

Electroweak physics measurements at the LHC

for the Atlas and CMS collaborations

Mass of the top quark
Mass of the W boson

Introduction

- In SM, masses of top quark, W boson and Higgs boson are related through radiative corrections:
- Precise measurements of M_{top} and M_W allow
 - □ Consistency check of SM
 - ☐ Give hints of new physics
 - □ Constraint the mass of SM Higgs boson
- Up to date values:
 - \Box M_{top} = 172.6 ± 0.8 (stat.) ± 1.1 (syst.) GeV
 - \Box M_w = 80.398 ± 0.025 GeV
 - \Rightarrow M_H = 87⁺³⁶₋₂₇ GeV & M_H< 160 (190)GeV
- LHC = 10 days ⇔1 fb⁻¹, 1 year ⇔ 10 fb⁻¹ Challenge = systematics uncertainties
- Outline
 - Top quark mass measurements at LHC
 - W boson mass measurement at LHC
 - Conclusion

Top pairs at LHC

High center of mass energy 14 TeV High cross section 833 pb (NLO) High luminosity 10³³ to 10³⁴ cm²s⁻¹ A lot of events

Many different objects:

800 000 top pairs (1 fb⁻¹)

- Light jets
- •b jets
- •Missing E_t
- Leptons

Many sources of uncertainty:

- •Jet Energy Scale (JES)
- •ISR/FSR
- •Backgrounds
- Combinatorial background
- •b fragmentation...

Top pairs: decays

Top Pair Branching Fractions

Enormous background Huge combinatorics
10 ways to combine 6 jets
High BR $\approx 350~000~\text{for}~1~\text{fb}^{-1}$ Possible to reconstruct the

Good compromise

 \approx 250 000 evts for 1 fb⁻¹

Top mass: semileptonic channel (1/5)

CMS and and a second a second and a second and a second and a second and a second a

S/B ≈10

250 000 events for 1 fb⁻¹ with $S/B \approx 10^{-5}$ prior to any cut and selection

- Event selection
 - One and only one isolated lepton inside acceptance $(|\eta| < 2.5, p_t > 20 \text{ GeV } (\mu) \text{ or } p_t > 25 \text{ GeV } (e))$
 - ☐ Missing E_t > 20 GeV
 - ☐ At least 4 jets with p_t > 40 GeV
 - □ Among them exactly 2 which are b-tagged
- Backgrounds
 - □ Single top and ttbar fully hadronic (isolation) & dileptonic (1 lepton only)
 - □ W+jets (b-tagging) and Z+jets
 - ☐ Di bosons (low cross section)
 - □ QCD (missing E_t, lepton p_t)
- After lepton cuts QCD negligible and top all jets reduced by 2/3

Top mass: semileptonic channel (2/5)

W hadronic side, choice and in situ rescaling
 After selection of pairs in a mass range
 determined on 2 light jets events

$$\chi^{2} = \frac{\left(M_{jj} - M_{W}^{PDG}\right)^{2}}{\Gamma_{W}^{2}} + \frac{\left(E_{j1}(1 - \alpha_{1})\right)^{2}}{\sigma_{1}^{2}} + \frac{\left(E_{j2}(1 - \alpha_{2})\right)^{2}}{\sigma_{2}^{2}}$$

Gaussian fit + polynomial

$$M_{top} = 175.0 \pm 0.2 \text{ GeV}$$

 $\sigma_{top} = 11.6 \pm 0.2 \text{ GeV}$

Top mass: semileptonic channel (3/5)

Systematics

Systematic uncertainty	Effect on m _{top}
sources	
Light jet energy scale	0.2 GeV/%
b-jet energy scale	0.7 GeV/%
ISR/FSR	≈ 0.3 GeV
b fragmentation	≤ 0.1 GeV
Background	negligible

Most important source of uncertainty

- Light JES (reduced thanks to *in situ* rescaling, if it's not done the slope ⇒ 1 GeV/%)
- b-jets energy scale

JES studies:

