521. WE-Heraeus-Seminar

QCD at high and highest scales

GEFÖRDERT VOM

Klaus Rabbertz, KIT
Klaus Rabbertz
Bad Honnef, 10.12.2012
521. WE-Heraeus-Seminar

Today's Menu

- Introduction
- The Observables
* Anything
* Particles
* Shapes
* Jets
* Accompanying Bosons
- The strong Coupling
- Summary and Outlook

Components of a Collision

The central Pixel resolved ...

Event Rates at the LHC

Event Rates at the LHC

Assuming here: $L=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Total cross section

> Jets: $\sigma_{\text {jet }}\left(E_{T}^{\text {jet }}>100 \mathrm{GeV}\right)$ or Photons: $\sigma_{V}\left(E_{T}{ }^{\mathrm{r}}>20 \mathrm{GeV}\right)$ $\sim 400 / \mathrm{s}$

W \& Z bosons: σ_{w}, σ_{z}
$\sim 100 / \mathrm{s}, 33 / \mathrm{s}$

$$
\text { Jets: } \sigma_{\mathrm{jet}}\left(\mathrm{E}_{T}^{\text {jet }}>350 \mathrm{GeV}\right)
$$

Top quarks (σ_{tt})
~ $6 / \mathrm{min}$ Higgs ??? Wrong mass Older version of Stirling-Plot

Some Progress

30 years ago ...

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda=0.5 \mathrm{GeV}$ while $\Lambda=0.15 \mathrm{GeV}$ would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13].

Some Progress

30 years ago ...

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda=0.5 \mathrm{GeV}$ while $\Lambda=0.15 \mathrm{GeV}$ would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13].

... and today!

Anything

Happens elsewhere all the time

High Altitude \& High Energy

Proton

Cosmic ray shower

The total Cross Section

$$
\begin{aligned}
\sigma_{\mathrm{el}} & =(25.1 \pm 1.1) \mathrm{mb} \\
\sigma_{\mathrm{inel}} & =(72.9 \pm 1.5) \mathrm{mb} \\
\sigma_{\mathrm{tot}} & =(98.0 \pm 2.5) \mathrm{mb}
\end{aligned}
$$

Related via optical theorem; independent of luminosity if el. and inel. can be measured for forward scattering

Helps clarifying source of so-called knee in energy spectrum of cosmic ray showers above $10^{15} \mathrm{eV}$

LHC: High energy $\rightarrow 2.5 \quad 10^{16} \mathrm{eV}$ No indication of change in fundamental cross sections \rightarrow other origin

$$
\sqrt{s}=7 \mathrm{TeV} \triangleq E_{\mathrm{p}, \mathrm{lab}}=2.5 \cdot 10^{16} \mathrm{eV}
$$

Charged Particles (Tracks)

High Multiplicity

Proton

Charged Particle Density

Usually the first measurement performed, requires low to no pile up Important to tune MC event generators!

Vs Dependence of particle density at central $\boldsymbol{\eta}$
Ratios vs. 900 GeV
Extrapolation of tunes to higher

\checkmark s give too low multiplicity

Underlying Event Traditional Approach

Outgoing Parton
PT(hard)

MPI, BBR, ISR and FSR not uniquely differentiable

Measurement possibility: \rightarrow Charged particle and p_{T} sum densities in transverse region of leading jet of charged particles

Underlying Event Traditional Approach

Ratio of MC to data, no MC worked really well!

Conventional UE analysis, in the transverse plane. Charged particle density

Shapes

Event Shapes

Definition:

Transverse global thrust

Thrust

Thrust minor

$$
T_{\perp, g}=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{\perp, i} \cdot \vec{n}_{T}\right|}{\sum_{i} p_{\perp, i}}
$$

Redefine to get $\quad \tau_{\perp, g} \equiv 1-T_{\perp, g}$

linear ~ dijet

$$
\tau_{\perp, g} \rightarrow 0
$$

spherical ~ multijet
$\tau_{\perp, g} \rightarrow 1-2 / \pi$

Event Shapes

Originally: Event Shapes in $\mathrm{e}^{+} \mathrm{e}^{-}$(and ep) Played a key role in the discovery of the gluon at DESY in 1978!

