables due to genuine background sources (soft inter-
actions among spectator partons), from the accelerator (multiple interactions and
pile—up) and from the detector itself. These effects render certain observables of

physics interest in pp collisions impossible to measure.

MC Samples

We generated QCD dijet events at /s = 1800 GeV using HERWIG 5.9 [34], re-
quiring the parton pr to be greater than 25, 50, 75, 110 and 150 GeV. Next, we
processed the five samples through a GEANT simulation of the D@ detector (SHOW-
ERLIB [30]) and overlayed the result with zero bias (ZB) D@ data, taken for a range
of luminosities, to simulate experimental effects such as additional pp interactions,
pile-up and noise. Jets were reconstructed both at particle and calorimeter level

using the k; algorithm described in section 1.3.3 (D = 1).
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4.2 Dijet Transverse Thrust

The distortions introduced by experimental effects on Thrust were studied with
MC simulated events, by comparing particle to calorimeter level distributions, with
thrust calculated with different number of jets. The method to determine the
thrust axis and its values follows the algorithm described in Ref. [35] and detailed
in Appendix A. From the comparison with calorimeter distributions in an ideal
no-noise environment, it is possible to analyze the distortions due to calorimeter
momentum response, resolutions and showering. The noise, multiple interactions
and pile-up effects are studied in a sample overlayed with ZB D@ data taken at
L =5x10"3cm™2s7!, the data average Luminosity.

Figure 4.1 shows thrust distributions calculated using all jets in the events, cor-
rected by the Jet Momentum Scale [32]. It was required the jets to have || < 1 since
it is the region of the detector that is better understood, where most of the analysis
at DO were performed and where calibration uncertainties are minimum. It can
be observed that the effects of the calorimeter momentum response, resolutions and
showering are minimal as compared to the distortion of the distribution due to noise.
The Jet Momentum Scale corrects the momentum back, on average, to particle level
(before the interaction with the calorimeter), but the correction does not eliminate
background jets (“noisy jets”) which are not related with the hard interaction itself.
Events move from high Thrust bins to lower ones because on average the addition
of a randomly oriented noise jet renders the event more isotropic.

The question is, therefore, how to modify the variable to be measured in a hadron
collider, eliminating noise effects but without degrading the observable to the point
that it loses its physical interest. This issue was discussed with theoreticians in
the Run IT QCD Workshop [6], held at Fermilab. One of its goals was to study and
develop standard jet algorithms and to explore prospective jet measurements. It was

suggested to cut the number of jets used in the calculation, since the remaining ones
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would contain implicitly the kinematic information of the discarded jets. A cut on
the energy of the jets was ruled out since it makes the theoretical predictions infrared
unsafe. For example, the results will be different if a jet which passes the Er cut is
split in two of lower energy, below the Er threshold, due to collinear emissions.

In order to determine how many jets we could use in the calculation, we stud-
ied the problem of the spurious jets. Using the MC samples, for each calorimeter
jet we looked for a corresponding particle one, according to their closeness in 7—¢
space. Jets unmatched are mostly likely to be product of contamination. This is
illustrated in Figure 4.2, where jets have been matched requiring v/An% + A¢? < 0.5
(see section 3.1.1.2). The plotted transverse energy spectrum corresponds only to
the unmatched jets and goes up to 15 GeV. Figures 4.3 and 4.4 show how the
Erspectrum looks in data, for the cases of the third and fourth jet (numbered in
decreasing order of energy). Around 40% (80%) of the third (fourth) leading jet are
in the low energy range (Er < 15 GeV). The probability for a jet to be displaced

by a noisy one, increases as their energy decreases.
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Figure 4.2: E7 spectrum of unmatched jets. The criteria used to match jets between

detector and particle level was: VAn? + A¢? < 0.5.
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Figure 4.3: Er spectrum of the third leading jet in data events. Around 40% of the
jets are below 15 GeV.
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Figure 4.4: Ep spectrum of the fourth leading jet in data events. Around 80% of
the jets are below 15 GeV.
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We have obtained several Thrust distributions for different number of jets in-
cluded in the calculation. Figure 4.5 presents the case where only two jets have
been used and the ratio between the distributions in a logarithmic scale is shown in
the top plot of Figure 4.6. An excellent agreement is observed between particle and
calorimeter level.

On the other hand, our studies indicate that including a third jet in the calcula-
tion introduces a distortion in the measured distribution. We find that about 40% of
the events entering in Figure 4.5 have a third leading jet with || < 1 at calorimeter
level. The bottom plot in Figure 4.6 compares for these events the thrust distri-
bution at calorimeter and particle level, where in the latter we include the third
jet if |n3| < 1. The ratio clearly departs from unity indicating that a distortion is
produced by including one more jet in the calculation. This systematic effect is in
part due to contamination. This is to be expected in the light that 40% of the third
leading jets are in the low energy range (E7 < 15 GeV) where they can be displaced
by a background jet which on average, as it is uncorrelated with the physics, will
pull the thrust down.

In view of these results, we have decided to measure transverse thrust calculated
with the two leading jets in the events. The kinematic information of other jets in
the event is implicitly included through the position and energy of the leading ones.

The variable will be referred to as Dijet Transverse Thrust (7%)'.

4.3 The energy scale of the event

Another issue to be studied is the variable in terms of which the T%¥ is going to
be presented. One of the aims of this analysis is to measure the distributions as a

function of the energy scale of the hard interaction. However, this variable is not

'We would like to thanks G. Sterman for his suggestion of measuring the Dijet Thrust.
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Figure 4.5: Normalized Transverse Thrust distributions as a function of 1-T. Thrust
was calculated using the two leading jets in the event. Full circles correspond to
calorimeter level HERWIG MC overlayed with ZB data, open ones to particle level.

Bottom: results are plotted in a logarithmic scale.
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measurable in hadron colliders. Nevertheless, there are other observables that might
be used, as for example HT, the scalar sum of the transverse energy of all jets in the
event. However, HT includes many low energy jets, which have a high probability
to be contamination and are not eliminated by applying the Jet Momentum Scale
correction. An alternative to HT is HT3, the scalar sum of the transverse energy of
the three leading jets in the event. Even though there is a probability for the third
jet to be spurious, this is much more unlikely, as explained before, than for lower
energy jets.

The effect of the third jet in the case of HT3 is different than in the Thrust
calculation. Its presence cannot be inferred from the sum Er; + Er 5, as illustrated
for instance in the 30% error incurred in the ‘Mercedes’ configuration. Using the
MC samples, we have analyzed the correlation between HT3 and HT, the latter
calculated at the parton level corresponds to a measure of the energy scale of the
hard interaction. As shown in Figure 4.7, there is a linear correlation, with a slope
close to 1, between the two observables. HT3 is then the result of a compromise of

low sensitivity to noise and high correlation with the energy scale.

4.4 Kinematic cuts

Since the central region is very well instrumented and the corrections for detector
effects are well understood, the n of the leading jets for the event to be considered
will be required to be |n; 2| < 1. Regarding the pseudorapidity range for the third
jet, since the Jet Momentum Scale correction is not known when |n| > 3, it was
first thought to discard events in cases where |n3| > 3. However, this cut cannot
be implemented in JETRAD in an infrared safe way, because the NLO prediction
for the cross section in the bin that includes T} = 1 becomes dependent on the
unphysical $,,;, parameter (which slices for computational purposes the phase space

into disjoint 2-parton and a 3-parton regions). In effect, consider a spatially well
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Figure 4.7: HT3 as a function of HT (calculated at the parton level), using an
energy scale corrected HERWIG MC sample (overlayed with Runl D@ data at £ =

10 x 1073%em™2s71).

separated three parton event with a soft parton at |n| > 3. For small values of s,,;,
this third parton gives rise to a jet at || > 3, and the event is therefore discarded.
At high s,,;,, however, the third soft parton is not resolved and we get an effective
two parton event, which passes our cuts. This is illustrated in Figure 4.8 which
shows JETRAD predictions for s,,;, = 1 and 10 GeV?2. The cross section obtained
with the lower s,,;, value, is negative for the first 7% bin. This happens since many
three partons events, needed to compensate the large negative value for the point
T} = 1, are discarded due to the pseudorapidity cut. Instead those events make it to
the cross section for s,,;, = 10 GeV? since they are not considered three parton but
two parton events. We thus decided to keep all of them regardless of the kinematics
of the third jet. For the cases where |n3| > 3, the third jet will not be included in
the calculation of HT3 (this effectively means to use HT2 instead of HT3).
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Chapter 5

Data Samples

The analysis is based on Run Ib data, reconstructed in the DQfix environment [36].
This software package includes the k; (D = 1) and cone (R = 0.7) algorithms.
Events were required to pass the inclusive jet triggers Jet_30 Jet 50 Jet_85 and
Jet_Max (section 2.3.4).

Although the observed jets are most often produced as a result of hard pp collisions,
there are other processes that can mimic the energy deposits of genuine jets in the
calorimeter. These processes include cosmic rays, losses of protons from the main
ring!, electrons or photons misidentified as jets, and electronic malfunctions. This
chapter presents the corrections applied to the reconstructed QCD events and the

cuts the D@ QCD group has designed to remove “fake” jets from the data sample.

5.1 The treatment of Hot Cells

During Run Ib a cell suppressor, called AIDA [37] (Anomalous Isolated Deposit
Algorithm), was introduced in order to remove cells with spurious energies and

unusual high frequencies of occurrence (hot cells). The appearance of the cells is

!The Main Ring pipeline runs through the calorimeter.
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due to electronic noise and hardware failures in the calorimeter.

AIDA is applied event by event, prior to jet finding. Cells with E7 > 10 GeV and
more than 20 times the average E7 of its first longitudinal neighbors (adjacent cells
with lower and higher layer numbers), are suppressed. The disadvantage of this pro-
cedure is that it damages many genuine jets by eliminating good isolated cells which
are the result of natural fluctuations due to the stochastic nature of hadronization
and shower development, and calorimeter segmentation. Following [37], AIDA cells,
were restored to the jet provided their distance, in the n — ¢ space, is less than
AR = 1 respect to the original jet direction, and its energy is less than 50% of the
jet transverse energy. All the relevant variables were recalculated following the k|

algorithm recombination scheme.

