Latest results on the strong coupling at the LHC

Seminar at the Department of Physics University of Oxford

Outline

- Motivation
- Status of α_s
- New results from LHC
 - Jet cross sections
 - Normalised distributions
 - Ratio observables
- Outlook

Standard Model of Particle Physics ETP

Standard Model of Elementary Particles

Standard Model of Particle Physics ETD

K. Rabbertz

Standard Model of Particle Physics ETP

Standard Model of Elementary Particles

and three fundamental interactions. (no gravity)

K. Rabbertz

. . .

University of Oxford, UK, 11.02.2025

Seminar

Standard Model of Particle Physics ETE

... and three fundamental interactions. (no gravity)

K. Rabbertz

University of Oxford, UK, 11.02.2025

Seminar

Standard Model of Particle Physics ETE

Standard Model of Particle Physics ETE

- Invariance under local SU(3)_ctransformations
 - Three color charges a = 1, 2, 3 → Red, Green, Blue (as analogue to electric charge in QED)
 - Eight vector fields (gluons) \mathcal{A}^A_μ carry color charge and color anti-charge
 - The gluons are massless
 - \rightarrow exact symmetry
 - \rightarrow in principal infinite range of strong force

$$\mathcal{G}^{A}_{\mu\nu} = \partial_{\mu}\mathcal{A}^{A}_{\nu} - \partial_{\nu}\mathcal{A}^{A}_{\mu} - g_{s}f^{ABC}\mathcal{A}^{B}_{\mu}\mathcal{A}^{C}_{\nu}$$

Non-zero commutator leads to gluon self-interactions via triple and quartic gauge couplings

In (renormalisable) QFT the beta function encodes the dependence of the coupling parameter g on the energy (or distance) scale µ:

$$\alpha_i := \frac{g_i^2}{4\pi}$$

$$\beta(g) = \frac{\partial g}{\partial \log(\mu^2)}$$

- In (renormalisable) QFT the beta function encodes the dependence of the coupling parameter g on the energy (or distance) scale µ: $\alpha_i := \frac{g_i^2}{4\pi}$ $\beta(g) = \frac{\partial g}{\partial \log(u^2)}$
- Beta function of QED (1-loop): $\beta(\alpha) = \frac{1}{3\pi}\alpha^2$
 - The coupling increases with energy scale
 - The coupling decreases with larger distances
 - Infinite range, Coulomb potential: $V(r) \propto \frac{1}{r}$

- In (renormalisable) QFT the beta function encodes the dependence of the coupling parameter g on the energy (or distance) scale µ: $\alpha_i := \frac{g_i^2}{4\pi}$ $\beta(g) = \frac{\partial g}{\partial \log(u^2)}$
- Beta function of QED (1-loop): $\beta(\alpha) = \frac{1}{3\pi}\alpha^2$
 - The coupling increases with energy scale
 - The coupling decreases with larger distances
 - Infinite range, Coulomb potential: $V(r) \propto \frac{1}{r}$
- Beta function of QCD (1-loop): $\beta(\alpha_s) = -\left(\frac{11N_C 2N_f}{12\pi}\right) \alpha_s^2$
 - The coupling decreases with energy scale, if $N_C=3, ~~ \dot{N_f} \leq 16$
 - Asymptotic freedom
 - The coupling increases with larger distances
 - Confinement, string potential: $V(r) \approx \sigma \cdot r$ with tension $\sigma \approx 1 \, {
 m GeV/fm}$

University of Oxford, UK, 11.02.2025

Seminar

QCD and asymptotic freedom

Nobel prize 2004

Theory:

- Renormalisation group equation (RGE)
- Solution of 1-loop equation
- Running coupling constant

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \alpha_s(\mu^2)\beta_0 \ln\left(\frac{Q^2}{\mu^2}\right)}$$
$$\alpha_s(Q^2) = \frac{1}{\beta_0 \ln\left(\frac{Q^2}{\Lambda^2}\right)}$$

