

Determination of the strong coupling constant α_s at the LHC

Klaus Rabbertz, KIT

Outline

2012: No LHC results yet PDG2012 Introduction 0.5 Jet-like measurements April 2012 $\alpha_{s}(\mathbf{Q})$ • τ decays (N³LO) **Cross sections** ■ Lattice QCD (NNLO) △ DIS jets (NLO) **Ratios** 0.4 -> □ Heavy Quarkonia (NLO) • e⁺e⁻ jets & shapes (res. NNLO) Normalised distributions • Z pole fit (N³LO) top-quark pair production \square pp -> jets (NLO) 0.3 W/Z bosons **Issues & perspectives** 0.2 Summary & outlook 0.1 \equiv QCD $\alpha_{\rm s}({\rm M_Z}) = 0.1184 \pm 0.0007$ 100 10 Q [GeV] 2 Klaus Rabbertz Freiburg, 29.01.2020 **GRK 2044**

Standard Model of Elementary Particles

and three fundamental interactions. (no gravity)

Klaus Rabbertz

... and three fundamental interactions. (no gravity)

Klaus Rabbertz

$\alpha_{s}(M_{z})$ world average versus time

$\alpha_{M_{7}}$ world average versus time

QCD and asymptotic freedom

Nobel prize 2004

Theory:

- Renormalisation group equation (RGE)
- Solution of 1-loop equation
- Running coupling constant

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \alpha_s(\mu^2)\beta_0 \ln\left(\frac{Q^2}{\mu^2}\right)}$$
$$\alpha_s(Q^2) = \frac{1}{\beta_0 \ln\left(\frac{Q^2}{\Lambda^2}\right)}$$

- What happens at large distances?
 - $Q^2 \rightarrow 0$?
 - Cannot be answered here! For $Q^2 \rightarrow \Lambda^2$ perturbation theory not applicable anymore!

D. Gross

- 'Strong' coupling weak for
 $Q^2 \rightarrow \infty$, i.e. small distances
- Asymptotic freedom
- Perturbative methods usable

$$\beta_0 = \frac{33 - 2 \cdot N_f}{12\pi}$$

Physik Journal 3 (2004) Nr. 12

D. Politzer

F. Wilczek

Unification of couplings?

Abundant production of jets:

Jets at hadron colliders provide the largest dynamic range ever for α_s(Q²)
 Plus insights into high-p_T QCD, the proton structure, non-perturbative and electroweak effects at high Q

Jets at the LHC

Abundant production of jets:

- Extract α_s(M_z), the least precisely known fundamental constant!

W, Z, top at the LHC

High-precision lepton measurements:

- W, Z, top measurements provide high-precision cross sections

Also learn about electroweak parameters, the top mass, and the proton structure

Jets at the LHC

- Determination of $\alpha_s(M_2)$ in single-parameter fit
- Test consistency of running of $\alpha_s(Q)$
- Multi-parameter fit of α_s(M_z) & PDFs

All inclusive

Large transverse momenta

Relevant ATLAS & CMS measurements:

ATLAS: EPJC 73 (2013) 2509; JHEP 02 (2015) 153; JHEP 09 (2017) 020; JHEP 05 (2018) 195. CMS: PRD 87 (2013) 112002; PRD 90 (2014) 072006; EPJC 75 (2015) 288; EPJC 76 (2016) 265; EPJC 76 (2016) 451; JHEP 03 (2017) 156.

Klaus Rabbertz

Freiburg, 29.01.2020

GRK 2044

Inclusive jets: cross section

Overall agreement with predictions of QCD at NLO over many orders of magnitude in cross section and even beyond 2 TeV in jet p_T and for rapidities |y| up to 3 ~ 5 at $\sqrt{s} = 2.76$, 7, 8, and 13 TeV.