5.2 The ’ﬁT Correction

Due to the high instantaneous luminosity, pp bunch crossings could have more than
one inelastic interaction. In these cases, the event vertex is determined as the one
which minimizes the magnitude of the vector sum of the jet transverse energy (’I-ZT)
This procedure is called Revertexing [38]. If the selected vertex is not the one choose
by the tracking software (the candidate with more tracks) all the relevant variables

are recalculated. We found that 20% of the events need to be revertexed.

5.3 Jet Quality Cuts

Noise sources like instrumental background and Main Ring activity leave energy
deposits in the calorimeter which are misidentified as jets. In order to remove these
“fake” jets, the standard jet quality cuts were applied [39] (after running the cell
restoration algorithm and the Hr correction) in a jet-by-jet basis. These cuts are

based on the EMF and CHF variables which are defined as the fraction of the
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energy deposited in the electromagnetic and hadronic sections of the calorimeter,

respectively. The requirements for each variable are:

0.06 < EMF < 0.95

CHF <04

Events are discarded if at least one of the two leading jets was determined to be a

bad jet. In case the third jet is bad, HT2 is used instead of HT3.

5.4 Event quality Cuts

Events are selected by applying cuts on the missing transverse energy and on the
primary vertex position. These cuts are applied after running the cell restoration

algorithm and the Hr correction.

5.4.1 RMTE cut

In order to eliminate cosmic ray events and to remove unusual fake jets that survive
the standard cuts, it was required [40] that each event satisfies the following con-
dition on the ratio between the missing Er (F;) and the transverse energy of the

leading jet (F7¢):
Ryre = ET/E%jet < 0.7

This cut takes care of most cosmic rays events (except those that happen to pass

through the beam spot) because they are not transversely balance in energy.

5.4.2 Vertex cut

The measured primary z-vertex was required to be |z| < 50 em. This cut is imple-
mented to preserve the projective geometry of the calorimeter towers. Figure 5.1

shows the distributions of the z coordinate of the vertex position for each trigger.
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Figure 5.1: Distributions of the z-vertex for each trigger
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5.5 Cut efficiencies

Good events or jets, which sometimes fluctuate outside the thresholds described
above, could be erroneously eliminated. In order to compensate for their removal,
event and jet efficiencies were derived for each of the cuts previously mentioned.
Details of the calculation can be found in [39]. Basically, each variable is plotted and
fit to a smooth curve, obtaining what is called the ¢rue distribution. The efficiencies
are defined as the fraction of good jets (or events in the case of the z-vertex and the
F; cut) between the thresholds.

The jet quality cuts efficiency, ey, is parametrized as a function of Er as [41, 42]:
ege = 0.9997 4+ (—0.21107*) x Er (5.1)

Since the calculation of the Ty cross sections could involve two or three jets (it
depends on the 7 of the third jet, see section 4.4), the total efficiency for the event
is obtained through:

N
€ge = H €qe; (5.2)

where e, is the efficiency corresponding to the i—th jet and N is the number of jets

used in the calculation.

Table 5.1 shows the z-vertex cut efficiency (e,y4,) obtained from Figure 5.1. The
B cut was determined to be 99.8% efficient () [40].

Jet_30 Jet_50 Jet_85 Jet_Max
0.8995 £ 0.0003 | 0.8969 + 0.0004 | 0.8985 £ 0.0004 | 0.8960 + 0.0005

Table 5.1: Vertex cut efficiency for each trigger.
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5.6 Trigger Thresholds

The T% cross section will be presented in four HT3 bins. Figure 5.2 shows the
distributions of HT3 for each jet trigger, corrected by inefficiencies and momentum
scale. Only one trigger is used per HT3 bin, whose limits are chosen so that the
trigger is fully efficient over its whole range. The trigger efficiencies as a function
of HT3 are however involved because they are not determined by HT3, but by the
highest energy jet in the event. As an example, Figure 5.3 shows the trigger turn on
as a function of jet Ep, for the Jet 85 trigger [42]. In terms of HT3 this curve gets
smeared (Figure 5.5), because two events with equal HT3 can have widely different
efficiencies, as illustrated by the following example. Consider an HT3=300 GeV
Jet_85 event. If it is a 2-jet event, then Er =150 GeV (HT3/2), and the efficiency is
100%. On the other hand, if the event has three similar energy jets, then Ep ~ 100
GeV (HT3/3), and the event efficiency drops to 10%.

The only way to impose a 100% efficiency requirement on HT3 is by ensuring
that all contributing events have their leading jets in the 100% efficiency region.
Figure 5.4 illustrates the situation for the Jet_30 and Jet_50 triggers. For the first
(second) one the jet energy threshold is 60 GeV (100 GeV), and this requires an
HT3 threshold of 160 GeV (260 GeV). It is unfortunate that many 100% efficient
events are lost in this procedure (all the events in the upper left quadrant in the
Figure), but it is essential to eliminate the contamination from partially understood
kinematic regions that would bias our sample. The resulting HT'3 threshold values

are shown on the respective turn-on plots on Figure 5.5 and presented in Table 5.2.
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Jet Trigger | HT3 bin (GeV)
Jet_30 160 — 260
Jet_50 260 — 360
Jet_85 360 — 430

Jet_Max 430 — 700

Table 5.2: HT3 bin for each trigger. The thresholds were selected by requiring the
jet triggers to be fully efficient.

5.7 Luminosity Determination

The integrated luminosity is calculated by summing up measured instantaneous
luminosities (£, number of pp crossings per second and per cm?) over a specified
period of time. It is determined separately for each trigger to account for individ-
ual prescales and dead times. The integrated luminosities for Jet_ 85 and Jet_Max
are extracted from the production database (PDB), based on the run number in-
formation (see Table 5.3). Their relative luminosities are cross-checked by fitting a
constant to the ratio of their HT3 spectra, as shown on Figure 5.6. The result agrees
well with the ratio of the PDB values. Due to discrepancies observed among trigger
versions the luminosities for Jet_50 and Jet_30 were not extracted from the PDB.
They have instead been measured relative to that of Jet_85, by fitting a constant to
the ratio of their respective HT3 spectra.

Final results and errors are shown in Table 5.3. Since there is no information
for the DOfixed streams in the production database, it is not possible to obtain the
errors accurately [43], thus a conservative value of 8% is assigned to each trigger
luminosity. In the cases of jet triggers Jet 50 and Jet_30 the error also includes the

uncertainty due to the matching procedure.
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Figure 5.6: Ratio of HT3 spectra, from top to bottom: Jet_Max/Jet 85,
Jet 85/ Jet 50, Jet_50/Jet_30 .

Jet Trigger | Integrated Luminosity (pb~!) | Error (%)
Jet_30 0.34 9.5
Jet_50 4.35 9
Jet_85 51.5 8

Jet_Mazx 87.3 8

Table 5.3: Integrated Luminosities for each jet trigger.
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Chapter 6

Detector Resolutions and Position

Bias

The calculation of 7% involves three variables per jet: transverse momentum and
angular position. Thus, it is essential to determine how this magnitudes are affected
by experimental effects (finite detector resolution, noise, multiple interactions, etc)
as well as to understand the implication of a change in their values on the thrust
itself. This chapter presents the methods used to measure detector resolutions and
angular biases and the corresponding results. The impact of these effects on the T¢

cross sections is studied in the next chapter.

6.1 Energy Resolutions

This section presents the measurement of the transverse momentum resolutions, for
jets reconstructed with the k; algorithm (parameter D = 1), for various 7 bins.
The procedure applied here follows the one detailed in [42]. It is based on the dijet
pr asymmetry, A, defined as :

A= (pT,1 - pT,Q) (6.1)
(pT,l + PT,2)
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where pr; and pro correspond to the transverse momenta of the two leading jets.
In dijet events, the deviation from zero of the variable A is a signal of finite detector
resolution. Assuming pr = (pr,1 + pr2)/2 = pro ~ pr, and Opry = Opp, = Op, the
fractional resolutions can be found as :
o = /2 04 (6.2)
pr

where o4 is the standard deviation of the asymmetry distribution. Dijet events were
selected from the data sample described in Chapter 5 by applying a back-to-back
cut of 5° in azimuth for the two leading jets, which were required to be in the same 7
region and to pass the jet quality cuts. The asymmetry distributions were considered
in bins of average transverse momentum of the two jets and fitted to Gaussians.
There are two systematics effects that produce a finite A not related to resolutions
and that need to be accounted for. The presence of low energy jets may prevent
the two leading jets to balance on the transverse plane. We have corrected for this
by calculating A for different cuts on the third jet pr and taking the measured
fractional resolution to be the value extrapolated to pr — 0. This value has been
corrected by subtracting the fractional pr resolution due to particle imbalance. This
effect reflects the fact that even at the particle level dijet events may not balance
due to misclustering (incorrectly assigned, or not assigned, momentum to the jets).
To evaluate it, the same procedure applied to data was used on particle level jets
from HERWIG MC samples.

Figures 6.1-6.3 show the fractional resolutions for three different n ranges. They

have been parametrized as:

N2 S?
Uﬂ:\/—2+—+02 (6.3)
pr br Pt
The resolutions for the range |n| < 0.5 were already derived for the inclusive jet

cross section measurement. Thus, the results are taken from [42].

