

Ringberg workshop on nonperturbative QCD of jets

QCD for LHC start-up with CMS

CMS Collaboration Klaus Rabbertz University of Karlsruhe

Klaus Rabbertz

- Scope of this talk
- LHC start-up
- CMS performance expectations
- CMS analyses so far
- Next steps
- Summary

- New CMS management in place (Jan. 2007)
- Not presenting final wisdom but first thoughts, suggestions welcome!
- Focus in 2007 will be on the up to 1fb⁻¹ limit
- Preparing for CMS start-up with focus on:
 - Commissioning of the CMS detector
 - Low luminosity measurements
 - Re-establishing the Standard Model with CMS and, of course, exploiting the new physics reach!

- CMS has now five physics analysis groups dealing predominantly with SM physics:
 - Diffraction, QCD, Electroweak, top and B physics
 - In addition: Heavy lons
- As a responsible for QCD:
 - Restricting to topics not attributed to other groups
 - Exact coverage of physics areas not defined yet
 - So e.g. not discussing diffractive/forward physics or heavy quarks

Compact Monn S

23. October 2006

Klaus Rabbertz

and CMS as well ...

YE+2 endcap disc 12.12.2006

More pictures and an actual movie can be found here: CMS Times

Klaus Rabbertz

Ringberg, 08.01.2007

QCD@LHC

LHC Start-up, 2007

- M. Lamont, September 2006:
 - Calibration run 2007: 3 weeks collisions with:
 - → $L \approx 1.2 \ 10^{28} 2.6 \ 10^{29} \text{ cm}^{-2}\text{s}^{-1}$, $E_{\text{beam}} = 450 \text{ GeV}$

LHC Start-up, 2008

M. Lamont, September 2006

CMS Detector 3d

9

CMS & TOTEM

Klaus Rabbertz

Ringberg, 08.01.2007

QCD@LHC

10

- If not stated otherwise all following results are extracted from the references:
 - CMS Physics TDR, Volume 1, CERN-LHCC-2006-001
 - CMS Physics TDR, Volume 2, CERN-LHCC-2006-021
 - CMS Notes: 2006/013, /067, /069
- Additional reading: New!
 - CMS/TOTEM report on diffractive and forward physics at the LHC, CERN-LHCC-2006-039

Electromagnetic Calorimeter

Hadronic Calorimeter

Jet Energy Calibration 1

- Complements initial calo calibrations, e.g. via radiation sources for HCAL
- Finer ECAL crystals merged into HCAL towers for total energy
- Start-up: Model dependent MC calibration technique using fully simulated events
 - Matching of reconstructed and particle level jets
 - Different input schemes/cuts ($E_{\tau} > 0.5 \text{ GeV}$, E > 0.8 GeV, cell-based thresholds)

Jet Energy Calibration 2

- Better: Data driven strategies:
 - Dijet balancing (rel. calibr.)
 - Photon + jet events (calibration against ECAL)
 - W boson mass constraint in top events

- Charged track response to correct calorimeter energies

Much more details probably just seen in Sven Menkes presentation ... :-) Ratio of rec. and gen jet $\mathsf{E}_{_{\mathsf{T}}}\mathsf{vs.}\ \mathsf{E}_{_{\mathsf{T}}}$

Dijet Analysis 1

- Expected no. of events and trigger efficiency for different trigger thresh.
- Iterative Cone, R = 0.5 in (η, φ)
- Dijet mass $m = \sqrt{(E_1 + E_2)^2 (\vec{P_1} + \vec{P_2})^2}$
- Corrected using MC calibration technique

- Measurable x-section, to be compared to models of new physics
- Alternatively: Dijet ratios for diff. η regions, angles
- Systematic uncertainties: Abs. jet energy scale (±5%).
 - PDFs (CTEQ6.1)
 - Calorimeter smearing (resolution)

(y,φ)

 10^{8}

 10^{7}

10

10°

10 10^{3} 10^{2}

10

10⁻¹

 10^{-2}

10⁻³

10⁻⁴

Ο

<u>fb</u>

) 영영[–]

Inclusive Jets 1

- Expected statistics for L_{int} of 0.1 fb⁻¹ (LO Pythia, all y) - Inclusive k_{τ} , ΔR scheme, D = 1.0 in - pp \rightarrow jets subprocess decomposition at LHC (NLO) vs. $x_T = 2p_T/\sqrt{s}$

Klaus Rabbertz

500

Inclusive Jets 2

- Dominant systematic uncertainties in 3 ranges of rapidity: $0.00 \le |y| < 0.75, 0.75 \le |y| < 1.50, 1.50 \le |y| < 2.00$
- Underlying Event and hadronization influence under investigation, eager to hear news in Gavins talk :-)

Abs. jet energy scale $(\pm 3\%)$

PDFs (CTEQ6.1) in NLO

Underlying Event Studies 1

MC comparison for two different Pythia tunes of multiple interactions:

- PY ATLAS

- PY Tune DW by R. Field fitting CDF Run 1 and 2 UE data and HERWIG
- MI energy dependence parameter PARP(90) = 0.16 (ATLAS), 0.25 (DW)
- "Softer" charged part. Spectrum for ATLAS tune

OCD@LHC

Klaus Rabbertz

Klaus Rabbertz

Underlying Event Studies 2

Current Activities and Next Steps

- Complete validation of new CMS software framework
 - Means also quite some MC events to reproduce
 - Very active groups for jet calibration and UE+MB business
 - Currently integrating fastjet kt algorithm (G. Salam, M. Cacciari)
- Demonstrate high level trigger plan
- Prepare analyses for 2008 physics runs
 - Special QCD concern:
 - Some topics not well covered yet (event shapes, jet rates, ...)
 - The jet calibration is a huge task for our Jet&Missing ETgroup
- Planning for LHC calibration run (900 GeV) data

- A long way ahead of us and much to learn for physics runs
- Input from theorists welcome, e.g. to tackle systematic uncertainties (UE, ...)
- ATLAS and CMS should strive to agree on some common definitions, at least on generator level, e.g. to avoid diverging jet algorithms like with CDF and D0 (→ Les Houches)
- The discussion is opened ...

CMS Detector

Material Depth in X₀

Material Depth in λ_{N}

Klaus Rabbertz

Process Decomposition

