

521. WE-Heraeus-Seminar

QCD at high and highest scales

- Introduction
- The Observables
 - Anything
 - Particles
 - Shapes
 - Jets
 - Accompanying Bosons
- The strong Coupling
- Summary and Outlook

Event Rates at the LHC

Event Rates at the LHC

30 years ago ...

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda = 0.5$ GeV while $\Lambda = 0.15$ GeV would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13]. UA2, PLB 118 (1982).

Klaus Rabbertz

Bad Honnef, 10.12.2012

7

Some Progress

30 years ago ...

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda = 0.5$ GeV while $\Lambda = 0.15$ GeV would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13]. UA2, PLB 118 (1982).

... and today !

Klaus Rabbertz

High Altitude & High Energy

Cosmic ray shower

Bad Honnef, 10.12.2012

521. WE-Heraeus-Seminar

10

DESY

The total Cross Section

$$\sigma_{\rm el} = (25.1 \pm 1.1) \,\mathrm{mb}$$

$$\sigma_{\rm tot} = (98.0 \pm 2.5) \,\mathrm{mb}$$

Related via optical theorem; independent of luminosity if el. and inel. can be measured for forward scattering

Helps clarifying source of so-called knee in energy spectrum of cosmic ray showers above 10¹⁵eV

LHC: High energy \rightarrow 2.5 10¹⁶eV No indication of change in fundamental cross sections \rightarrow other origin

See also: R. Engel et al., AnnRevNPS (2011).

$$\sqrt{s} = 7 \text{TeV} \stackrel{\wedge}{=} E_{\text{p,lab}} = 2.5 \cdot 10^{16} \text{eV}$$

Klaus Rabbertz

Bad Honnef. 10.12.2012

521. WE-Heraeus-Seminar

Charged Particle Density

Usually the first measurement performed, requires low to no pile up Important to tune MC event generators!

Underlying Event -Traditional Approach

Underlying Event -Traditional Approach

15

Ratio of MC to data, no MC worked really well!

Event Shapes

Bad Honnef, 10.12.2012

Klaus Rabbertz

521. WE-Heraeus-Seminar

17

Originally: Event Shapes in e⁺e⁻ (and ep) Played a key role in the discovery of the gluon at DESY in 1978!

Old but still-used definition since collinear and infrared safe:

Thrust S. Brandt et al., PL12 (1964), E. Farhi, PRL39 (1977).

Central Transverse Thrust

Basic description by MC ok

Some deviations visible \rightarrow good for tuning!

Great tools in e+e-, known to NNLO+NLLA resummation \rightarrow precise determination of α_s

Dissertori et al, JHEP0908 (2009).

Also used successfully in ep

<u>In hh collisons:</u> - only NLO so far - in praxis, need to restrict rapidity range: |η| < η_{max}

→ central transverse thrust
→ spoils resummation

Banfi et al., JHEP06 (2010).

Klaus Rabbertz

Bundles of Particles

21

Klaus Rabbertz

Bad Honnef, 10.12.2012

521. WE-Heraeus-Seminar

Jet Algorithms

22

Jet 2¹⁰¹m **Primary Goal:** Jet 3 Detector Establish a good correspondence **Deposited Energy:** Hadronic between: Electromagnetic - detector measurements - final state particles and Track Hits - hard partons 10⁻¹⁵m Hadrons Two classes of algorithms: Mesons: Barvons: Pions, Protons. 1. Cone algorithms: "Geometrically" Kaons, Neutrons. etc. etc. assign objects to the leading energy flow objects in an event <10⁻¹⁸m Gluon Quark (favorite choice at hadron colliders) Partons 2. Sequential recombination: Repeatedly combine closest pairs of objects (favorite choice at e^+e^- & ep colliders) Proton Proton **Standard at Tevatron: MidPoint Cone** Quark **Standard at LHC:** anti-kT CDF also looked at kT; at LHC also kT, Cam/AC, SISCone in use Jet 1 Klaus Rabbertz Bad Honnef. 10.12.2012 521. WE-Heraeus-Seminar

Jet Algo Desiderata --- Today

- Theory:
- Infrared safety
- Collinear safety
- Longitudinal boost invariance (recombination scheme!)
- → Boundary stability (→ 4-vector addition, rapidity y)
- Order independence (parton, particle, detector)
- Ease of implementation (standardized public code: fastjet)

Many of these points were red, i.e. not fulfilled, in times just before the LHC!

Experiment:

- Ease of calibration
- Insensitivity to pile-up
- Minimal resolution smearing and angular biasing
- Maximal reconstruction efficiency
- Computational efficiency and predictability (use in reconstruction, trigger)
- Detector independence
- Fully specified
 (fastjet) Cacciari et al., EPJC72 (2012).
- Ease of implementation (standardized public code: fastjet)

Jet Algorithms at LHC

25

Jet Areas can be measured!