The total uncertainty combines the statistical error from the fits and the systematic
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from the particle imbalance correction. In order to determine the accuracy of the
asymmetry method a MC closure was performed. The closure is a test done by com-
paring the resolutions obtained from MC samples following the asymmetry variable
procedure and the “straight” one, in which the resolutions are obtained from the pr
ratio of matched jets between calorimeter and particle level. The results were found
to be in good agreement within errors. A 0.5% was assigned as a systematic error

due to the measurement method.
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Figure 6.1: Pr Fractional Resolution for 0.5 < |n| < 1

6.2 Position Bias and Resolutions

Due to a combination of factors, such as fluctuations in the evolution of the calorime-
ter shower, calorimeter response, uranium noise, pile-up and multiple interactions, a
mismeasurement of jet position can be produced. In order to determine the angular

bias and resolutions, different MC samples have been used. They were generated
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with HERWIG [21], with underlying event turn on, for different parton p; thresh-
olds and processed through the detector simulation SHOWERLIB [30]. The result
was overlayed with zero bias (ZB) data, taken for a range of luminosities (£ =
3,5,19 x 1073%cm =2 s71) to simulate the effects of pile-up, multiple interactions and
noise. Jets were reconstructed with the £, algorithm. This work closely follows the

procedure for the determination of biases and resolutions for the cone algorithm [44].

6.2.1 Position Biases

In order to calculate the 7 bias, jets at calorimeter and particle level were matched

requiring AR < 0.5 (AR = +/An? + A¢?). The bias can be defined as:

ngtcl — n;rieco + (S(E;:tw, 772800) (64)

where 73 is the reconstructed calorimeter jet 7, E7Z° is the energy of the recon-

structed jet, ngtd is the n position of the particle jet and § is the bias calculated as
the average of ngtd —n3°°. The n position is in all cases referred to the center of the

detector and indicated as (7).
Figure 6.4 shows the bias for five different E75 ranges as a function of 7;*°. The
shape of the bias can be due to the difference in the calorimeter response as a function
of . The fact that the jets tend to move towards the beam can be explained as a
result of the noise effect, since it increases as we approach the beam pipe.

In order to determine the correction, the values have been projected from the
negative to the positive side assuming the bias is antisymmetric. The result has

been fit for the 4 first £ bins with:
§(Eje,my*) = A+ Bz + Ca® + Dz’ + Ea* 4 Fa® (6.5)
and for the last bin:

S(Ere, nie®) = A+ Bz + Ca? for |n| < 0.85 (6.6)
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and

S(Ere,my*®) = D+ Ex + Fa® + Gz® for |n| > 0.85

(6.7)

As it is shown on Figure 6.5, no distinct 7 bias is observed after the correction

is applied to the reconstructed jets.
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The dependence of the bias on the luminosity (£) was studied using the MC
samples overlayed with ZB data taken at various values of £. Figure 6.6 shows the
corresponding results as a function of 7n; and also, for comparison, the bias for a
sample with no overlay. As it can be seen it is dominated by the effect of noise,
pile-up and multiple interactions. The nominal value has been extracted from the
fits for £ = 5 and the errors calculated as the maximum difference to the fits for

L =3 and £ = 19. The final results are shown in Figure 6.7.
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Figure 6.6: n bias for 2 different E bins as a function of 74, calculated for MC
samples overlayed with ZB taken at L=3,5 and 19 and also for a sample without

noise overlay (full circles).
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6.2.2 Position Resolutions

After correcting the jet positions for the bias, we studied the effects due to the finite
calorimeter resolution. The distributions corresponding to 72" — 7e® were fitted
with gaussian functions, as illustrated in Figure 6.8, and the standard deviation
taken as the jet n resolutions. Five different bins on Eg’:fl have been used for 5

different 7 ranges, and the results parametrized as:

B C
on(E,n) :A+E+ﬁ (6.8)
This procedure was applied for different luminosities, see Figures 6.9. The nomi-
nal values correspond to the results for £ = 5 and the errors have been calculated as
the maximum difference to the fits corresponding to £ = 3 and £ = 19. Resolutions

decrease at high energies because noise becomes relatively less important while they

increase for jets located near the beam pipe where the contamination is larger.

Final results are shown in Figure 6.10.
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Figure 6.8: Distribution of 72" — 7¢® for || < 0.5 and energies between 85 < E <

130 GeV. The line corresponds to a gaussian fit.
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6.3 ¢ Resolutions from data

The influence of the ¢ resolutions onto the T cross section are studied in detail in
section 7.3.1, where it is shown that they are critical in the 7" — 1 limit, becoming
the dominant effect. Thus, we have measured the resolutions using two different
methods. On one side, we have calculated them from the MC with the same method
as for n, by plotting the ¢ difference between matched calorimeter and particle jets.
In what follows we will refer to this as the “straight method”. On the other hand, we
have attempted to extract them directly from data, exploiting the fact that in dijet
events both jets have to be produced back to back (“dijet method”). Any deviation
from |¢; — ¢o| = 7 should thus be due to angular resolution, once a correction for
imbalance due to the presence of a lower energy third jet is accounted for.

The results using the “straight method” are shown in Figures 6.11 and 6.12. The
first one presents the resolutions for different luminosities. The nominal value was
extracted from the results corresponding to £ = 5 and the errors were calculated as
the maximum difference to the fits corresponding to £ = 3 and £ = 19. The final
results are shown in the second figure.

In the “dijet method”, which closely follows the one used for the Er resolutions,
we plot for several (Er) = (E} + E%)/2 bins the difference between the ¢ position
of the leading jets (A¢ = |¢; — ¢po| — ) for various cuts on the energy of the third
jet as it is exemplified in Figure 6.13.

A straight line is fitted to the variances obtained from these plots, as shown in
Figures 6.14-6.15, and the resolutions extracted from a linear extrapolation to zero,

using the relation o4 = 0A¢/\/§.
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The final results are shown, for two different n ranges of the leading jets in
Figures 6.16-6.17 (the contribution of the imbalance at particle level has been sub-

tracted).
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Figure 6.16: The open circles correspond to the MC straight resolutions as a function
of Ep, for the full ones Ey, < 8 GeV was required. The open triangles correspond
to the MC resolutions calculated with the “dijet method” while the full ones are the

corresponding results extracted from data.

We find that the MC straight resolutions are higher than those obtained from the
data via the dijet method. In order to validate the MC results, we have measured
the resolutions by applying the dijet method on the HERWIG samples. As it can be
observed in the Figures, the same results are obtained from data and MC. Thus,
we are confident that the MC simulation describes well the data. Investigating the
source of the difference between MC straight resolutions and data, we found that

the straight resolutions are dependent on the cut on the energy of the third jet.
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Figure 6.17: The open circles correspond to the MC straight resolutions as a function
of Er, for the full ones E7, < 8 GeV was required. The open triangles correspond
to the MC resolutions calculated with the “dijet method” while the full ones are the

corresponding results extracted from data.

Resolutions are smaller for a sample where E7, is required to be less than 8 GeV,
indicating that the presence of a high Er third jet degrades the angular resolution
of the leading jets (see Figures 6.16-6.17, full and open circles). As a consequence,
the dijet data method turns out to be biased, because it preselects a sample where
jets inherently have better resolutions. We conclude that the straight resolutions
are the correct ones to use, as they represent the average resolution over the whole
sample.

This exercise has proved very useful. The agreement between the results from
data and MC using the dijet method is very important and shows that we can trust

the results from the MC simulation.
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Chapter 7

The measured th Cross sections

and systematic errors

The dijet transverse thrust cross section is denoted do/d Ts and it is experimentally

determined by:

do N
dTI = ATE L e (7.1)

where N is the number of events in a given AT} bin, L is the integrated luminosity
and e; is the total efficiency due to the quality and acceptance cuts (i.e., e; =
€qc Emet Ezuta)-

We chose to present the results both as a function of 1 — T3, as this variable
ranges between 0 and ~ 0.3, and as a function of log(1 — T%) . The linear scale
is best suited to study the cross section over the whole kinematic range, while the
logarithm version enhances the high thrust region, allowing a detailed analysis of
this zone where most of the statistics resides.

The T% cross sections are measured from the data collected by each of the four
inclusive triggers: Jet_30, Jet 50, Jet_85 and Jet_Maz. Only one trigger was used
for each HT3 bin. HT3, a measure of the energy scale of the event, is defined as the

scalar sum of the transverse momenta of the three leading jets.
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The T% variable is measured using the two leading jets in the event, requiring |n| < 1.
Since there is no jet momentum scale correction for jets with pseudorapidity greater
than 3, in cases where the 7 of the third jet has || > 3, HT3 is replaced by HT?2, the
scalar sum of the transverse energy of the two leading jets, as previously discussed
in Chapter 4.

Figures 7.1 and 7.2 present the observed 7% cross sections, corrected by inefficiencies,
jet momentum scale and position bias, in linear and logarithmic scales. Errors are
only statistical. The cross section falls steeply with respect to 1 — 77 and as HT3
increases it shifts towards higher values of thrust.

These cross sections are distorted by the finite resolutions of the detector. The
last section of this chapter is devoted to the discussion of the method applied to
remove these effects from data. Prior to that, we analyze the sources of systematic
errors that affect the 7% measurement, which are in general luminosity dependent.
As the luminosity increases there is more energy deposited in the detector which
can distort the kinematic variables and physical observables. Although each source
is studied independently, an overall study of the 7% dependence on the luminosity

is presented in the next section.

