15th VIENNA CENTRAL EUROPEAN SEMINAR
 ON PARTICLE PHYSICS AND QUANTUM FIELD THEORY
 Precision Physics at the LHC

Jets and α_s Experimental status

Klaus Rabbertz, KIT (on behalf of ATLAS & CMS)

Outline

- Motivation
- Jet-like measurements
 - Cross sections
 - Ratios
 - Normalised distributions
- Issues & perspectives
- Summary & outlook

Jets at the LHC

Abundant production of jets:

 Jets at hadron colliders provide the highest reach ever to determine the strong coupling constant at high scales Q
 Also learn about hard QCD, the proton structure, non-perturbative effects,

and electroweak effects at high Q

Jets at the LHC

Abundant production of jets:

 \Rightarrow Extract $\alpha_s(M_z)$, the least precisely known fundamental constant!

Jets at the LHC

- Determination of $\alpha_s(M_2)$ in single-parameter fit
- Test consistency of running of $\alpha_s(Q)$
- Multi-parameter fit of α_s(M_z) & PDFs

All inclusive

Large transverse momenta

Relevant ATLAS & CMS measurements:

EPJC 73 (2013) 2509; JHEP 02 (2015) 153; JHEP 09 (2017) 020; JHEP 05 (2018) 195. <u>CMS:</u> PRD 87 (2013) 112002; PRD 90 (2014) 072006; EPJC 75 (2015) 288; EPJC 76 (2016) 265; EPJC 76 (2016) 451; JHEP 03 (2017) 156.

Klaus Rabbertz

Vienna, Austria, 29.11.2019

VCES Vienna 2019

7

Inclusive jets: cross section

Overall agreement with predictions of QCD at NLO over many orders of magnitude in cross section and even beyond 2 TeV in jet p_{τ} and for rapidities |y| up to 3 ~ 5 at \sqrt{s} = 2.76, 7, 8, and 13 TeV.

Here: anti-k, R=0.4, 13 TeV

Data vs. NLO pQCD x non-pert. x EW corrections

Inclusive jets: theory corrections

anti-kt, R=0.4, 13 TeV, |y| < 0.5

Nonperturbative correction factors:

- estimated from tuned MC event generators
- uncertainty of 5 15% at p_{τ} = 100 GeV
- strongly dependent on jet size R less important at high $p_{\scriptscriptstyle T}$

Electroweak correction factors:

- calculated perturbatively
- uncertainty small
- strongly dependent on jet rapidity y
- very important at high p_{T}

Inclusive jets: theory corrections

anti-kt, R=0.4, 13 TeV, |y| < 0.5

Nonperturbative correction factors:

- estimated from tuned MC event generators
- uncertainty of 5 15% at p_{τ} = 100 GeV

- strongly dependent on jet size R - less important at high $p_{\scriptscriptstyle T}$

Electroweak correction factors:

- calculated perturbatively
- uncertainty small
- strongly dependent on jet rapidity y
- very important at high p_{T}

Inclusive jets: NNLO & scale choice

Inclusive jets: α

12

Inclusive jets: $\alpha_s \& PDFs$

Simultaneous fit of α & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

Reduced uncertainties of gluon PDF

CMS results for $\alpha_s(M_z)$ at NLO

Orange shading: external PDF sets Bluish shading: PDF fit incl. HERA data

√s [TeV]	lum [fb ⁻¹]	$\alpha_{s}(M_{z})$	exp NP PDF	scale
7	5.0	0.1185	35	+53 -24
8	19.7	0.1164	+29 -33	+53 -28
7	5.0	0.1192	+23 -19	+24 -39
8	19.7	0.1185	+19 -26	+22 -18

Question: How to deal with uncertainty of Missing higher orders (aka scale uncertainty) in PDF fits? First progress → e.g. NNPDF, EPJC79 (2019) 931.

Vienna, Austria, 29.11.2019

VCES Vienna 2019

Large masses

Relevant ATLAS & CMS measurements:

Klaus Rabbertz

Vienna, Austria, 29.11.2019

<u>ATLAS:</u> JHEP 05 (2014) 059; JHEP 05 (2018) 195. <u>CMS:</u> PRD 87 (2013) 112002; EPJC 77 (2017) 746.

VCES Vienna 2019

14

Triple-differential dijets

Most measurements done with respect to dijet mass and either max. rapidity $|y|_{max}$ (CMS) or rapidity separation y^{*} (ATLAS). One CMS result on $\alpha_s(M_z)$:

Illustration of dijet event topologies

Triple-differential dijets

Multi-jets and α_s

Higher multiplicity

Relevant ATLAS & CMS measurements:

Klaus Rabbertz

Vienna, Austria, 29.11.2019

ATLAS: EPJC 75 (2014) 288. CMS: EPJC 73 (2013) 2604; EPJC 75 (2015) 186; PAS-SMP-16-008 (2017).

VCES Vienna 2019

Cross sections ~ α_{2}^{3}

- As compared to α_s^2 :
 - Higher sensitivity
 - Smaller statistical precision
 - Smaller dynamical range
 - More scale choices
 - Theory at NNLO not available

3-jet mass

- Determination of $\alpha_s(M_2)$ in single-parameter fit
- Test running of α_s(Q) (reduced PDF dependence)
- Some reduction in sensitivity
- But cancellation of many systematic effects
- More scale choices

Sensitivity vs. systematic effects

3- to 2-jet ratios

Running of $a_s(Q)$

Running of $a_s(Q)$

Normalised distributions

Relevant ATLAS & CMS measurements:

Klaus Rabbertz

Vienna, Austria, 29.11.2019

<u>ATLAS:</u> PLB 750 (2015) 427; EPJC 77 (2017) 872; PRD98 (2018) 092004.