More useful when not forced into

fixed shape (cone) but adaptable

Measured jet area distribution k_{τ} algorithm with R = 0.6 **Naively expect for cone algorithm** $R = 0.6 \rightarrow A = \pi R^2 = 1.1$

Underlying Event -Jet Areas

Ratio of MC to data, no MC worked really well!

Jet Energy Scale

Dominant uncertainty for measurements of jet cross sections ... Enormous progress ... in two years LHC arrived where it took O(10) years at Tevatron! QCD at hadron colliders is becoming precision physics.

But: New situation in 2012 at 8 TeV with many pile-up collisions!

ATLAS Z $\rightarrow \mu\mu$ candidate with 25 reconstructed primary vertices:

Jet Analysis Uncertainties

- Experimental Uncertainties (~ in order of importance):
 - Jet Energy Scale (JES)
 - Noise Treatment
 - Pile-Up Treatment
 - Luminosity
 - Jet Energy Resolution (JER)
 - Trigger Efficiencies
 - Resolution in Rapidity
 - Resolution in Azimuth
 - Non-Collision Background

- Theoretical Uncertainties:
 - PDF Uncertainty
 - pQCD (Scale) Dependence
 - Non-perturbative Corrections
 - PDF Parameterization
 - NLO-NLL matching schemes
 - Electroweak Corrections
 - Knowledge of α_s(M_z)

There is a lot to learn here from Comparison to actual measurements!

High transverse Momenta

Proton

Klaus Rabbertz

Proton

Non-perturbative Corrections

Inclusive Jet Ratios of 2.76 / 7

33

34

High Masses

Klaus Rabbertz

 $\propto \alpha_s^2$

 $d^2\sigma$

 $\overline{dM_{JJ}d[|y|_{max}, y^*]}$

anti-kT, R=0.7, 7 TeV, 2011

Again agreement with predictions of QCD over many orders of magnitude!

anti-kT, R=0.6, 7 TeV, 2011

6

Quantities sensitive to potential deviations from DGLAP evolution at small x Some MC event generators run into problems ... but also BFKL inspired ones! Large y coverage needed, also useful for WBF tagging jets.

Data 2010 ATLAS Theory / Data HEJ (parton level) Forward/backward selection POWHEG + PYTHIA Q₀ = 20 GeV POWHEG + HERWIG $240 \le \overline{p}_{-} < 270 \text{ GeV}$ 0.5 Tress deserves 210 ≤ p_ < 240 GeV 0.5 180 ≤ p₊ < 210 GeV 0.5 150 ≤ p_ < 180 GeV 0.5 2 3 5 Δy ATLAS, JHEP09, 2011

Klaus Rabbertz

Most forward-backward dijet selection

All possible dijet pair distances over leading dijet pair distance

Jet Substructure

39

To Higgs or not?

300

E^γ_T (GeV)

Bad Honnef, 10.12.2012

d'Enterria, Rojo, arXiv:1202.1762

Klaus Rabbertz

521. WE-Heraeus-Seminar

40

1000

 $\mathbf{E}_{\mathbf{T}}^{\gamma}$ (GeV)

Isolated Prompt Photons

- Sensitive to the gluon density in the proton.
- In agreement with NLO (JetPhox) from ~25 up to 400 GeV, |η| < 2.5
- Limiting factor: Scale uncertainties in theory

JetPhox, Catani et al., JHEP05, 2002

- Irreducible background to Higgs $\to \gamma\gamma$
- In agreement with NLO in p_τ, and mass spectra above ~50 GeV up to 400 GeV

New from ATLAS: Now much better described by 2γNNLO

43

Klaus Rabbertz

Bad Honnef, 10.12.2012

In general agreement between data and theory @ NLO up to 4 jets

44

≥4

>3

ALPGEN

∧ SHERPA

BLACKHAT-SHERPA

PYTHIA

α_s at High Scales

- Avoids direct dependence on PDFs and the RGE of QCD
- Use cross-section ratios!
- reduces other theor. and exp. uncertainties along the way
- eliminates luminosity dependence (normalization)
- Choices of CMS:
 - Ratio of inclusive 3-jet to 2-jet production
 - Average dijet p_τ as scale

Other 3-jet observables possible, see e.g. propositions by D0

Klaus Rabbertz

Bad Honnef, 10.12.2012

521. WE-Heraeus-Seminar

Measurement of Ratio R₃₂

Determination of α_s (NLO)

Although only one point shown here extraction works equally well in e.g. four subranges

PDF uncertainty: Repeat fit for each replica \rightarrow get estimators for μ and σ Scale uncertainty: Repeat fit for all six variations \rightarrow get maximal deviation