Old but still-used definition since collinear and infrared safe:
Thrust S. Brandt et al., PL12 (1964),
E. Farhi, PRL39 (1977).

Definition:

Transverse global thrust

Thrust

Thrust minor

$$
T_{\perp, g}=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{\perp, i} \cdot \vec{n}_{T}\right|}{\sum_{i} p_{\perp, i}}
$$

Redefine to get

$$
\text { linear } \sim \text { dijet }
$$

$$
\tau_{\perp, g} \rightarrow 0
$$

$$
\begin{gathered}
\tau_{\perp, g} \equiv 1-T_{\perp, g} \\
\tau_{\perp, g} \rightarrow 1-2 / \pi
\end{gathered}
$$

Event Shapes

Originally:
Event Shapes in ${ }^{+}{ }^{-}$- (and ep) Played a key role in the discovery of the gluon at DESY in 1978!

Old but still-used definition since collinear and infrared safe: Thrust
S. Brandt et al., PL12 (1964), E. Farhi, PRL39 (1977).

At LHC: Transverse global thrust \rightarrow In praxis, need to restrict rapidity range: $|\boldsymbol{\eta}|<\boldsymbol{\eta}_{\text {max }} \rightarrow$ Transverse central thrust

$$
T_{\perp, g}=\max _{\vec{n}_{T}}^{\text {Thrust minor }} \frac{\sum_{i}\left|\vec{p}_{\perp, i} \cdot \vec{n}_{T}\right|}{\sum_{i} p_{\perp, i}}
$$

Redefine to get $\quad \tau_{\perp, g} \equiv 1-T_{\perp, g}$

$$
\begin{array}{cc}
\text { linear } \sim \text { dijet } & \text { spherical } \sim \text { multijet } \\
\tau_{\perp, g} \rightarrow 0 & \tau_{\perp, g} \rightarrow 1-2 / \pi
\end{array}
$$

Central Transverse Thrust

Basic description by MC ok
Some deviations visible \rightarrow good for tuning!

Great tools in e+e-, known to NNLO+NLLA resummation \rightarrow precise determination of $\boldsymbol{\alpha}_{s}$ Dissertori et al, JHEP0908 (2009).
Also used successfully in ep

In hh collisons:

- only NLO so far
- in praxis, need to restrict rapidity range: $|\boldsymbol{\eta}|<\boldsymbol{\eta}_{\text {max }}$
\rightarrow central transverse thrust
\rightarrow spoils resummation
Banfi et al., JHEP06 (2010).

$$
\tau_{\perp, C} \equiv 1-\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{\perp, i} \cdot \vec{n}_{T}\right|}{\sum_{i} p_{\perp, i}}
$$

Klaus Rabbertz
521. WE-Heraeus-Seminar

Bundles of Particles

Jet Algorithms

Primary Goal:

Establish a good correspondence

 between:- detector measurements
- final state particles and
- hard partons

Two classes of algorithms:

1. Cone algorithms: "Geometrically assign objects to the leading energy flow objects in an event (favorite choice at hadron colliders)
2. Sequential recombination: Repeatedly combine closest pairs of objects (favorite choice at $\mathrm{e}^{+} \mathrm{e}^{-}$\& ep colliders)

Standard at Tevatron: MidPoint Cone Standard at LHC: anti-kT

CDF also looked at kT; at LHC also kT, Cam/AC, SISCone in use
Jet 1

Jet Algo Desiderata --- Today

- Theory:
* Infrared safety
* Collinear safety
*Longitudinal boost invariance (recombination scheme!)
*Boundary stability (\rightarrow 4-vector addition, rapidity y)
*Order independence (parton, particle, detector)
* Ease of implementation (standardized public code: fastjet)

Many of these points were red, i.e. not fulfilled, in times just before the LHC!

- Experiment:
* Ease of calibration
* Insensitivity to pile-up
* Minimal resolution smearing and angular biasing
* Maximal reconstruction efficiency
* Computational efficiency and predictability
(use in reconstruction, trigger)
* Detector independence
* Fully specified (fastjet) Cacciarie eal., EPJCT2 (2012).
* Ease of implementation (standardized public code: fastjet)

Jet Algorithms at LHC

Jet Areas

Measured jet area distribution
k_{T} algorithm with $R=0.6$
Naively expect for cone algorithm $R=0.6 \rightarrow A=\pi R^{2}=1.1$

- Jet Areas can be measured!
- More useful when not forced into fixed shape (cone) but adaptable to event activity
* Measure the underlying event (UE)
* Subtract additional energy in jets due to pile-up collisions

Underlying Event Jet Areas

Ratio of MC to data, no MC worked really well!