- ☐ This analysis: JES taken from rec./sim. differences
- □ Template method comparing reconstructed jj invariant masses with smeared Ws
 - Systematic uncertainties (combinatorial, template ingredients, top mass..) all below 0.5% → 1% for 1 fb⁻¹
- ☐ This analysis: b-jet energy scale obtained from MC correction factors

$$M_{top}$$
 = 175.0 \pm 0.2 (stat.) \pm 1 (syst.) GeV

Top mass: semileptonic channel (4/5)

CMS - CMS -

- Alternative analysis based on likelihoods:
 - □ Probability from selection P_{sign}
 - □ Probability from jet combination P_{comb}
 - □ Probability from kinematic fit forcing M_W
 - Fitting M_{top} , probability from χ^2 $\chi^2(\{\overline{p}_j\}|m_t) = \left(\frac{m_t m_t^{fit}}{\sigma_{m_t}^{fit}}\right)^2$
 - Forcing M_{top} , probability from $P(\{\overline{p}_j\}|m_t) \approx \exp\left(-\frac{1}{2}\chi^2(\{\overline{p}_j\}|m_t)\right)$ mass scan

After kinematic fit

Mass scan gives (1 fb⁻¹, only μ channel)

 M_{top} = 172.42 ± 0.66 GeV (stat) ± 1.13 (syst)

Largest: JES for b jets

Top mass: dileptonic & fu

dileptonic & fully hadronic channels (1 fb⁻¹)

Starting from S/B $\approx 5 \cdot 10^{-3}$

Selection S/B ≈ 7

Kinematical reconstruction of the event and pairing with likelihood (660 evts)

S/B
$$\approx$$
 12 ϵ = 1.2%

$$M_{top} = 178.5 \pm 1.5 \text{ (stat)} \pm 4.2 \text{ (syst)}$$

Syst.: JES,

kinematical hypothesis

Starting from $S/B < 10^{-6}$

Selection S/B \approx 1/9 ϵ = 2.7%

Likelihood on masses and angles to perform the pairing + top choice

$$M_{top}$$
 = 175 \pm 0.6 (stat.) \pm 4.2 (syst.)

Syst.: QCD background, JES,

ISR/FSR

W mass at LHC

- NNLO cross section 20.5 nb per lepton channel W $\rightarrow \ell \nu$ 3 000 000 evts selected per channel in 1 fb⁻¹ 10 times less Z i.e. 300 000 evts selected per channel
- 2 observables sensitive to the W mass: m_T and p_t(lepton)

Simple and efficient but crucially relies on control of any effect distorting the test distribution

Effects distorting the test distributions:

- □ Experimental sources of uncertainty:
 - Lepton energy scale and linearity
 - Lepton energy resolution
 - Non gaussian tails of the energy distributions
 - Recoil scale and resolution
 - Reconstruction efficiency
- Theoretical sources:
 - Direct effect on lepton p_t: FSR
 - Effect on lepton p_t via the W distribution y(W) et $p_t(W)$: Γ_W , PDF, ISR
- Environmental sources:
 - Backgrounds, underlying event, pileup, beam crossing angle
- To control these effects in the templates, rely on our great knowledge of the Z physics, either by creating the templates from the Z events or by calibrating the effects on the Z events.

Creation of templates from Z events

Scaled observable method

with lepton p₁ distribution in W→ev for 1 fb-1

- Randomly remove 1 e in Z→ee
- \square Rescaling of the observable $X_{V} = p_{I}/M_{V}$
- Weight by R(X)

$$R(X) = \frac{d\sigma^{W} / dX_{W}}{d\sigma^{Z} / dX_{Z}}, X_{V} = \frac{p_{t}^{e}}{M_{V}}, V = W, Z$$

R(X) depend on theory and sel. & det. effects

Apply W selection on Z events with scale e.g. Missing $\mathbb{E}_{T} > 29 \text{ GeV } \times M_{W}/M_{Z}$

40 (stat.) ⊕ **40 (exp.)** ⊕ **40 (theo.)** MeV

Dominated by lepton energy scale linearity

Most common uncertainties cancel

Morphing

scaling the Z event instead of scaling the observable With $m_T W \rightarrow \mu \nu$ for 1 fb⁻¹

40 (stat.) ⊕ 64 (exp.) ⊕ 20 (theo.) MeV

Dominated by E_⊤scale

N. Besson CEA Saclay

Calibrate templates with Z constraints

First step: validate the modelisation of detector effects

Parameters we need to control: energy scale α , resolution σ , tails τ

$$30 < p_t < 40$$

 $0.4 < |\eta| < 0.5$ (a), $0.8 < |\eta| < 0.9$ (b),
 $1.3 < |\eta| < 1.4$ (c), $1.9 < |\eta| < 2.0$ (d)

Smear the leptons according to shapes fitted on E_{rec}/E_{true} distributions in bins in $|\eta|$ and p_t .