7.1 Consistency Studies: Luminosity Dependence

of the T} cross sections

Run 1b data have been taken in a high luminosity environment. The probability
of having multiple interactions in a bunch crossing increases with the instantaneous
luminosity (£). It is at most 18% for £ less than 5 x 103 em 2?s™! and at least
46% for L greater than 10 x 1073 em 2571, Thus, extra energy, which is not related
to the hard primary interaction, is deposited in the calorimeter. This affects several

of the relevant systematics of this analysis. It increases the amount of energy that

116



S

=
S}

10

=
£
= =5 ok
T 103k 160 < HT3 <260 10° ¢ 260 < HT3 <360
3
. 10 E -,
102 . .
T 1c T
10 ¢ s 1 ++++
10 ¢
i +
1k T+ | L T
10 ¢
a 3
10 L L 10 1 I
0 0.1 0.2 03 0 0.1 0.2 0.3
T 1T
=
=
= - 10 b
210 ¢ 430 < HT3 <700
3 360 < HT3 <430
s 1 k.
1E-, o
1 e 0t ’.'
R . r .
10 ¢ "++ vy,
-2
10 0t +
3 3 f
10 £ ﬁ 10 f
L L | L
0 0.1 0.2 0.3 0 0.1 0.2 0.3
T 1T

Figure 7.1: T¢ distributions obtained from Run 1b data, for each HT3 bin.

g2 utl 0o b
5 ++ ‘
3 12f N 08 | +y
3
T g0 L 160 < HT3 <260 + 07 | 260 <HI3 <360 +  *
3
= + 06 £
s [
+ E
05 . +
6 F 04 £
v 03 +
N E
4 F . .
02 | -~
2F - 01 f Py
0 L L et 1 1 1 1 0 (RS 1 1 1 1 el
-10 -8 -6 -4 -2 -10 -8 -6 -4 -2
10 10° 107 107 10 10 10° 107 107 10
1T 1T
- 012 0.05
2
i 0.045 |
g 0tr 004 | +
2 + 4
F o0 [ 360 < HI3 <430 + g 0.035 430 <HT3 <700 +
= o
= . 003 £ +
+ +
006 [ 0025 |
+
002 F + +
004 [ *
0015 | .
-
002 [ -~ .| oot - .
- 0.005 | -
ol b g e
10 -8 6 -4 10 6 4 2
10 10° 107 107 10 10 10° 107 107 10
1T 1T

Figure 7.2: T} distributions obtained from Run 1b data, for each HT3 bin. The

logarithmic scale enhances the region close to T4 = 1.

117



has to be subtracted to each jet (offset correction) and the probability of having
background jets (i.e., not related with the hard scattering itself). It can also cause
a degradation of the position and energy resolutions. Finally, multiple interactions
can produce a mismeasurement of the primary vertex (misvertexing). It is important
to notice that the offset correction has been already parametrized as a function
of luminosity [32] and that the revertexing procedure is supposed to correct for
misvertexing. A luminosity dependence study of the T¢ cross section allows to find
out if any mistake has been done or if additional corrections are needed.

With this purpose, by calculating the average instantaneous luminosity £ for each
run, we divided the data sample for each trigger into two subsamples of comparable
statistics as it is shown in Table 7.1. The election of two disjoint bands has been

done in order to maximize any systematic effect that could be present.

Jet Trigger | £ range (1073 ecm™2s71)

Jet_30 L <2
L>5

Jet_50 L <2
L>4

Jet 85 L <4
L>6

Jet_Mazx L<4
L>9

Table 7.1: £ range of each subsample for each jet trigger.

The integrated luminosities of each subsample were extracted from the Produc-
tion Data Base (PDB) and the ratio between the corresponding 7 distributions was
measured. Since the results from the PDB cannot be fully trusted for subsamples to

within less than 10%, a cross-check was done by studying the ratio of the Er spectra
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of the leading jet, which is not supposed to be luminosity dependent, as well as for
HT3, all of them corrected by inefficiencies and energy scale. The PDB luminosities
were adjusted with a multiplicative factor obtained from the E7 ratios which proved

to be consistent with a constant fit. The details are presented in appendix B.

Figures 7.3 and 7.4 show the T% distributions corresponding to the different sub-
samples for two jet triggers. The ratios are consistent with no luminosity dependence
(the same occurs for triggers Jet_30 and Jet_85) indicating that the systematic ef-

fects are smaller than the statistical uncertainties.
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Figure 7.3: T% distributions for two subsamples of Jet_50. The ratio is shown on

the bottom plot.
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7.2 Systematic Uncertainties

The different sources of systematic errors, Jet Momentum Scale, Cut Efficiencies,
Position Bias and Luminosity uncertainties, have been discussed in detail in previous
chapters. In this section we study their contribution to the 7% cross sections. We
also analyze the error introduced by reconstruction inefficiencies and “noisy” jets

(jets from background).

7.2.1 Momentum Scale Correction

As it was mentioned through this work, by applying the momentum scale, the mo-
mentum of each jet is restored (in average) back to the particle level. The uncer-
tainty in the Jet Momentum Scale (JMS) propagates to the thrust distribution via
two mechanisms. First, the value of 7% of each event changes as the energies of
the jets are corrected. Second, the value of HT3 is itself affected, resulting in a
net flux of events in and out of each of the four HT3 bins. We have investigated
the relative importance of these two effects and concluded that the second one is
the dominant. This was to be expected due to the definition of the variable where
the two jets involved have similar momenta and in the ratio the correction almost
cancels. The systematic effect via HT3 is illustrated in the top plot in Figure 7.5
which shows the T% cross sections obtained using the nominal JMS correction for
the thrust and the high and low ones for HT3. The high (low) corrected momentum
is defined as the nominal momentum plus (minus) 1o, where o is the error of the
JMS correction. A net effect is observed, fully correlated from bin to bin, which
is interpreted as a uniform loss of 20% of the events when going from the high to
the low correction. This is to be expected, given that the cross section is a steeply
falling function of HT3, and the JMS increases the measured jet energies. We thus
see that the Jet Momentum Scale systematic error amounts basically to a global

normalization uncertainty, and it does not affect the shape of the distributions. The
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errors for each bin of HT3, calculated as the ratio between the high(low) and the

nominal distribution (see the bottom plot of Figure 7.5), range between 10 and 25%.
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Figure 7.5: Top: The full circles correspond to the nominal corrected T¢ distribu-

tion binned in terms of an HT3 calculated by applying the high momentum scale

correction instead of the nominal one. For the open circles the low correction was

used. Bottom: Ty cross section where the nominal (open circles) and the high (full

circles) JMS correction was applied for both 7% and HTS3.
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7.2.2 Low energy jets

Many of the third jets which contribute to the HT3 calculation are low FEr jets,
having a high probability of being produced by noise. On the other hand, the re-
construction efficiency at low Eris not 100%. We studied both issues by matching
calorimeter and particle jets in a HERWIG MC sample overlayed with Zero Bias
events taken at the average luminosity of our data sample, £ = 5.

The top plot in Figure 7.6 illustrates the distribution of unmatched calorimeter jets
showing that more than 95% of them are below 10 GeV. We have thus estimated a
lower error band by assuming that all jets with E7 < 10 GeV are noise jets, which
amounts to replacing HT3 by HT?2 for those events where Er, < 10 GeV.

The bottom plot in Figure 7.6 illustrates the distribution of unmatched third particle
jet, where the jet was required to be separated from the leading ones, in ¢ space,
by AR > 2. In this way the jet is isolated avoiding the possibility of not finding a
matching calorimeter jet due to merging with the leading ones. The spectrum indi-
cates that the reconstruction efficiency above 10 GeV is basically 100%. The upper
error band is thus (over)estimated by assuming the existence of an unreconstructed
10 GeV jet in all events that do not have a third jet above that threshold. This
amounts to replacing the calculation of HT3 by HT2 410 GeV when Ep, < 10 GeV.
Both effects, noise jets and reconstruction inefficiencies, contribute basically in the
region of high 7% values, where the events usually have a low Er third jet. The
size of the error band varies from 2 to 7% depending on the HT3 bin, as seen in
Figure 7.7. It is considerably smaller than major systematic sources, like the Jet

Momentum Scale.

7.2.3 Cut efficiencies

In Chapter 5 we described the quality and acceptance cuts events and jets have to

pass in order to be included in the sample. Since each of these cuts eliminates some
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good events/jets, an efficiency was included in Eq. 7.1 to account for this effect.
The method to calculate these efficiencies carries an uncertainty which translates
into an error in the 77 distribution. The contributions related with the vertex and
the missing Er cuts are negligible. Thus, the major cut uncertainty comes from
eqc- We made a conservative estimation of the error based on results obtained for
the inclusive jet cross section [40]. By assuming a 2% error for each ey, and that

they are not correlated from jet to jet, the uncertainty of e; corresponds to 3.5%.

7.2.4 Position Biases

The calculation of the n bias is detailed in chapter 6. In this section we study the
effect of the bias on T}. We have calculated the difference between the distribution
for which the jet position has been corrected and the uncorrected one. As it is
shown in Figure 7.8, this difference is in general less than 2%. The increment on the
total number of events occurs because a larger fraction of two leading jets pass the
kinematic cuts. The error bars correspond to the difference between the distribution
where the low/high correction has been used and the nominal corrected one. This

error translates to an uncertainty of less than 2% on the Thrust.

7.3 Detector Resolution Effects and Unfolding

7.3.1 Detector Resolution Effects

The detector has both finite position and energy resolutions. In this section we
study how they distort the measurement of the T} cross section.
Energy Resolution

In order to understand how they affect a jet, consider a sample of monoenergetic
jets of energy E, entering the calorimeter. The energies measured by the detector

will be different than Ej because of fluctuations in the energy detection process and
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in the particle showers development. In the D@ calorimeter the measured energy will
be “smeared” around the true value, E,, by a Gaussian (because of the hermeticity
and linearity of the D@ calorimeters) with a finite width. Since the HT3 spectrum
is a falling distribution in the ranges where T} is measured, the smearing will result

in more events migrating to higher HT3 values than vise versa (see Figure 7.9).

m "True" "Observed"

Eas
mAR

<

Figure 7.9: Cartoon of the effects of the energy resolutions onto the HT'3 distribution.

More events migrate from lower to higher HT3 bin due to its falling distribution.

The effects of the energy resolution onto the T} cross section were studied by
smearing with a Gaussian function the transverse energy of a sample of HERWIG
particle level jets. The width of the gaussian corresponds to the resolutions de-
rived in chapter 6. Figure 7.10 shows the comparison between the particle level T&
distributions with and without E7 resolution smearing.

Although the changes on the transverse momentum of the jets could affect the
T} value itself (principally if a swap in the Erordering is produced), the small
differences observed in Figure 7.10, of around 5%, are mostly due to the migration
of events from HT3 bins, as explained above.

Position Resolutions
In the case of the 7 resolutions, the smearing process would affect 7% by changing

the number of events that pass the 1 requirements. Since the resolutions are small
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Figure 7.10: The full circles correspond to the particle level distribution. For the

open ones the events have been smeared by Er resolutions.

and the position is smeared randomly, the effect is negligible, as it can be observed

in Figure 7.11.