Here: anti-k, R=0.4, 13 TeV

Data vs. NLO pQCD x non-pert. x EW corrections

Inclusive jets: theory corrections

18

anti-kt, R=0.4, 13 TeV, |y| < 0.5

Nonperturbative correction factors:

- estimated from tuned MC event generators
- uncertainty of 5 15% at p_{τ} = 100 GeV
- strongly dependent on jet size R less important at high $p_{\scriptscriptstyle T}$

Electroweak correction factors:

- calculated perturbatively
- uncertainty small
- strongly dependent on jet rapidity y
- very important at high p_{T}

Inclusive jets: theory corrections

anti-kt, R=0.4, 13 TeV, |y| < 0.5

Nonperturbative correction factors:

- estimated from tuned MC event generators
- uncertainty of 5 15% at p_{τ} = 100 GeV

strongly dependent on jet size R less important at high p₊

Electroweak correction factors:

- calculated perturbatively
- uncertainty small
- strongly dependent on jet rapidity y
- very important at high $\boldsymbol{p}_{_{T}}$

Inclusive jets: α_s

Klaus Rabbertz

Freiburg, 29.01.2020

GRK 2044

20

Inclusive jets: $a_s \& PDFs$

Simultaneous fit of α_s & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

Reduced uncertainties of gluon PDF

CMS results for $\alpha_s(M_z)$ at NLO

Orange shading: external PDF sets Bluish shading: PDF fit incl. HERA data

√s [TeV]	lum [fb ⁻¹]	$\alpha_{s}(M_{z})$	exp NP PDF	scale
7	5.0	0.1185	35	+53 -24
8	19.7	0.1164	+29 -33	+53 -28
7	5.0	0.1192	+23 -19	+24 -39
8	19.7	0.1185	+19 -26	+22 -18

Question: How to deal with uncertainty of Missing higher orders (aka scale uncertainty) in PDF fits? First progress → e.g. NNPDF, EPJC79 (2019) 931.

Freiburg, 29.01.2020

GRK 2044

Large masses

Relevant ATLAS & CMS measurements:

Klaus Rabbertz

Freiburg, 29.01.2020

<u>ATLAS:</u> JHEP 05 (2014) 059; JHEP 05 (2018) 195. <u>CMS:</u> PRD 87 (2013) 112002; EPJC 77 (2017) 746.

GRK 2044

22

Triple-differential dijets

Most measurements done with respect to dijet mass and either max. rapidity $|y|_{max}$ (CMS) or rapidity separation y^{*} (ATLAS). One CMS result on $\alpha_s(M_z)$:

Illustration of dijet event topologies

Triple-differential dijets

Multi-jets and α_s

Higher multiplicity

Relevant ATLAS & CMS measurements:

Klaus Rabbertz

Freiburg, 29.01.2020

ATLAS: EPJC 75 (2014) 288. <u>CMS:</u> EPJC 73 (2013) 2604; EPJC 75 (2015) 186; PAS-SMP-16-008 (2017).

GRK 2044

25

- Determination of $\alpha_s(M_7)$ in single-parameter fit
- Test running of $\alpha_s(Q)$ (reduced PDF dependence)
- Some reduction in sensitivity
- But cancellation of many systematic effects
- More scale choices

Sensitivity vs. systematic effects

3- to 2-jet ratios

28

Running of $a_s(Q)$

Running of $a_s(Q)$

Relevant ATLAS & CMS measurements:

<u>ATLAS:</u> PLB 750 (2015) 427; EPJC 77 (2017) 872; PRD98 (2018) 092004.

Klaus Rabbertz

Freiburg, 29.01.2020

GRK 2044

Pros & cons similar as for cross section ratios ...

- Determination of $\alpha_s(M_2)$ in single-parameter fit
- Test running of $\alpha_s(Q)$ (reduced PDF dependence)
- Some reduction in sensitivity
- But cancellation of many systematic effects
- More scale choices

Transverse energy-energy correlation

Freiburg, 29.01.2020

Klaus Rabbertz

33

GRK 2044

Dijet azimuthal decorrelation

Determine $\alpha_s(Q)$ from additonal parton branchings separated in Φ around the two leading jets. Binning in sum of scalar transverse momentum H_T and rapidity separation y^{*}.

$$R_{\Delta\phi}(H_T, y^*; \Delta\phi_{\max}) = \frac{\frac{d^2\sigma_{\text{dijet}}(\Delta\phi_{\text{dijet}} < \Delta\phi_{\max})}{dH_T dy^*}}{\frac{d^2\sigma_{\text{dijet}}(\text{inclusive})}{dH_T dy^*}}$$

 $R_{\Delta\phi} \propto \alpha_s$

2

 $\Delta \phi_{\text{dijet}} = \pi$

If $\Delta \phi_{max}$ in 3-jet region

Wobisch et al., JHEP 01 (2013) 172; KR, M. Wobisch, JHEP 12 (2015) 024.