- Example: very early data 15 pb⁻¹, W→ev, p_t lepton Selection and backgrounds
 - □ High p_t isolated lepton, \not E_T, had. recoil ε = 22%
 - \square Backgrounds W to τ , Z to leptons, jet events
 - After selection 2.2% of evts are background mainly $W \rightarrow \tau v$

- Second step: calibrate the parameters on $Z \rightarrow ee$ events
 - □ Non gaussian tails
 - □ Scale and resolution

With the low statistics, only average scale and resolution can be derived with a template method

Third step: validate we can « transport » calibration from Z events to W events

- Results 15pb⁻¹
 - □ With p_t lepton (electron channel)

 $\delta M_W = 110 \text{ (stat)} \oplus 114 \text{ (exp.)} \oplus 25 \text{ (PDF)} \text{ MeV}$

main systematic uncertainty: energy scale

□ With m_T (muon channel)

 $\delta M_W = 60 \text{ (stat)} \oplus 230 \text{ (exp.)} \oplus 25 \text{ (PDF)} \text{ MeV}$

main systematic uncertainty: recoil scale

Long term perspectives

- Extensive systematic studies. Examples:
 - Experimental sources of uncertainty:
 - Lepton energy scale and resolution, linearity
 - Theoretical sources:
 - W distributions y(W) et p_t(W)
- First example: energy dependent scale and resolution

For 10 fb⁻¹ control up to 2 10⁻⁴ \longrightarrow δM_W (α) \approx 4 MeV and δM_W (σ) \approx 1 MeV

Second example: W distributions

Contribution from intrinsic p_t of partons and ISR

Final states $I^+I^ p_t(I^+I^-)$ versus $m(I^+I^-)$ with a

Transverse momentum

huge lever arm

With 10fb⁻¹ expected precision on p_t in W region of the order of 8MeV

⇒ $\delta M_W \approx 3 \text{ MeV}$

□ Rapidity

Contribution from PDF

For the moment $\delta M_W \approx 25 \text{ MeV}$

Strong correlation between y_W and y_Z with respect to PDF variations

 \Rightarrow $\delta M_{\rm W} \approx 3 \text{ MeV}$

One channel and one study (can be done for m_T)

Conclusion

- The challenge will be clearly to reduce systematic uncertainties
- $\delta M_{top} \approx 1 GeV$ and $\delta M_W \approx 7$ MeV seem within reach
- With 10 fb⁻¹and a lot of hard work we

m, [GeV]

Really eager to have data to work on!

Many thanks to

the Atlas and CMS collaborations, especially to Juan Alcaraz, Maarten Boonekamp, Martine Bosman, Jorgen D'Hondt, Anna Di Ciaccio, Lucia Di Ciaccio, Anne-Isabelle Etienvre, Tom LeCompte, Bruno Mansoulié

References

ATLAS

ATL-PHYS-PUB-2006-007

Determination of the absolute lepton scale using Z boson decays. Application to the measurement of $M_{\mbox{\tiny W}}$

Forthcoming "CSC" notes

Top quark mass measurement with ATLAS Measurement of W mass at ATLAS with early data

To be published

Re-evaluation of the LHC potential for the measurement of M_W

CMS

CMS note 2006/066

Top quark mass measurement in single leptonic ttbar events

CMS note 2006/077

Measurement of top-pair cross section and top-quark mass in the di-lepton and full-hadronic channels with CMS

CMS note 2006/061

Prospects for the precision measurement of the W mass with the CMS detector at the LHC

LEPEWWG

http://lepewwg.web.cern.ch/LEPEWWG/