With respect to the ¢ resolutions, the smearing will produce a migration of events
between T bins. This effect is important for Ty close to 1 where events move from
very high T% bins to lower ones. Consider for example two jets in a back-to-back
configuration. If their relative position is modified from A¢ = 7 to A¢p =7 — 9
taking for example § = 0.04, a value of the order of the ¢ resolutions, the thrust value
changes from 1 to 1 — T¢ = 2107*. This is illustrated in Figure 7.12. Events which
pass the HT3 cut have been smeared by ¢ resolutions and a profile plot was done
as a function of 1 — T} (unsmeared). The spread in the high T} bins indicates that
we cannot measured the cross section below 10~*. We can only provide an upper
limit. Also new bins need to be defined when T is close to that value, otherwise

big uncertainties will result.
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7.3.2 Unsmearing

In order to compare the experimental results with theoretical predictions, detector
resolutions effects have to be either included in the theory (i.e., to “smear” the
theory) or removed from the data (“unsmearing”). The option of smearing the
theory was ruled out due to its break down when 7% — 1, discussed in section 1.5.
Furthermore, unsmearing the data yields a true physical measurement, which can
be compared to any theoretical prediction. A method which has been often applied
at D@, consists on accepting the hypothesis that it exists a “true” distribution of
the variable under study which can be approximated by an ansatz function. By
smearing the Ep with a gaussian of width equal to the jet momentum resolution, (in
our case, the ones obtained in chapter 6), the resulting function should describe well
the observed data. Finally, the unsmearing correction is obtained by taking bin—by—
bin the ratio between the original hypothesis and the smeared function. This ratios
are called unsmearing factors [39].

In order to unsmear the T% cross sections, we have applied a procedure based on
the method described above. However, to free ourselves from any functional form
we have implemented the method of the “unbiased binned correction factors” [45].
Instead of selecting a particular function, we chose to use the MC particle level Ty
distributions as an ansatz, which we will show that once they are smeared, they
agree with data. The next sections are devoted to describe in detail this unsmearing

method.

7.3.2.1 Comparisons between MC and Data distributions

In order to be able to use the MC particle level T¢ distributions as an ansatz, it has
to be shown that they correctly describe the experimental cross sections once they
are smeared by position and energy resolutions. We have compared the measured

T} cross sections with HERWIG particle level T¢ distributions, smeared by Er, ¢
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and 7 resolutions, and normalized to data. As it can be seen in the top plots on
Figures 7.13 and 7.14, there is a good agreement over almost the whole 7% range,
except at low values of the variable. In these regions, we reweighted the MC events,
by a factor calculated as the ratio Data/MC, using an iterative process. The result

can be observed in the bottom plots on Figures 7.13 and 7.14.
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Figure 7.13: Top: Data comparison with Herwig particle level distributions smeared
by Er, n and ¢ resolutions for the lowest HT3 bin. Bottom: MC events have been

reweighted in order to make the smeared distribution agree with data.

7.3.2.2 Correction Factors

Having shown that the MC reweighted T% distributions can be used as an ansatz, the
correction factors, for each T} bin, were obtained as the ratio between the unsmeared

and smeared MC distributions. The results are presented in Figure 7.15-7.16 for a
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Figure 7.14: Top: Data comparison with the Herwig particle level distribution
smeared by Er, n and ¢ resolutions for the lowest HT3 bin. Bottom: MC events

have been reweighted in order to make the smeared distribution agree with data.
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linear and logarithmic 1 —T% scale. The correction is extracted point to point except
in the regions shown in the Figures, where fits have been done to smooth out the
statistical fluctuations. In linear scale the correction is dominated by the smearing
due to the Er finite resolution which, as we have mentioned, is around 5%. The
¢ resolutions affect basically only the first bins by moving events from higher to
lower T} values, canceling partially the effect of the Ersmearing for the first bin
and enhancing it in the second one. In the logarithmic scale the main effect is the
migration of events due to the ¢ resolutions. At very high Ty values, the correction
is greater than one since the smeared distribution loses events in these bins, which
move to lower 7% ones. Thus, the correction in these bins is less than one, by almost
20%. As T decreases the effect of ¢ resolutions is less important because bins are
larger and there is very little migration from one bin to another. The remaining

effect is due to Er resolutions.

Systematic Errors

The effect of the ¢ resolutions is so important in the 7% — 1 limit, that large
variations in the shape of the proposed ansatz could result, after smearing, in a
distribution that also agrees with data within errors. Thus, since we do not know
to what extent HERWIG simulates the actual thrust cross section, we introduce an
error to take proper account of the uncertainty on the ansatz. With this purpose we
developed the following method. We have allowed the number of generated events
in each of the ten bins of the logarithmic plot to vary freely, under the constraint
that, within errors, the respective smeared distributions agree with the data. This is
implemented by assigning a weight (14 y;) to the events in each bin, where {y; = 0}
corresponds to the nominal HERWIG distribution shown in Figure 7.14 (bottom plot).
For each set {y;} the corresponding smeared distribution is obtained and the x?

difference to the nominal distribution computed. We find that x*(yi,¥2,---, Yn)
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has a N-variable paraboloid dependence around xZ.. (see Figure 7.17), where the
quadratic coefficients correspond to the inverse of the covariance matrix on the

coefficients {y;} that parametrize the arbitrary shape of the ansatz function:
X (Y) = Xinin + (y = 9)" Cov™(3) (y — 9) (7.2)

The error on the unsmearing factor (F') is then propagated as

OF OF
AF)? = — Cov(y;, y; 7.3
where the ‘35 derivatives are calculated numerically.

Figure 7.18 shows the results of the unsmearing factor for the lowest HT3 bin.
The error bars correspond to the uncertainty on the ansatz. The size of the errors
increases from around 7% at 1 —T¢ = 1 x 107! to around 85% at 1 —T¢ =1 x 107%.
However, there is a strong correlation point to point in 1 — 7%, which introduces a
stringent constraint on the shape of the correction. This is illustrated in Figure 7.19.

Besides the ansatz uncertainty, there is another contribution due to the angular
and the Erresolutions errors. In order to account for these, we have calculated
Thrust by smearing the generated HERWIG distribution with the high and low cor-
rections for each of the three components. The E; and 7 resolutions introduce an
error smaller than 0.5% and have been neglected. The effect of the ¢ resolutions is
shown in Figures 7.20-7.21, for a logarithmic and linear 1 — 7T scale, where the frac-
tional difference between the high (low) unsmearing factors and the nominal ones
are plotted. The errors are quite symmetric, the largest between the two in each
point has been used in the subsequent calculations. This error is then propagated

to the unsmearing factor using equation 7.3.
Statistical errors

The statistical error was modified to take into account the fluctuations produced

by using different sequences of random numbers in the HERWIG event generation
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between the two bins. The plot corresponds to N-paraboloid fit in equation 7.2.
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process !. The original sample was divided in 30 smaller ones repeating for each of
them the process of finding the unsmearing factors. Thus, a distribution of factors,
consisting in 30 values, is obtained for each T% bin and the uncertainty is defined as
the error of the mean of this distributions.

In the linear case, the factors were fitted with a constant function, however, due
to the large statistical fluctuations, the uncertainty was determined from a linear fit
to the points.

Final errors are listed in the next chapter where a summary of all experimental

uncertainties is presented.

1To compensate for the lack of statistics in the gaussian smearing process, events have been

reused.
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Chapter 8

Final Results and Comparison to

Theory

This chapter presents the final results for the differential cross section as a function
of dijet transverse thrust, which are derived from the measured distributions (Fig-
ures 7.1 and 7.2) after applying the unsmearing corrections.

Figures 8.1 and 8.2 show the cross section for each HT3 bin, as a function of 1 — T%
in linear and logarithmic scales, respectively. The numerical values along with the
statistical uncertainties are summarized in Tables 8.1-8.4.

The experimental errors associated with the measurement, each of which was an-
alyzed in the previous chapter, are presented in the first section, while in the sec-
ond we compare the final cross section to the NLO (JETRAD) and NLO three jet
(NLOJET++) perturbative QCD predictions. Differences between data and theory are

first qualitatively discussed and then a quantitative y? hypothesis test conducted.
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HT3 bin.
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Bin Range | Cross Section * Statistic (nb) | Cross Section + Statistic (nb)
TS HT3: [160-260] GeV HT3: [260-360] GeV
0.00-0.01 (2.31 £ 0.03)x10° (1.72 £ 0.02)x10?
0.01-0.02 (3.28 £ 0.10)x10? (2.09 £ 0.07)x10!
0.02-0.03 (1.77 £ 0.08)x10? (1.06 + 0.05)x 10!
0.03-0.04 (1.18 + 0.06)x10? (6.95 £ 0.04)x10°
0.04-0.05 (8.38 £ 0.52)x10! (4.19 £ 0.03)x10°
0.05-0.06 (5.74 + 0.43)x10! (3.27 £ 0.03)x10°
0.06-0.07 (4.35 £+ 0.37)x10! (2.63 £+ 0.03)x10°
0.07-0.08 (3.20 £ 0.32)x 10" (2.04 £+ 0.02)x10°
0.08-0.09 (2.60 £ 0.29)x10! (1.74 £ 0.02)x10°
0.09-0.10 (2.22 £ 0.26)x 10" (1.10 £ 0.02)x10°
0.10-0.12 (1.29 + 0.14)x 10! (6.26 + 0.89)x107*
0.12-0.14 (9.36 + 1.21)x10° (3.83 £ 0.70)x107*
0.14-0.16 (4.92 £ 0.88)x10° (3.32 £ 0.65)x10~ !
0.16-0.18 (4.92 £ 0.88)x10° (2.04 £ 0.51)x107*
0.18-0.20 (3.17 £ 0.71)x10° (1.02 + 0.36)x10~!
0.20-0.24 (1.66 £ 0.36)x10° (5.75 &+ 1.92)x 102
0.24-0.28 (1.51 £ 0.35 )x10° (4.47 + 1.69)x 1072