Freiburg, 29.01.2020

GRK 2044

$R_{\Delta\phi}$ in bins of Q = $H_T/2$

Heavy quarks

Relevant CMS measurements:

PLB 728, 496 (2013), JHEP 11, 067 (2012) [Erratum: PLB 738, 526 (2014)], CMS-TOP-17-001, arXiv:1812.10505 CMS-PAS-TOP-18-004.

Klaus Rabbertz

Freiburg, 29.01.2020

GRK 2044

37

W, Z, tT at the LHC

- Determination of $\alpha_s(M_z)$ correlated with m_{top} (and gluon like for jets)
- Differential cross sections
- What top mass? Pole? MS_{bar}?
- Top measurements already in PDF?
- Theory at NNLO or NNLO+NNLL

Fits with tt production cross section

NNLC

Top-pair production is especially sensitive to: m, and α_s and $g(x,\mu_f^2)$ as the main production process at LHC is from gg Using only the ttbar cross section measurement (dilepton channel) combined fits are not possible.

Fix m, (& PDF) \rightarrow constrain α_s (or vice versa)

HATHOR, Aliev et al., CPC 182 (2011) 1034.

Klaus Rabbertz

Freiburg, 29.01.2020

Analysis @ 13 TeV much improved:

- Obtain σ_{H} in sim. fit from data with m_{H}^{MC} as nuisance parameter
- Running MS_{bar} mass m_t(m_t) as scale
- **Conventional scale uncertainty**
- Choose PDF and fix m₍(m_,) as given
- Determine $\alpha_{c}(M_{z})$ from fit to σ_{tt}
- **Try various PDF sets**

Inclusive W,Z production

 $\sigma_{
m LO} \propto lpha_{\circ}^0$

Very recent result from combined fit for set of inclusive W and Z cross section measurements, e and μ decay final states only.

Inclusive W,Z production

 $\sigma_{
m LO} \propto \alpha_{\circ}^0$

Recent result from combined fit for set of inclusive W and Z cross section measurements, e and μ decay final states only.

Wrap up & concerns

$\alpha_s(M_Z)$ results from ATLAS and CMS

- Correlations to LHC data already in PDF fits
- Correlations between α_s(M_z), M_{top},
 g(x)
- Gu)estimation of nonperturbative effects:
 - Different event generators & tunes, different orders, different ...
 - Incoherent among ATLAS, CMS, Tevatron, ...
- Conventional scale variation by factors of ½, 2 and 1σ assumption
- Central scale choice ...!

Scale choices

Services Sectives Section 24 Augustic A

- Experiment:
 - **Done:** Observables $\sigma \sim \alpha_s^2$, α_s^3 ; $R_{3/2} \sim \alpha_s$; 7 TeV; full phase space
 - Mostly done, 8 TeV data: Some reduction in experimental uncertainty
 - Partially done, 13 TeV: Final precision?
 - Best JEC phase space: Further reduction by some permille?
 - Other observables: Ratios (n+m) / n jets (incl. γ, W, Z), Normalized cross sections (A)TEEC, R_{ΔΦ}, R_{ΔR} (→ D0)
- Theory:
 - Scales: NNLO important → reduction by 2 3 percent!?
 - PDFs: Much improved after LHC I, also HERA 2 data available
 - Better known gluon (Attention circularity jets \rightarrow g(x) & jets $\rightarrow \alpha_s$)
 - Fits combining observables at various \sqrt{s} to disentangle g(x), M_t, α_s
 - NNLO ratios?
 - NP effects?