- Towards small distances, $Q^2 \rightarrow \infty$
 - "Strong" coupling becomes weak
 - Perturbative methods usable
 - Asymptotic freedom

D. Politzer

F. Wilczek nobelprize.org

K. Rabbertz

University of Oxford, UK, 11.02.2025

Seminar

QCD and asymptotic freedom

Nobel prize 2004

Theory:

- Renormalisation group equation (RGE)
- Solution of 1-loop equation
- Running coupling constant

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \alpha_s(\mu^2)\beta_0 \ln\left(\frac{Q^2}{\mu^2}\right)}$$
$$\alpha_s(Q^2) = \frac{1}{\beta_0 \ln\left(\frac{Q^2}{\Lambda^2}\right)}$$

- Towards large distances, $Q^2 \rightarrow 0$
 - Strong coupling, confinement
 - Perturbative methods not usable for $Q^2 \rightarrow \Lambda^2$
 - Lattice gauge theory

D. Gross

D. Politzer

F. Wilczek

K. Rabbertz

Running coupling constant

K. Rabbertz

Status of α_s in PDG review

Particle Data Group https://pdg.lbl.gov

1st estimate from G. Altarelli

 $\alpha_{s}(m_{7})$ average versus time

Seminar

 $\alpha_{s}(m_{z})$ average versus time

Seminar

 $\alpha_{s}(m_{z})$ average versus time

 $\alpha_{s}(m_{7})$ average versus time

PDG α_s averaging in 6 groups

т hadronic decay widths & spectral functions

heavy quarkonia decays

global fits of proton structure & α_s

event shapes & jet rates in e⁺e⁻

observables from hh collisions & DIS

electroweak fits

FLAG average from lattice calculations

PDG, PRD (2024) 110, 3, 030001.

K. Rabbertz

PDG α_s averaging in 6 groups

averages per sub-field	unweighted
$ au$ decays & low Q^2	0.1173 ± 0.0017
$Q\bar{Q}$ bound states	0.1181 ± 0.0037
PDF fits	0.1161 ± 0.0022
e^+e^- jets & shapes	0.1189 ± 0.0037
hadron colliders	0.1168 ± 0.0027
electroweak	0.1203 ± 0.0028
PDG 2023 (without lattice)	0.1175 ± 0.0010

Final average including lattice (FLAG2021):

$$\alpha_s(m_Z^2) = 0.1180 \pm 0.0009$$

rel. uncertainty: 0.8%

K. Rabbertz

University of Oxford, UK, 11.02.2025

PDG, PRD (2024) 110, 3, 030001.

Seminar

Large transverse momenta

Abundant production of jets:

Highest reach ever in energy scale Q to determine the strong coupling
 Learn about hard QCD, the proton structure, non-perturbative effects, and electroweak effects at high Q

Jets at the LHC

Abundant production of jets:

- Extract α_s(m_z), the least precisely known fundamental constant!

- Counting jets or jet events in bins of e.g. momentum and rapidity
- Useful for i.a.:
 - Determination of $\alpha_s(m_z)$
 - Test of running of α_s(Q)
 - Multi-parameter fit of $\alpha_s(m_z)$ & PDFs
 - Multi-parameter fit including EFT parameters

- Counting jets or jet events in bins of e.g. momentum and rapidity
- Useful for i.a.:
 - **Determination of** $\alpha_s(m_z)$
 - Test of running of α_s(Q)
 - Multi-parameter fit of $\alpha_s(m_z)$ & PDFs
 - Multi-parameter fit including EFT parameters
- Subject to many/all systematic uncertainties:
 - Jet energy calibration (JEC) & resolution (JER)
 - Luminosity
 - Missing higher orders
 - ... to name a few

Inclusive jets: α_s & *PDFs*

Jet counting in bins of jet transverse momentum and rapidity Comparison of unfolded measurement with theory:

NNLO x nonperturbative x electroweak correction

(NNLO in leading-color (LC) approximation; subleading effects small)

First determination of $\alpha_{c}(m_{z})$ from jets at NNLO-LC:

$\alpha_s(m_Z^2) = 0.1166 \pm 0.0016$ (fitall) ± 0.0004 (scl)

CMS 33.5 fb⁻¹ (13 TeV) CMS **SM NNLO Hessian uncertainties** (pb/GeV) 10⁴ **0**100 Anti- k_{τ} (R = 0.7) $\mu_{f}^{2} = m_{t}^{2}$ CT14 NNLO ⊗ NP ⊗ EW Х, $|y| < 0.5 (\times 10^{\circ})$ $0.5 < |y| < 1.0 (\times 10^{-1})$ CMS 13 TeV jets + HERA δ 80 $1.0 < |y| < 1.5 (\times 10^{-2})$ $d^2 \alpha/dp^2 dy^2$ HERA $1.5 < |y| < 2.0 \ (\times 10^{-3})$ × 60 40 10⁻² 10⁻³ 20 10^{-4} 0 1.1 6.0 6.0 7 10⁻⁵ (HERA+CMS) / HERA 10^{-6} 10^{-7} 1000 2000 200 300 100 10⁻² 10^{-3} **10**⁻¹ 10^{-4} $Jet p_{_{T}} (GeV)$ CMS, JHEP02 (2022) 142 & JHEP12 (2022) 035.

Simultaneous fit with PDFs \rightarrow reduced uncertainties of gluon

K. Rabbertz

University of Oxford, UK, 11.02.2025

Seminar

Χ

Double/triple-differential dijets

Jet event counting in bins of dijet mass or average transverse momentum (x) and

rapidity separation

$$y^* = \frac{1}{2} |y_1 - y_2|$$

boost of dijet system

$$y_b = \frac{1}{2} |y_1 + y_2|$$

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}y^*\mathrm{d}y_\mathrm{b}\mathrm{d}x} = \frac{1}{\varepsilon\,\mathcal{L}_\mathrm{int}}\,\frac{N}{\Delta y^*\Delta y_\mathrm{b}\Delta x}.$$

Alternativ 2D binning in maximum rapidity of $|y_1|, |y_2|$

CMS, EPJC 85 (2025) 72.

K. Rabbertz

University of Oxford, UK, 11.02.2025

Illustration of dijet event topologies

Seminar

Double/triple-differential dijets

Jet event counting in bins of x, y^{*},y_b Comparison of unfolded measurement with theory:

NNLO x nonperturbative x electroweak correction

Double/triple-differential dijets

- $\alpha_{s}(m_{Z}) = 0.1179 \pm 0.0017 (\text{fitall}) \pm 0.0008 (\text{scl})$
- $\alpha_{s}(m_{z}) = 0.1181 \pm 0.0019 (\text{fitall}) \pm 0.0009 (\text{scl})$

K. Rabbertz

University of Oxford, UK, 11.02.2025

Seminar

- Up to now: Fit of whole dataset $\rightarrow \alpha_s(m_z)$ & PDFs (running used implicitly)
- New QCD analysis from CMS
 - Combination of multiple datasets (
 --> table)
 - Subdivide into ranges of jet p^T
 - Multi-parameter fit of $\alpha_s(m_z)$ & PDFs in each range separately
- Uncertainty correlations vs. E_{cms} studied and varied
 - Some correlation in JEC among cms energies, insignificant in JER
 - MHOU (scale variation) fully correlated

$\mathcal{L}~[ext{fb}^{-1}]$	$N_{\rm p}$	$p_{\rm T}$ [GeV]	y
0.0054	80	74–592	0.0–3.0
5.0	130	114–2116	0.0–2.5
20	165	74–1784	0.0–3.0
33.5	78	97–3103	0.0–2.0
	$\mathcal{L} [fb^{-1}]$ 0.0054 5.0 20 33.5	\mathcal{L} [fb ⁻¹] $N_{\rm p}$ 0.0054 80 5.0 130 20 165 33.5 78	\mathcal{L} [fb ⁻¹] $N_{\rm p}$ $p_{\rm T}$ [GeV]0.00548074–5925.0130114–21162016574–178433.57897–3103

K. Rabbertz

CMS, arXiv:2412.16665.