Table 8.1: Ty cross sections for two different HT3 bins.
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Bin Range | Cross Section + Statistic (nb) | Cross Section + Statistic (nb)
T} HT3: [360-430] GeV HT3: [430-700] GeV
0.00-0.01 (2.12 £ 0.02)x 101 (9.08 £ 0.11)x10°
0.01-0.02 (2.04 £ 0.06)x10° (8.20 £+ 0.32x107!
0.02-0.03 (1.08 £ 0.05)x10° (4.18 + 0.23x107*
0.03-0.04 (6.78 & 0.38)x 10" (2.92 4+ 0.19x10~"
0.04-0.05 (4.57 + 0.31)x10~* (1.72 £ 0.14x107*
0.05-0.06 (3.67 + 0.28)x 101 (1.21 £ 0.12x10°*
0.06-0.07 (2.51 4+ 0.23)x10* (9.13 4+ 1.08x102
0.07-0.08 (1.55 4+ 0.18)x 10~ (4.76 £+ 0.78)x 1072
0.08-0.09 (1.01 & 0.14)x 1071 (3.99 £ 0.72)x 1072
0.09-0.10 (9.67 &+ 1.44)x10~2 (3.85 4 0.70)x10~2
0.10-0.12 (5.58 + 0.77)x10~2 (3.02 4+ 0.44)x10~2
0.12-0.14 (4.40 £ 0.69)x 102 (1.35 £ 0.29)x 102
0.14-0.18 (1.13 4+ 0.25)x10~2 (4.18 + 1.16)x 1073
0.18-0.22 (6.98 4 1.94)x1073 (1.29 4+ 0.64)x1073
0.22-0.28 (2.51 4 0.95)x1073 (1.07 4+ 0.48)x1073

Table 8.2: T cross sections for two different HT3 bins.

Bin Range | Cross Section + Statistic (nb) | Cross Section + Statistic (nb)
1-T¢ HT3: [160-260] GeV HT3: [260-360] GeV
10—4-0 _ 19—30 (7.39 £ 0.16)x 10° (6.31 £ 0.13)x 107!
1030 — 1024 (1.10 + 0.02) x 10 (6.75 + 0.16)x 10~
1024 — 10-20 (1.21 + 0.03)x 10 (6.91 + 0.20)x10~*
1020 — 1018 (1.18 + 0.04)x 10 (6.74 % 0.28)x10~
10-1-8 —10-1-6 (9.35 & 0.38)x10° (6.91 £ 0.29)x 1071
10-1-6 — 1014 (9.77 £ 0.39) x 10° (5.49 £ 0.26)x 10~
10-14 — 10-12 (7.85 + 0.35)x 10° (4.10 £ 0.23)x 107"
10-12 — 1010 (5.63 £ 0.30)x 10° (3.44 £ 0.21)x 10~
10-10 _ 1004 (1.42 + 0.09)x 10° (6.40 £ 0.52)x 102

Table 8.3: T¢ cross sections for two different HT3 bins.
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Bin Range | Cross Section + Statistic (nb) | Cross Section + Statistic (nb)
1- T2 HT3: [360-430] GeV HT3: [430-700] GeV
1040 — 10—30 (7.32 £ 0.12)x10~2 (3.24 + 0.06)x 102
10730 — 10— 24 (7.35 + 0.15)x 102 (2.84 + 0.07)x107?
10-24 _ 10-20 (7.65 £ 0.19)x 102 (2.81 £ 0.09)x 1072
10-20 — 1018 (6.85 £ 0.27)x10~2 (2.65 £ 0.13)x 102
10-1-8 _ 10-16 (6.40 £ 0.26)x 102 (2.62 + 0.13)x1072
1016 — 10~ 14 (5.65 + 0.25)x 102 (2.36 £ 0.12)x 102
10-14 — 1012 (4.82 + 0.23)x 102 (1.69 + 0.11)x 102
10-12 — 10-10 (2.54 + 0.16)x 102 (8.94 + 0.76)x 103
10~1.0 — 10-0-4 (4.33 £ 0.37)x1073 (2.01 £+ 0.21)x1073

Table 8.4: Ty cross sections for two different HT3 bins.
8.1 Experimental Uncertainties

The experimental uncertainties due to the data selection efficiencies, luminosity de-
termination, the low Er jets effect (noise and reconstruction inefficiencies), the jet
momentum scale (JMS), position bias and unfolding corrections were discussed in
detail in the previous chapter. This section presents a summary which includes the
magnitude of each error along with the total uncertainties calculated as the quadra-
ture sum of all contributions. Figures 8.3-8.4 show the fractional uncertainties in
percentage for the lowest and highest HT3 bin, excluding the unfolding error, as
a function of T} for logarithmic and linear scales. The total errors range between
15 — 25%. The JMS and the Luminosity uncertainties dominate except for high
T} values where the errors due to the unfolding method have a large impact. It
is in this region where the migration of events between T} bins due to the finite ¢
resolution becomes important. The unfolding error is presented separately in Fig-
ures 8.5 and 8.6. The bars in the plots correspond to the quadrature sum of the

statistical errors and the systematics due to the uncertainty on the ansatz and the
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angular resolutions. It is the uncertainty on the ansatz which dominates at high
T%, reaching around 85% for the lower HT3 bin. However, since there is a strong
negative correlation point-to-point in 1-7%, the freedom for the thrust distribution to

fluctuate within the systematic error band is severely constrained (see Figure 7.19).

160 < HT3 <260

<X

Fractional Errors (%)
e ® O«X

X9 e @ XX
X9 o0 @ X
¥ e @ M X
X0 e @0 X
X0 e @ O X
¥ <© e @ Ctx
X< e @ Cdx
X< e @ Ot x
*¥<© e @ O«X
X< o0 @ O«X
* €O

<40 @0 @ O«X
*X<40 e @ O«xX
<40 o0 @ O«X
*X<40 @0 @ O <X

u“‘X“bu‘ﬂ“‘[‘.ué“%‘“uu T
¥4 O eJ® O

&
s
T

O Low ET jets ® Angular Bias + Effic.

*

r Total
O Luminosity v JMS
- L L L | L | L L L L | L L L L | L L L L |

0.05 0.1 0.15 0.2 0.25 0.3

Fractional Errors (%)

= [

o o o

T T T

< Do e ]

<© « [ (¢, I3
¥ <© e OO e o X
¥ <© o X
¥ <© [, I3
¥ <© [, I3
¥ <© e O e ot ¥
¥ <© o X
¥ <© o X

10" 10 10~ 10~
1-T

Figure 8.3: Fractional experimental uncertainties as a function of 1-77 in linear and
logarithmic scale. The total errors correspond to the quadrature sum of each of the
contributions shown in the plots (it does not include the contribution from the error

on the unsmearing factors).
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on the unsmearing factors).
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Figure 8.6: Unsmearing factors as a function of 1-T. A constant fit has been done

from T} = 0.04. The band corresponds to the unsmearing factor error in this region.
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The errors sources relevant to this analysis, with their degree of correlation, are
listed in Table 8.5. The uncertainties due to each component of the jet momentum
scale correction were determined from the ratio between the nominal 77 distribution
and the one calculated by varying each contribution within its error. The different
errors together with their degree of correlation and the statistical uncertainties are

combined into a full error matrix, which is available on the web [46].

Error Source Correlation Order of | Correlation
in T Magnitude in HT3

Statistical uncorrelated 0.5 —25% uncorrelated

Luminosity correlated 8% correlated

Luminosity Matching

Jet_30 correlated 5% correlated
Jet_50 correlated 3% correlated
Resolution + Unfold anti-correlated | up to 85% | partially corr.
Select Efficiencies correlated 3.5% partially corr.
Mom Scale Response correlated 10 — 22% | partially corr.
Mom Scale Offset Errors correlated 2 —10% correlated

Table 8.5: Sources of errors of the cross section and their degree of correlation.

8.2 Data and Theory Comparison

This section presents a comparison between data and the theoretical predictions
given by JETRAD and NLOJET++ . As it was discussed before, a prediction of order
O(c?), such as JETRAD, can only reach the value T¢ = v/3/2 since it has at most

S

three partons in the final state. The LO prediction for the variable in the range
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V2/2 < Tt < +/3/2, corresponds to a calculation of order O(a?). This prediction is

provided by NLOJET++ , a NLO three jet generator.

8.2.1 Comparison with NLO perturbative QCD predictions

Data T} distributions (D) and NLO JETRAD predictions (7') are shown in Fig-
ures 8.7-8.10 in logarithmic and linear scale. For this comparison we have used the

CTEQ4HJ PDF and set ur = pr = 4 = pr,,.. /2

[
o
IS

w

160 < HT3 <260

-
o
T

* Data

do/dT (nb)

— Jetrad

(1-T) do/dT (nb)

Figure 8.7: Data comparison with NLO JETRAD prediction, for the first HT3 bin
(with CTEQ4HJ, Sy = 1 GeV? and p = pg,,./2). Only statistical errors are
plotted.

Data and theory agree quite well except at both ends of the T} range. It is
interesting to note that the disagreement at high thrust values seems to diminish as

HT3 increases.
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Figure 8.8: Data comparison with NLO JETRAD prediction, for the second HT3
bin (with CTEQ4HJ, s, = 1 GeV? and u = pr,,,./2). Only statistical errors are
plotted.
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Figure 8.9: Data comparison with NLO JETRAD prediction, for the third HT3 bin
(with CTEQ4HJ, spin = 1 GeV? and p = pr,,./2). Only statistical errors are

plotted.
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Figure 8.10: Data comparison with NLO JETRAD prediction, for the fourth HT3
bin (with CTEQ4HJ, s, = 1 GeV? and u = pr,,,./2). Only statistical errors are
plotted.
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A more quantitative measure is given by the x? test:
x> =) (D; —T;) Cov;;' (D; — T)) (8.1)
ij

where D, —T; is the difference between the measured cross section and the theoretical
prediction in the ¢-th bin, and Cowv;; is the full covariance matrix of our measure-
ments. It is calculated from the absolute errors and the fractional ones which have
been multiplied by a fit to the data in order not to introduce a statistical compo-
nent to the systematic errors [47]. Figures 8.11-8.18 show the linear differences, ie,
(D —T)/T, between data and theoretical predictions. The bars correspond to the
statistical errors while the bands are the systematic ones. Tables 8.6-8.13 show the
results of the test.