VCES Vienna 2019

25

Pros & cons similar as for cross section ratios ...

- Determination of $\alpha_s(M_2)$ in single-parameter fit
- Test running of $\alpha_s(Q)$ (reduced PDF dependence)
- Some reduction in sensitivity
- But cancellation of many systematic effects
- More scale choices

Transverse energy-energy correlation

Klaus Rabbertz

Vienna, Austria, 29.11.2019

(A)TEEC in bins of Q = $(p_{T_1}+p_{T_2})/2$

Dijet azimuthal decorrelation

Determine $\alpha_s(\mathbf{Q})$ from additonal parton branchings separated in Φ around the two leading jets. Binning in sum of scalar transverse momentum H_T and rapidity separation y^{*}.

$$R_{\Delta\phi}(H_T, y^*; \Delta\phi_{\max}) = \frac{\frac{d^2\sigma_{\text{dijet}}(\Delta\phi_{\text{dijet}} < \Delta\phi_{\max})}{dH_T dy^*}}{\frac{d^2\sigma_{\text{dijet}}(\text{inclusive})}{dH_T dy^*}}$$

 $R_{\Delta\phi} \propto \alpha_s$

2

 $\Delta \phi_{\text{dijet}} = \pi$

If $\Delta \phi_{max}$ in 3-jet region

c) $2 \rightarrow 4$ $2 \rightarrow 1$ $3 \rightarrow 4$ $0 \leq \Delta \phi$

 $0 \leq \Delta \phi_{dijet} \leq \pi$

Wobisch et al., JHEP 01 (2013) 172; KR, M. Wobisch, JHEP 12 (2015) 024.

Klaus Rabbertz

Vienna, Austria, 29.11.2019

VCES Vienna 2019

$R_{\Delta\phi}$ in bins of $Q = H_T/2$

Wrap up & concerns

$\alpha_s(M_Z)$ results from ATLAS and CMS

- Correlations to LHC data already in PDF fits
- Correlations between α_s(M_z), M_{top},
 g(x)
- Gu)estimation of nonperturbative effects:
 - Different event generators & tunes, different orders, different ...
 - Incoherent among ATLAS, CMS, Tevatron, ...
- Conventional scale variation by factors of ½, 2 and 1σ assumption
- Central scale choice ...!

Scale choices

 $\hat{H}_{\mathrm{T}}?$ $\mu_0 = p_{T,1},$ $(p_{\mathrm{T,jet}},$ **Inclusive jets** $\mu_0 = p_{\mathrm{T},1}, \quad p_{\mathrm{T},1} \cdot \exp(0.3y^*)?$ $\mu_0 = (p_{\mathrm{T},1} + p_{\mathrm{T},2})/2, \quad (m_{jj})/2?$ **Dijets** $\mu_{0} = p_{T,3}, \qquad (p_{T,1} + p_{T,2}) | 2, \qquad m_{jjj} | 2?$ **3-jets Ratios Shapes** $\mu_0 = \sqrt{M_Z^2 + p_{\rm TZ}^2 + H_{\rm T,jet}}?$ V+jets

Perspectives & educated guesses

- Experiment:
 - **Done:** Observables $\sigma \sim \alpha_s^2$, α_s^3 ; $R_{3/2} \sim \alpha_s$; 7 TeV; full phase space
 - Mostly done, 8 TeV data: Some reduction in experimental uncertainty
 - Partially done, 13 TeV: Final precision?
 - Best JEC phase space: Further reduction by some permille?
 - Other observables: Ratios (n+m) / n jets (incl. γ, W, Z),
 Normalized cross sections (A)TEEC, $R_{\Delta\Phi}$, $R_{\Delta R}$ (→ D0)
- Theory:
 - Scales: NNLO important → reduction by 2 3 percent!?
 - PDFs: Much improved after LHC I, also HERA 2 data available
 - Better known gluon (Attention circularity jets \rightarrow g(x) & jets $\rightarrow \alpha_s$)
 - Fits combining observables at various \sqrt{s} to disentangle g(x), M_t, α_s
 - NNLO ratios?

NP effects?

Klaus Rabbertz

Vienna, Austria, 29.11.2019

PDG Summary

VCES Vienna 2019

34

PDG Summary

- LHC at 7 TeV and 8 TeV enables measurements up to scales of 2 TeV
- I3 TeV data yet to be fully evaluated
- Theory at NNLO QCD + electroweak corrections are a must!
- Typical uncertainties on $\alpha_s(M_z)$:
 - → Experimental: ~ 1 2 %
 - → PDF: ~ 1 2 %
 - Scale: 3-5% → 1-2% at NNLO(?) but still an issue. Central scale choice?
 - Nonpert. Effects: 1 % (really?)
- Beyond one experiment (see also → LHC EW Working Group):
 - Combined fits of ATLAS & CMS (LHC) measurements
 - Combined fits of HERA, Tevatron & LHC measurements
- CHALLENGE: α_s(M_z) at 1% or better from hadron colliders!

Thank you for your attention and the invitation to speak here!

Klaus Rabbertz

Vienna, Austria, 29.11.2019

VCES Vienna 2019