University of Oxford, UK, 11.02.2025

Seminar

Combining inclusive jet datasets ETP

Running of $\alpha_s(Q)$ in five ranges of jet p_T

K. Rabbertz

University of Oxford, UK, 11.02.2025

Seminar

Combining dijet datasets $\rightarrow \alpha_s(Q)$ ETD

- New α_{s} extraction from all dijet data of ATLAS & CMS
 - Combination of multiple datasets (\rightarrow table), in 2nd step also HERA dijets
 - Subdivide into ranges of relevant scale Q -
 - **Complete NNLO predictions**
 - Simultaneous fit of one $\alpha_{i}(Q)$ per each range (with PDF variations as nuisance parameters at starting scale μ_0 = 90 GeV)
- **Uncertainty correlations**

Experimental ones assumed negligible

 MHOU (scale vari 	ation) Data	$\sqrt{s} [\text{TeV}]$	$\mathrm{d}\sigma$	R	L
fully correlated	ATLAS	[10] 7	$\frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{;;}\mathrm{d}y^*}$	0.6 4.5	$fb^{-1} \pm 1.8\%$
	CMS [1]	2] 7	$\frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{\mathrm{ij}}\mathrm{d}y_{\mathrm{max}}}$	$0.7 \ 5.0$	${\rm fb}^{-1} \pm 2.2\%$
	CMS [1]	3] 8	$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}\langle p_{\mathrm{T}}\rangle_{1,2}\mathrm{d}y^{*}\mathrm{d}y_{\mathrm{b}}}$	$0.7 \ 19.7$	$\mathrm{fb}^{-1}\pm2.6\%$
	ATLAS	[11] 13	$rac{\mathrm{d}^2\sigma}{\mathrm{d}m_{\mathrm{ij}}\mathrm{d}y^*}$	$0.4 \ 3.2$	${\rm fb}^{-1} \pm 2.1 \%$
	CMS [1]	4] 13	$rac{\mathrm{d}^2\sigma}{\mathrm{d}m_{\mathrm{jj}}\mathrm{d}y_{\mathrm{max}}}$	$0.8 \ 33.5$	$fb^{-1} \pm 1.2 \%$
	CMS [1	4] 13	$rac{\mathrm{d}^3\sigma}{\mathrm{d}m_{\mathrm{jj}}\mathrm{d}y^*\mathrm{d}y_\mathrm{b}}$	0.8 29.6	$\mathrm{fb}^{-1} \pm 1.2\%$
Anmandova, KR, et al., arXiv:2412.2116	.				
K. Rabbertz	University of Oxford, UK	, 11.02.2025		Seminar	· 40

From LHC dijet data $\alpha_s(m_Z^2) = 0.1178 \pm 0.0014 (\text{fitall}) \pm 0.0017 (\text{scl})$

 $\alpha_s(Q)$ from HERA & LHC dijet data

α_s fit results per dataset

K. Rabbertz

University of Oxford, UK, 11.02.2025

$\textbf{Sombining dijet datasets} \rightarrow \alpha_s(Q) \textbf{ETE}$

From LHC dijet data $\alpha_s(m_Z^2) = 0.1178 \pm 0.0014 (\text{fitall}) \pm 0.0017 (\text{scl})$

Comparison to selected other data

α_s fit results per dataset

K. Rabbertz

- Analysing the energy flow within an event in bins of some momentum scale and a suitable observable
- Often so-called "event shapes" like thrust or energy-energy correlations
- Go back to definitions suggested for e⁺e⁻ collisions; for pp only transverse momenta used
- Useful for i.a.:
 - Determination of $\alpha_s(m_z)$ & test of running of $\alpha_s(Q)$
 - MC generator comparison & tuning
 - Search for new physics