 $\alpha_s(M_Z) = 0.1143 \pm 0.0064 \,(\text{exp}) \pm 0.0019 \,(\text{PDF}) \pm_{0.0000}^{0.0050} \,(\text{scale})$

Bad Honnef, 10.12.2012

α_s from inclusive Jets (NLO)

- **CDF:** $\alpha_s(M_Z) = 0.1178 \pm 0.0001 (\text{stat})^{+0.0081}_{-0.0095} (\text{expt.syst})$
- **D0:** $\alpha_s(M_Z) = 0.1161^{+0.0041}_{-0.0048}$ (total)
- M/S: $\alpha_s(M_Z) = 0.1151 \pm 0.0001 (\text{stat}) \pm 0.0047 (\text{expt.syst})^{+0.0080}_{-0.0073} (\text{p}_{\text{T}}, \text{R}, \mu, \text{PDF}, \text{NP})$

Attention: Evolution of PDFs from low to high Q assumes the validity of the renormalization group equation (RGE).

α_s World Summary

- We have a powerful accelerator and beautifully working detectors
- Data quantity and quality at the LHC open up new regimes in phase space and precision to be exploited
 - New measurements at highest scales and up to high y
 - PRECISION measurements
- We have a plethora of new N²LO calculations (plus showers) and only start to exploit all the new possibilities
- Interplay between strong and electroweak interactions becomes interesting at the TeV scale
- Carefully check everything for new features!

- Some people describe the LHC as a
 - SUSY search machine

- Some people describe the LHC as a
 - SUSY search machine
 - Higgs-like boson discovery machine

54

- Some people describe the LHC as a
 - SUSY search machine
 - Higgs-like boson discovery machine
 - top factory

- Some people describe the LHC as a
 - SUSY search machine
 - Higgs-like boson discovery machine
 - top factory
- I hope I could convince you that it is also a

- Some people describe the LHC as a
 - SUSY search machine
 - Higgs-like boson discovery machine
 - top factory
- I hope I could convince you that it is also a
 - high-scale jet laboratory

Make your choice and have fun. Thank you for your attention!

57

IC-SM Problem

Iterative Cone with Split/Merge (IC-SM)

- \rightarrow not all objekts end up in jets, e.g. when no starting cone close enough (dark jets)
- \rightarrow collinear-unsafe because of minimal seed pT
- \rightarrow infrared-unsafe ...

Fix Trial: MidPoint Cone \rightarrow Additionally investigate all mid-points between seed cones \rightarrow again unsafe, shows up in more complex topologie Found late: Safe cone algorithm: Seedless Infrared-Safe Cone (SISCone) \rightarrow needs ~ 2 orders of magnitude more computing time \rightarrow rarely used

Jetography, G. Salam, hep-ph/0906.1833

Bad Honnef, 10.12.2012

Kinematic Plane

Kinematic plane of process scale² vs. x

Klaus Rabbertz

Bad Honnef, 10.12.2012

Photons and PDFs

- Were abandoned for PDF fits due to

discrepancies with fixed target experiments

Kinematic plane including photon data

Comparison of unfolded data, CMS 3.2/pb and ATLAS 35/pb, to various MC event generators

Basic description ok, but improvements necessary

Combine measurements of different detector components
Account for detector particularities with respect to particle type

Klaus Rabbertz

Bad Honnef, 10.12.2012

Bad Honnef, 10.12.2012

64

Jets @ $\sqrt{s} = 8 \text{ TeV}$

• Inclusive jet pT (left) and dijet mass (right) spectrum for *pp* collisions at $\sqrt{s} = 8$ TeV for anti-k_t R=0.4 jets.

• Comparison with $\sqrt{s} = 7$ TeV 2011 data and to Pythia 6 (Pythia 8) MC predictions at $\sqrt{s} = 7$ TeV ($\sqrt{s} = 8$ TeV).

 \rightarrow lower center of mass energy in 2011; therefore, lower cross section.

Bertrand Chapleau

ICHEP 2012, Melbourne, July 4-11 2012

NLO and matched Showers

Electroweak Corrections

Dijet Mass ATLAS

3-Jet Mass D0

<u>Dijets in pp collisions:</u>

 $\Delta \phi$ dijet = $\pi \rightarrow$ Exactly two jets, no further radiation

 $\Delta \phi$ dijet small deviations from $\pi \rightarrow$ Additional soft radiation outside the jets

 $\Delta \phi$ dijet as small as $2\pi/3 \rightarrow$ One additional high-pT jet

 $\Delta \phi$ dijet small – no limit \rightarrow Multiple additional hard jets in the event

 $\Delta \phi_{\text{dilet}}$

71

Dijet Azimuthal Decorrelation