Klaus Rabbertz

PDG Summary 2019

PDG Summary 2019

- LHC at 7 TeV and 8 TeV enables measurements up to scales of 2 TeV
- I3 TeV data yet to be fully evaluated
- Theory at NNLO QCD + electroweak corrections are a must!
- Typical uncertainties on $\alpha_s(M_z)$:
 - → Experimental: ~ 1 2 %
 - → PDF: ~ 1 2 %
 - Scale: 3-5% → 1-2% at NNLO(?) but still an issue. Central scale choice?
 - Nonpert. Effects: 1 % (really?)
- Beyond one experiment (see also → LHC EW Working Group):
 - Combined fits of ATLAS & CMS (LHC) measurements
 - Combined fits of HERA, Tevatron & LHC measurements
- CHALLENGE: α_s(M_z) at 1% or better from hadron colliders!

Masse und Symmetrien nach der GRR 2044 Entdeckung des Higgs-Teilchens am LHC

Thank you for your attention and the invitation to speak here!

Backup Slides

Inclusive jets: NNLO & scale choice

anti-kt, R=0.4, 13 TeV

- close to recommended one

<u>QCD scale choice:</u> $\mu_R = \mu_F = p_{T,max}$

- NOT recommended

- As compared to α_s^2 :
 - Higher sensitivity
 - Smaller statistical precision
 - Smaller dynamical range
 - More scale choices
 - Theory at NNLO not available

3-jet mass

Sensitivity of differential cross section

Fits using tt differential distributions

Fits using tt differential distributions

NLO

Comparison of χ^2 for $\alpha_s(M_z)$ with HERA only and with additional tt data

Cross check $\alpha_s(M_z)$ fit @ NLO with external PDFs ABMP16, HERAPDF20, and CT14

Inclusive W,Z production

D. d'Enterria, A. Poldaru, arXiv:1912.11733, CMS, arXiv:1912.04387.

GRK 2044

Combining LHC & Tevatron tt data

- fitting procedure similar to CMS; more conservative scale dependence treatment
- combines results using NNLO or NNLO+NNLL for theory prediction
- updated and complemented set of ttbar cross section measurements from LHC
- includes Tevatron results
- consideration of correlations among measurements
- combine results only from PDF sets without ttbar data (CT14nnlo, NNPDF30_nolhc)

Datasets:

	$\sigma_{t\bar{t}}$ (pb)	Statistical unc. (%)	Systematic unc. (%)	Luminosity unc. (%)	Ebeam unc. (%)	Exp. m_t unc. (%)
ATLAS (7 TeV) [16]	182.5	1.7	2.3	2.0	0.3	-0.2 + 0.2
ATLAS (8 TeV) [16]	242.4	0.7	2.3	2.1	0.3	-0.2 + 0.2
ATLAS (13 TeV) [17]	816.3	1.0	3.3	2.3	0.2	-0.3 +0.3
CMS (7 TeV) [13]	173.4	1.2	2.5	2.2	0.3	-0.2 + 0.2
CMS (8 TeV) [13]	244.1	0.6	2.4	2.6	0.3	-0.4 + 0.4
CMS (13 TeV) [14]	809.8	1.1	4.7	2.3	0.2	-0.8 + 0.8
Tevatron (1.96 TeV) [18]	7.52	2.7	3.9	2.8	0.0	-1.1 + 1.4

Bethke et al., NPPP 282-284 (2017) 139.

Combining LHC & Tevatron tt data

No LHC top data in NNPDF3_nolhc or @sT14 Bias between NNLO & NNLO+NNLL ...

Freiburg, 29.01.2020

 α_{s}

- Very precisely measurable, in particular in leptonic decay modes
- **NNLO** available for V and V+1jet
- NLO available for up to V+4/5jets
- Not used so far for $\alpha_{R}(M_{J})$ or $\alpha_{R}(Q)$ by LHC experiments

New study of published **ATLAS data on inclusive** Z+2/3/4 jet observables @ NL for extraction of $\alpha_{s}(M_{z})!$

(No ratios [n+1]/n though ...)

TABLE I. Observables and labels for the fits.