- Analysing the energy flow within an event in bins of some momentum scale and a suitable observable
- Often so-called "event shapes" like thrust or energy-energy correlations
- Go back to definitions suggested for e⁺e⁻ collisions; for pp only transverse momenta used
- Useful for i.a.:
 - Determination of $\alpha_s(m_z)$ & test of running of $\alpha_s(Q)$
 - MC generator comparison & tuning
 - Search for new physics
- Independent of luminosity
- Reduced sensitivity to other systematic effects

- Analysing the energy flow within an event in bins of some momentum scale and a suitable observable
- Often so-called "event shapes" like thrust or energy-energy correlations
- Go back to definitions suggested for e⁺e⁻ collisions; for pp only transverse momenta used
- Useful for i.a.:
 - Determination of $\alpha_s(m_z)$ & test of running of $\alpha_s(Q)$
 - MC generator comparison & tuning
 - Search for new physics
- Independent of luminosity
- Reduced sensitivity to other systematic effects
- Often multi-scale problem \rightarrow more complicated scale dependence
- Can contain transition region from perturbative to nonperturbative QCD

- Example of an event shape: energy-energy correlation (EEC)
 - **Goes back to definition in e⁺e⁻** Basham, Brown, Ellis, Love, PRL41 (1978) 1585; PRD 19 (1979) 2018.

 - Measures E_T weighted azimuthal differences:

$$\frac{1}{\sigma}\frac{d\Sigma}{d\cos\phi} = \frac{1}{N}\sum_{A=1}^{N}\sum_{ij}\frac{E_{\mathrm{T}i}^{A}E_{\mathrm{T}j}^{A}}{\left(\sum_{k}E_{\mathrm{T}k}^{A}\right)^{2}}\delta(\cos\phi - \cos\phi_{ij})$$

- Example of an event shape: energy-energy correlation (EEC)
 - Goes back to definition in e⁺e⁻ Basham, Brown, Ellis, Love, PRL41 (1978) 1585; PRD 19 (1979) 2018.

 - Measures E_T weighted azimuthal differences:

- Example of an event shape: energy-energy correlation (EEC)
 - Goes back to definition in e⁺e⁻ Basham, Brown, Ellis, Love, PRL41 (1978) 1585; PRD 19 (1979) 2018.
 - ➡ Here specialised to pp collisions → only transverse momenta (TEEC)
 - Measures E_T weighted azimuthal differences:

- Example of an event shape: energy-energy correlation (EEC)
 - Goes back to definition in e⁺e⁻ Basham, Brown, Ellis, Love, PRL41 (1978) 1585; PRD 19 (1979) 2018.
 - ➡ Here specialised to pp collisions → only transverse momenta (TEEC)
 - Measures E_T weighted azimuthal differences:

Event shape: TEEC $\propto \alpha_s$

inar

Multiple

bins in H_T

ATEEC $\alpha_{\rm s}(m_Z) = 0.1185 \pm 0.0009 \; (\text{exp.})^{+0.0025}_{-0.0012} \; (\text{theo.})$

Remark: Reduction in MHO uncertainty smaller than maybe anticipated

Sudakov peak of DY Z p_T

Ratio observables

Higher multiplicity

- Aim to reduce or eliminate impact of systematic effects
- Useful for i.a.:
 - Determination of $\alpha_s(m_z)$ & test of running of $\alpha_s(Q)$
 - MC generator comparison & tuning
 - Investigation of jet size R dependence
 - Search for new physics

- Aim to reduce or eliminate impact of systematic effects
- Useful for i.a.:
 - Determination of $\alpha_s(m_z)$ & test of running of $\alpha_s(Q)$
 - MC generator comparison & tuning
 - Investigation of jet size R dependence
 - Search for new physics
- Often independent of luminosity
- Reduced or eliminated sensitivity to systematic effects