The results in linear scale indicate that there is agreement with the NLO JETRAD
prediction for 1 — 77 in the range [0,0.12], with x? probabilities that vary between
6 and 76%. Above 1 — T¢ = 0.12 the x? comparison worsens up quickly. Higher
order calculations are therefore important near and above the theoretical limit of
T: =/3/2.

In logarithmic scale, there is agreement for 1 — 7% in the range [1073,10712].
The x? test fails completely when extending the range down to 10~ Although
data and theory are within the systematic error band in this region, the x? test is
not satisfied because the dominant systematic error, due to the unsmearing ansatz,
shows a strong negative correlation from bin to bin.

In the 7} — 1 limit fixed order predictions were expected to fail. The results
show that the variable is indeed sensitive to the effect of soft and collinear radiation
emission. This disagreement diminishes as HT3 increases. At large HT3, the value
of ar; decreases and higher order contributions, which are of the form (c, In*(1—T))",

are therefore expected to be smaller.
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Figure 8.11: Data comparison with NLO JETRAD prediction (¢ = pr,,,/2). The
bars correspond to the statistical errors while the bands are the systematic ones.

They are basically fully correlated.

Thrust Range (1-T) PDF x? | ndof | Prob(%)
0.-0.10 CTEQ4HJ | 10.19 | 10 42.40
0.-0.12 CTEQ4HJ | 12.98 | 11 29.46
0.-0.14 CTEQ4HJ | 41.52 | 12 0.004

Table 8.6: Results of the x? test between data and JETRAD predictions, for different

ranges in T .
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Figure 8.12: Data comparison with NLO JETRAD prediction (4 = pr,,./2). The

bars correspond to the statistical errors while the bands are the systematic ones.

Thrust Range (1-T) PDF x? | ndof | Prob(%)
10-24 — 10712 CTEQ4HJ | 2.69 5 74.76
10730 — 10712 CTEQ4HJ | 3.76 6 70.9
10724 — 10710 CTEQ4HJ | 9.93 6 12.76
10749 — 1012 CTEQ4HJ | 95.08 | 7 0.

Table 8.7: Results of the x? test between data and JETRAD predictions, for different

ranges in T .

160



(O-T)T

CTEQ4HJ

Al 260 < HT3 <360

0 0.05 0.1
1-T
= 1T
T_T L
o | CTEQ4HJ
0s +
0?!?,,,,,,,,—,&,,,,,,,,,*,,”,{ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
051 260 < HT3 <360
_17 R I R I
0 0.025 0.05 0.075 0.1
1-T

Figure 8.13: Data comparison with NLO JETRAD prediction (with CTEQ4HJ and
i =pr,../2). The bars correspond to the statistical errors while the bands are the

systematic ones. They are basically fully correlated.

Thrust Range (1-T) PDF x? | ndof | Prob(%)
0.-0.10 CTEQ4HJ | 10.20 | 10 42.31
0.-0.12 CTEQ4HJ | 10.88 | 11 45.33
0.-0.14 CTEQ4HJ | 22.85 | 12 2.9

Table 8.8: Results of the x? test between data and JETRAD predictions, for different

ranges in T .
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Figure 8.14: Data comparison with NLO JETRAD prediction (with CTEQ4HJ and
i = pr,../2). The bars correspond to the statistical errors while the bands are the

systematic ones.

Thrust Range (1-T) PDF x? | ndof | Prob(%)
10724 — 10712 CTEQ4HJ | 2.12 | 5 83.2
10730 — 10712 CTEQ4HJ | 8.36 | 6 21.29
10724 — 10710 CTEQ4HJ | 833 | 6 21.49
10=40 — 10712 CTEQ4HJ | 81.68 | 7 0.

Table 8.9: Results of the x? test between data and JETRAD predictions, for different

ranges in T .
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Figure 8.15: Data comparison with NLO JETRAD prediction (with CTEQ4HJ and

i =pr,../2). The bars correspond to the statistical errors while the bands are the

systematic ones. They are basically fully correlated.

Thrust Range (1-T) PDF x? | ndof | Prob(%)
0.-0.10 CTEQ4HJ | 6.96 10 72.92
0.-0.12 CTEQ4HJ | 7.39 11 76.67
0.-0.14 CTEQ4HJ | 29.49 | 12 0.33

Table 8.10: Results of the x? test between data and JETRAD predictions, for different

ranges in T .
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Figure 8.16: Data comparison with NLO JETRAD prediction (with CTEQ4HJ and
i = pr,../2). The bars correspond to the statistical errors while the bands are the

systematic ones.

Thrust Range (1-T) PDF x% | ndof | Prob(%)
10724 — 10712 CTEQ4HJ | 1.77 ) 87.9
10739 — 10712 CTEQ4HJ | 3.07 6 80.
10724 —10"% | CTEQ4HJ | 2.08 | 6 91.2
10=+0 — 10712 CTEQ4HJ | 62.15 7 0.

Table 8.11: Results of the x? test between data and JETRAD predictions, for different

ranges in Ty .
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Figure 8.17: Data comparison with NLO JETRAD prediction (with CTEQ4HJ and
i =pr,../2). The bars correspond to the statistical errors while the bands are the

systematic ones. They are basically fully correlated.

Thrust Range (1-T) PDF x? | ndof | Prob(%)
0.-0.10 CTEQ4HJ | 12.99 | 10 22.42
0.-0.12 CTEQ4HJ | 18.77 | 11 6.53
0.-0.14 CTEQ4HJ | 28.26 | 12 0.51

Table 8.12: Results of the x? test between data and JETRAD predictions, for different

ranges in T .
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Figure 8.18: Data comparison with NLO JETRAD prediction (with CTEQ4HJ and
i = pr,../2). The bars correspond to the statistical errors while the bands are the

systematic ones.

Thrust Range (1-T) PDF x% | ndof | Prob(%)
10724 — 10712 CTEQ4HJ | 1.58 | 5 90.3
10730 — 10712 CTEQ4HJ | 4.75 6 07.6
10724 — 10~ | CTEQ4HJ | 5.44 | 6 48.9
10=+0 — 10712 CTEQ4HJ | 27.69 7 0.025

Table 8.13: Results of the x? test between data and JETRAD predictions, for different

ranges in Ty .
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8.2.1.1 Dependence of theoretical predictions on PDF and renormaliza-

tion scale

In order to generate the NLO QCD prediction, the parton distribution function
(PDF) and the renormalization and factorization scales (ugr and pr) need to be
chosen. The dependence on the PDF was tested using different distributions. Fig-
ures 8.19 shows that the theoretical uncertainty is less than 5% for the whole kine-
matic range.

Truncation of the QCD predictions at some order introduces a dependence on the
renormalization scale. This dependence should reduce as more terms are included
in the perturbative calculation. In this case, we have used 3 different p values.
As it is shown in Figures 8.20, a change on u does not distort the shape of the
distribution, although it affects the normalization. The variation with u for any
value of T¢ different from 1 is due only to the oy dependence on the scale since
JETRAD prediction corresponds to a L.O calculation. The functional dependence at

two loops is a;(p?) = bln;}2 E [1 — blbl{‘rllz#/z/<2)‘2], where ) is the order of magnitude

at which a; becomes strong [48]. The ratio with u = p7/2 and p = pr is consistent
with what it is shown in the plot (recall that the order of the calculation is o). For
T} = 1, where the prediction is NLO, the dependence on the renormalization scale

partially cancels between the tree level and 1-loop 2 — 2 parton diagrams.
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Figure 8.19: Dependence of JETRAD T3 distributions on the PDF for the second

HT3 bin. The open circles correspond to the ratio cteqdm/cteqdhj.
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8.2.2 Comparison with NLO three jet perturbative QCD

predictions

This section is devoted to the comparison with the recently developed NLO 3 jet
generator, NLOJET++ . His author has kindly provided us with the T} cross section
prediction using our same cuts and binning which we have compared with our results
and also with JETRAD cross sections. It can be observed from Figures 8.21- 8.24,
which present the cross sections in logarithmic and linear scales, that the NLO 3-
jet calculation indeed provides a prediction that extends to the whole T} range.
The bin that contains the T¢ = 1 point is excluded. It is clear from the plots in
logarithmic scale that NLOJET++ cross sections are smaller both with respect to the
ones provided by JETRAD and to the measured distributions. This effect diminishes
as HT3 increases.

The fact that we use HT3 to estimate the energy scale of the event could be
the reason that the O(c}) prediction is lower than the O(a?) one. In this case,
HT3 is equal to the transverse energy involved in the hard interaction, since they
have at most three partons in the final state. When this observable is calculated
for NLOJET++ generated events, HT3 could be smaller than the available transverse
energy if four jets are obtained in the final state. The probability for this to happen
decreases with HT3. At high energies radiated partons tend to be more collimated
and do not form a separate jet. Besides, «s decreases with the energy scale of the
hard interaction and therefore it becomes harder to produce four partons in the final
state. This ay; dependence with the energy also implies that higher order corrections
are smaller as HT3 increases.

For a clearer comparison, linear differences, (D — T')/T, between data and the-
oretical predictions are presented in Figures 8.25-8.28 while Tables 8.14-8.17 show

the results of a x? test.

Since the program is not available for us to run, we could not study the depen-
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dence neither on the PDF nor on the renormalization scale which we expect to be

important above 7% = v/3/2 where the prediction is again LO.
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Figure 8.21: Data and NLO three jets NLOJET++ cross sections. JETRAD predictions

are also shown for comparison. Only statistical errors are plotted.
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Figure 8.22: Data and NLO three jets NLOJET++ cross sections. JETRAD predictions

are also shown for comparison. Only statistical errors are plotted.
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Figure 8.23: Data and NLO three jets NLOJET++ cross sections. JETRAD predictions

are also shown for comparison. Only statistical errors are plotted.