Label	Observable(s)
all	Combination of all histograms
2j, incl	Combination of the transverse momentum and rapidity of the second jet for the two-jet inclusive sample
3j, incl	Combination of the transverse momentum and rapidity of the third jet for the three-jet inclusive sample
4j, incl	Combination of the transverse momentum and rapidity of the fourth jet for the four-jet inclusive sample
all y	Combination of all the rapidity distributions
all p^{\perp}	Combination of all three transverse momentum distributions
y_i	Rapidity for the <i>i</i> -jet inclusive sample
p_i^{\perp}	Transverse momentum for the <i>i</i> -jet inclusive sample
	M. Johnson, D. Maitre, PRD 97 (2018) 054013.
~ 20.01	

Z+2/3/4jets production

ATLAS ATEEC 7TeV [38] ATLAS TEEC 7TeV [38] ATLAS ATEEC 8TeV [3] ATLAS TEEC 8 TeV [3] CMS 3 jets 7TeV [7] CMS 3j/2j ratio 7TeV [2] CMS inclusive jets 7TeV [4] CMS top pair 7TeV [39] This work: NNPDF3.0 MMHT

Scale dependence & NP effects evaluated with "standard" method & profile X2 resp. nuisance parameter

M. Johnson, D. Maitre, PRD 97 (2018) 054013.

All wo scale

CT14

$\boldsymbol{\alpha}_{_{\!\boldsymbol{S}}}$ at NLO from jet production

α_s from lattice groups

Two goals for α_{s} **:**

- 1. Measure the running of $\alpha_s(Q)$ up to the highest scales possible \rightarrow In CMS mostly looked into $\alpha_s(Q)$!
- 2. Measure $\alpha_s(M_z)$ as precisely as possible
- → For α_s(M_z) might want to stay at minimal JEC uncertainty: 200 – 800 GeV, central rapidity

Better in: JEC uncertainty PDF uncertainty Evolution to M_z Worse in: NP effects

\mathbf{A}_{s} **Projections from Snowmass**

Still at LHC:

Only jets probe running α_s at highest scales

< 1% uncertainty at M_z challenging ...

Need NNLO and improved PDFs (gluon) plus some experimental optimization

Method	Current relative precision	Future relative precision	
e^+e^- evt shapes	$expt \sim 1\% (LEP)$	< 1% possible (ILC/TLEP)	
	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.) [27]	$\sim 1\%~({\rm control~n.p.}$ via $Q^2{\rm -dep.})$	~10/
e^+e^- jet rates	$expt \sim 2\% (LEP)$	< 1% possible (ILC/TLEP)	~170
	thry $\sim 1\%$ (NNLO, n.p. moderate) [28]	$\sim 0.5\%$ (NLL missing)	
precision EW	$expt \sim 3\% (R_Z, LEP)$	0.1% (TLEP [10]), $0.5%$ (ILC [11])	<10/
	thry $\sim 0.5\%$ (N ³ LO, n.p. small) [9,29]	$\sim 0.3\%~({\rm N}^4{\rm LO}$ feasible, $\sim 10~{\rm yrs})$	~1 /0
τ decays	expt $\sim 0.5\%$ (LEP, B-factories)	< 0.2% possible (ILC/TLEP)	
	thry $\sim 2\%$ (N ³ LO, n.p. small) [8]	$\sim 1\%~({\rm N}^4{\rm LO}$ feasible, $\sim 10~{\rm yrs})$	
<i>ep</i> colliders	$\sim 1-2\%$ (pdf fit dependent) [30, 31],	0.1% (LHeC + HERA [23])	<1%
	(mostly theory, NNLO) [32, 33]	$\sim 0.5\%$ (at least N^3LO required)	
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t})$	< 1% challenging	~1%
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.) [17, 21, 34]	(NNLO jets imminent [22])	1 /0
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)	$\sim 0.3\%$	~0 50/
	(limited by accuracy of pert. th.) [35–37]	$(\sim 5 \text{ yrs } [38])$	~0.5%

Snowmass QCD Report, arXiv:1310.5189.

Klaus Rabbertz