- Aim to reduce or eliminate impact of systematic effects
- Useful for i.a.:
 - Determination of $\alpha_s(m_z)$ & test of running of $\alpha_s(Q)$
 - MC generator comparison & tuning
 - Investigation of jet size R dependence
 - Search for new physics
- Often independent of luminosity
- Reduced or eliminated sensitivity to systematic effects
- Correlations between numerator & denominator
- Often multi-scale problem → more complicated scale dependence
- Also reduced sensitivity to desired effect

Sensitivity vs. systematic effects ETP

Seminar

Sensitivity vs. systematic effects ETP

Sensitivity vs. systematic effects ETP

3- to 2-jet ratios

Multijet azimuthal correlation

- Ratio observable differential in jet p_T, where:
 - Numerator counts no. of neighbouring jets with minimal p_T within azimuthal distance 2π/3 < ΔΦ < 7π/8 → enforces ≥ 3-jet configuration</p>
 - Denominator counts all jets in p_T bin

$$R_{\Delta\phi}(p_{\rm T}) = \frac{\sum_{i=1}^{N_{\rm jet}(p_{\rm T})} N_{\rm nbr}^{(i)}(\Delta\phi, p_{\rm Tmin}^{\rm nbr})}{N_{\rm jet}(p_{\rm T})}$$

$$R_{\Delta\phi}(p_T) \propto \alpha_s$$

CMS, EPJC 84 (2024) 842.

Requires 3-jet NNLO

ATLAS: $R_{\Delta\phi}(H_T)$

- Similar observables previously used by
 - → DO: $R_{\Delta R}(p_T)$ DO, PLB 718 (2012) 56.
 - ATLAS, PRD 98 (2018) 092044.

Multijet azimuthal correlation

- Ratio observable differential in jet p_T, where:
 - Numerator counts no. of neighbouring jets with minimal p_T within azimuthal distance 2π/3 < ΔΦ < 7π/8 → enforces ≥ 3-jet configuration</p>
 - → Denominator counts all jets in p_T bin

$$R_{\Delta\phi}(p_{\rm T}) = \frac{\sum_{i=1}^{N_{\rm jet}(p_{\rm T})} N_{\rm nbr}^{(i)}(\Delta\phi, p_{\rm Tmin}^{\rm nbr})}{N_{\rm jet}(p_{\rm T})}$$

$$R_{\Delta\phi}(p_T) \propto \alpha_s$$

CMS, EPJC 84 (2024) 842.

Nice feature: Equivalent definition with 2D quantity N(p_T,n) counting neighbouring jets

$$R_{\Delta\phi}(p_{\rm T}) = \frac{\sum_{n} nN(p_{\rm T}, n)}{\sum_{n} N(p_{\rm T}, n)}$$

enables unfolding accounting for all correlations

Numerator: 2 $2\pi/3 < \Delta \phi, 1 < 7\pi/8$ $R_{\Delta\phi}(p_{\mathrm{T}})$ entries $2\pi/3 < \Delta \phi, 2 < 7\pi/8$

 Numerator: 1 $2\pi/3 < \Delta \phi, 1 < 7\pi/8$ $\Delta \phi$, $2 < 2\pi/3$

Numerator: 1 $2\pi/3 < \Delta\phi, 1 < 7\pi/8$ $\Delta \phi$, $2 < 2\pi/3$

Denominator: 3

CMS, EPJC 84 (2024) 842.

68

K. Rabbertz

 $p_{T,2}$

Numerator: 0

Denominator: 2

 $\Delta \phi \approx \pi$

University of Oxford, UK, 11.02.2025

Seminar

So far only NLO \rightarrow huge MHO uncertainty $\alpha_s(m_Z) = 0.1177 \pm 0.0028$ (all Significant DDF). $^{+0.0114}_{-0.0068}(\mathrm{scl})$ **Significant PDF dependence**

K. Rabbertz

University of Oxford, UK, 11.02.2025

Seminar

N-point E-E correlators in jets

Jet substructure variable representing correlations of energy flow inside jets

2-point energy correlators

$$E2C = \frac{d\sigma}{dx_L} = \sum_{i,j}^n \int d\sigma \frac{E_i E_j}{E_{jet}^2} \delta \left(x_L - \Delta R_{ij} \right)$$