173



o
= 10 430 < HT3 <700
% e Data
© 1 L
— Jetrad
-1
10 © NLOJET++
,2 r
10
3T
10 3 :ﬁﬂi
i —_—O—
10" e
0 0.1 0.2 0.3
1-T
9
= 430 < HT3 <700
o L
5 0.04 e Data
©
: — Jetrad
a) .
S+ ‘ © NLOJET++
0.02
0 l l Lot 57\\
10° 10 107 10"
1-T

Figure 8.24: Data and NLO three jets NLOJET++ cross sections. JETRAD predictions

are also shown for comparison. Only statistical errors are plotted.
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Figure 8.25: Data comparison with NLO 3 jets NLOJET++ prediction. The bars

correspond to the statistical errors while the bands are the systematic ones.

Thrust Range (1-T) | x® | ndof | Prob(%)

0.01-0.12 6.10 | 10 80.67
0.01-0.14 6.78 | 11 81.66
0.01-0.28 15.15 | 16 51.36

10724 — 10712 319 | 5 67
6 39.5

10740 — 10712 28.86 | 7 0.01
9

107+0 — 10704 30.9 0.03

10730 — 1012 6.26

Table 8.14: Results of the x? test between data and NLOJET++ predictions, for

different ranges in 77 .
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Figure 8.26: Data comparison with NLO 3 jets NLOJET++ prediction. The bars

correspond to the statistical errors while the bands are the systematic ones.

Thrust Range (1-T) | x® | ndof | Prob(%)

0.01-0.12 10.63 | 10 38.7
0.01-0.14 11.16 | 11 43
0.01-0.28 16.75 | 16 40.2

10724 — 10712 200 | 5 84.9
6 88.48

10749 — 10712 825 | 7 31.10
9

10740 — 10704 16.37

10730 — 1012 2.35

2.6

Table 8.15: Results of the x? test between data and NLOJET++ predictions, for

different ranges in 77 .
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Figure 8.27: Data comparison with NLO 3 jets NLOJET++ prediction. The bars

correspond to the statistical errors while the bands are the systematic ones.

Thrust Range (1-T) | x*> | ndof | Prob(%)
0.01-0.12 7.19 10 70.74
0.01-0.14 9.32 11 59.24
0.01-0.28 11.28 | 14 66.4

1074 —107'2 319 | 5 67.07
10739 — 10712 3.19 6 78.46
10749 — 10712 3.89 7 79.24
10749 — 10704 3.9 9 91.78

Table 8.16: Results of the x? test between data and NLOJET++ predictions, for

different ranges in 75 .
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Figure 8.28: Data comparison with NLO 3 jets NLOJET++ prediction. The bars

correspond to the statistical errors while the bands are the systematic ones.

Thrust Range (1-T) | x® | ndof | Prob(%)

0.01-0.12 13.1 10 21.81
0.01-0.14 13.76 | 11 24.65
0.01-0.28 14.38 | 14 42.2

10724 — 10712 2.44 ) 78.55
6 60.40

10740 — 10712 4.54 7 71.59
9

107+0 — 10704 8.79 45.68

107390 — 10712 4.54

Table 8.17: Results of the x? test between data and NLOJET++ predictions, for

different ranges in 77 .
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The x? probabilities indicate that data and NLOJET++ predictions agree in the
range [0.01-0.28] and the trend for the data to be systematically above the predic-
tion is well within the experimental systematic uncertainties that, to first order,
correspond to a global scale factor.

In the logarithmic scale, the agreement extends up to 10~ for the two highest
HT3 bins but only up to 102 for the two lowest ones, indicating the importance of
resummation corrections at low HT3.

The difference observed between the prediction and data, which is of order of
30% at low HT3, has been already seen at D@, in [42]. The inclusive jet cross section
measured using k; was found to be above the NLO prediction (which in this case is
of O(a?)) and the cone cross section at low pr . This effect is not fully understood.
On one hand, a 5% (2%) difference in jet prwas measured between cone and k&, jets
at 90 GeV (250 GeV), which would explain 25% of the observed discrepancy between
their corresponding cross sections (o ~ pp~°). The fact that k; are more energetic
that the cone ones, especially at low py, can be partially explained as a consequence
of how hadronization affects the different kind of jets. MC studies have shown that
particle k£, jets are more energetic than their partners at the parton level, while for
cone it is the other way around. This effect can however explain only 5% of the

excess seen at low pr between the theoretical prediction and data for &, .

8.3 Conclusions

We have presented the first measurement of the Dijet Transverse Thrust cross section
in a pp collider at /s = 1.8 TeV, using the D@ detector. The Thrust variable,
previously measured in ete™ and ep experiments, has been adapted to overcome
the noisy nature of hadron colliders. It is measured using only the two leading jets
in the event and presented in four HT3 bins. This observable has proved to be an

excellent tool to test not only NLO perturbative QCD but also predictions of higher
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orders since the LO contribution for the range v/2/2 < T} < +/3/2 is of order o?.
This is the first measurement with this characteristics at D@.

We find good agreement with fixed-order O(a?) perturbative QCD predictions,
except at high T}, where resummation corrections are expected to be important, and
below T}~ +/3/2, where the leading order diagrams contributing to 7% are O(a?).
The data show a very good level of agreement with a recent Next-to-Leading pQCD
three jet generator which covers the full T} range, except for the 7% = 1 point since

the two loop 2 — 2 parton diagrams are not yet implemented in the theory.
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Appendix A

Calculating Thrust

The algorithm implemented to calculate Thrust is based on Ref. [35], which has been
developed to reduce the calculating time, in experiments such as e™e~ colliders, from
2N where N is the number of particles involved, to N2. The problem to solve is to
find the axis that maximizes Y, |p; - 7|. This can be done by taking a set of signs s;
fori =1,N and s; = 1 or —1, and forming for all sign combinations | >, s; p;|. It can
be demonstrated that maxs,;y| X, si pi| = max Y, [p; - 7| and that the thrust axis is
along the direction Y, s; p;. The author proposes a method to reduce the number of
combinations and therefore the computing time. However, when two particles are
considered there are only two possible combinations. Let’s analyze this case.

The numerator of equation 1.8 reduces to:
mazg (|pz, cos 0 + py, sin @ + |p,, cos @ + py, sin 6)) (A.1)

where ¢ indicates the direction of the unit vector n. By defining s1(0) = sign(pwl(z) cos 6+

Py, 5 SID 6), equation A.1 can be written as:

mazg [y (Pg; €0S 0 + py, sin b)) + so (ps, cos @ + py, sinb)] = (A.2)

maxg [(Slpm + 52pm2) cos 0 + (Slpyl + 32py2) sin 0] (A3)
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This is equivalent to the scalar product between n and a vector py whose compo-
nents are the four possible combinations po, = s1pz, + S2Ds, and poy = s1py, + S2Py,-

It is clear that the maximum is attained when the direction of 7 is the same as
po- Thus tan @ = pg,/po, and equation A.3 transforms to:

2
Mags, 53\ (Pox)? + (Poy)? = mas, 5| 3 5] (A.4)
1

So, the four combinations give only two possible solutions by adding or subtract-
ing the vectors p; and p3. The maximum is obtained when either the angle between
the vectors is 0° or 180° and the minimum when they are at 90°. In the first case

Thrust is equal to one. In the second one, T is given by:

¥

1+ ()2
Y L (A.5)

1+ 2
T

[t 1

The minimum Thrust is obtained when [pi| = |p3| and is equal to v/2/2. The

axis in this case is located at 45° between p; and p5.
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Appendix B

Luminosity Dependence Study

As it was explained in section 7.1, a luminosity study was performed in order to
analyze the global effect of various sources of systematics. The data sample for each
jet trigger was divided into two subsamples (of comparable statistic) of different
instantaneous luminosity. The integrated luminosities (L) of each subsample were
extracted from the PDB. Since the results of the PDB are not accurate for Jet_30
and Jet_50, several cross checks were done. Figures B.1-B.4 show the ratios between
the Ep spectra of the leading jet (etl) for the different subsamples of each trigger.
The fits were done from the value of etl where the triggers become fully efficient.
As it is explained in [38], no luminosity dependence is expected for the leading jet.
The same conclusion can be inferred from the fact that in all plots the ratio is flat,
otherwise, the relative effect should be different for high and low Er. In order to
extract the value of L, in the cases where the ratio fit is not consistent with unity,
a normalization factor was extracted for one of the subsamples (the high one). The
bottom plots present the ratios corresponding to HT3, for events that pass the etl
threshold, where the distributions have been normalized using the factor obtained
from the etl ratios. All curves were fitted with a constant function. The fits are flat

and consistent with unity.
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Figure B.1: Top: Ratio between the leading jet E7 spectra for two subsamples of
Jet_30 . Bottom: Ratio between the HT3 spectra, for the same subsamples, the

distributions have been normalized to account for inaccuracies on PDB results.
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Figure B.2: Top: Ratio between the leading jet E7 spectra for two subsamples of
Jet 50 . Bottom: Ratio between the HT3 spectra for the same subsamples, the

distributions have been normalized to account for inaccuracies on PDB results.

185



2
N 2/ndf 8297 /9
~. c
016 [ P 1.004 £ 0.192pE-01
14 F
12 F 4)
W?éf °© “—5 5
08 E o 9 \
0.6 ?
0,4;7 O
0.2 o
R R R RN BN BRI R R
09 50 100 150 200 250 300 350( 4)00
et1 (GeV
2
S b 2/ndf 1084 / 9 Jﬁ
~. C
16 E P 1.003 £ 0.2025E-0
1.4 ?
1.2 =
= o0 + | J
08 F SR ? T
0.6 ?
0.4 ?
02 E

0
200 250 300 350 400 450 500 550 600 650 700
HT3 (GeV)

Figure B.3: Top: Ratio between the leading jet E7 spectra for two subsamples of
Jet 85 . Bottom: Ratio between the HT3 spectra for the same subsamples, the

distributions have been normalized to account for inaccuracies on PDB results.
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