• multiple entries, e.g. $n=3 \rightarrow 9$ pairs inside jet

weight distance

University of Oxford, UK, 11.02.2025

Seminar

N-point E-E correlators in jets

Jet substructure variable representing correlations of energy flow inside jets

2-point energy correlators

$$E2C = \frac{d\sigma}{dx_L} = \sum_{i,j}^n \int d\sigma \underbrace{\frac{E_i E_j}{E_{jet}^2}}_{ijet} \delta\left(x_L - \Delta R_{ij}\right)$$

• multiple entries, e.g. $n=3 \rightarrow 9$ pairs inside jet

weight distance

N-point E-E correlators in jets

Jet substructure variable representing correlations of energy flow inside jets

3-point energy correlators

✤ e.g. n=3 → 27 triplets inside jet

 $x_L = \max \Delta R_{ij}, \Delta R_{jk}, \Delta R_{ki}$

University of Oxford, UK, 11.02.2025

Seminar
N-point E-E correlators in jets

Jet substructure variable representing correlations of energy flow inside jets

3-point energy correlators

• e.g. n=3 \rightarrow 27 triplets inside jet

 $x_L = \max \Delta R_{ij}, \Delta R_{jk}, \Delta R_{ki}$

- 2016 data comprising 36.3 fb⁻¹
- Series of single jet triggers with lowest p_T threshold 60 GeV
- Dijet event selection with:
 - Anti-kT jets R=0.4
 - → $p_T > 97$ GeV, |η| < 2.1 → good momentum resolution
 </p>
 - → $|\Delta \Phi| > 2$ → back-to-back jets
 - Only two leading jets used
- All particle candidates with $p_T > 1$ GeV used for E2C & E3C
- Iterative unfolding with early stopping (D'Agostini)
 - Jet matching efficiency 99%
 - For particle candidates more problematic

→ largest uncertainty on EEC from MC modelling!

As ΔR goes smaller: perturbative region \rightarrow confinement \rightarrow free hadron

Transition depends on jet p_T bin, dashed lines move to the left with p_T up

As ΔR goes smaller: perturbative region \rightarrow confinement \rightarrow free hadron

Transition depends on jet p_{T} bin, dashed lines move to the left with p_{T} up

CMS, PRL 133 (2024) 071903.

Comparison to PS MC

Example of lowest p_{T} bin out of eight \rightarrow 1784 GeV

E2C

E3C

From uncertainty to interesting new observable to study vs. PS models

K. Rabbertz

University of Oxford, UK, 11.02.2025

Seminar

77

- Focus on perturbative region:
 - Comparison to NLO+NNLL_{approx}
 - Use ratio E2C / E3C $\rightarrow \propto \alpha_s(Q) \ln R + \mathcal{O}(\alpha_s^2)$
 - Effects of e.g. gluon vs. quark jet expected to cancel $\rightarrow \alpha_s(Q)$ (NLO)

K. Rabbertz

University of Oxford, UK, 11.02.2025

- Focus on perturbative region:
 - Comparison to NLO+NNLL_{approx}
 - Use ratio E2C / E3C $\rightarrow \propto \alpha_s(Q) \ln R + \mathcal{O}(\alpha_s^2)$
 - **•** Effects of e.g. gluon vs. quark jet expected to cancel $\rightarrow \alpha_s(Q)$ (NLO)

- LHC at 7, 8, and 13 TeV enabled to test $\alpha_s(Q)$ up to $Q \sim 7$ TeV
- LHC results reached $\Delta \alpha_s(M_z) \sim 0.5\%$ experimentally
- LHC theory uncertainty still leads to $\Delta \alpha_s(M_z) \sim 1.5\%$ in total (mostly)
- Still more theory understanding required
- Novel ideas like energy-energy correlators in jets (or Z p_T) very promising, need some more experience

Thank you for your attention!

Thank you very much to the organisers for the invitation to this very special place