Conventional UE analysis, in the transverse plane. Charged particle density

Jet Area UE analysis, whole event analyzed. Charged particle jets

Jet Energy Scale

Dominant uncertainty for measurements of jet cross sections ... Enormous progress ... in two years LHC arrived where it took $O(10)$ years at Tevatron! QCD at hadron colliders is becoming precision physics.

ATLAS from 5/fb (2011)

($Z \rightarrow e e$)+jet channel)

Jet Energy Scale and Pile Up

But:

New situation in 2012 at 8 TeV with many pile-up collisions!

ATLAS $Z \rightarrow \mu \mu$ candidate

 with 25 reconstructed primary vertices:
μ
CMS from 5/fb (7 TeV, 2011)

Jet Analysis Uncertainties

- Experimental Uncertainties
(\sim in order of importance):
* Jet Energy Scale (JES)
- Noise Treatment
\rightarrow Pile-Up Treatment
* Luminosity
* Jet Energy Resolution (JER)
* Trigger Efficiencies
* Resolution in Rapidity
* Resolution in Azimuth
* Non-Collision Background
- Theoretical Uncertainties:
* PDF Uncertainty
* pQCD (Scale) Dependence
* Non-perturbative Corrections
* PDF Parameterization
* NLO-NLL matching schemes
* Electroweak Corrections
* Knowledge of $\alpha_{s}\left(M_{z}\right)$
* \quad.

There is a lot to learn here from Comparison to actual measurements!

All Inclusive

High transverse Momenta

Proton

Proton

Inclusive Jets

Agreement with predictions of QCD over many orders of magnitude up to 2 TeV in jet p_{T}

For the use with PDFs see talk by M. Cooper-Sarkar.

anti-kT, R=0.6, 7 TeV, 2010

pQCD * non-perturbative corrections

ATLAS, PRD 86 (2012) 014022
CMS, PAS-QCD-11-004 (2012)
anti-kT, R=0.7, 7 TeV, 2011

Klaus Rabbertz
Bad Honnef, 10.12.2012

Non-perturbative Corrections

Recipe used at Tevatron \& LHC:

- take LO parton shower (PS) MC - derive corr. for non-pert. (NP) effects, i.e. multiple parton interactions and hadronization
\rightarrow assume PS effect small on NLO
\rightarrow assume NP effects similar for LO,NLO

Klaus Rabbertz

Observations:

- assumptions fine at central rapidity (not shown here)
- comparison to data ok
- NP corrections larger for $\mathrm{R}=0.7$ than 0.5
- for |y| > 2 PS effects visible

Figures courtesy of S.Dooling, H.Jung,
P.Gunnellini, P.Katsas, A.Knutsson
521. WE-Heraeus-Seminar

Inclusive Jet Ratios of 2.76 / 7

New result from ATLAS:

- cross sections at 2.76 TeV
- ratios to 7 TeV
- ratio to 7 TeV divided by theory prediction (NLO, CT10, X NP) Shown - study on PDF impact

At least partial cancellation

 of uncertainties\rightarrow more precise comparisons

Remark:

Other interesting ratios ... different jet sizes

ATLAS, CONF-2012-128

ATLAS

Preliminary
$\int L \mathrm{dt}=0.20 \mathrm{pb}^{-1}$
$\rho=\sigma_{\text {jet }}^{2.76 \mathrm{TeV}} / \sigma_{\text {jet }}^{7 \mathrm{TeV}}$
anti- $k_{t} \mathrm{R}=0.6$
Data with
-- statistical uncertaintySystematic uncertainties

NLO pQCD
\times non-pert. corr.
\triangle CT10
= MSTW 2008
=: : NNPDF 2.1
$=:$: HERAPDF 1.5

Dijets

High Masses

Dijet Mass

Again agreement with predictions of QCD over many orders of magnitude!

anti-kT, R=0.7, 7 TeV, 2011

Dijet Angular

Klaus Rabbertz
Bad Honnef, 10.12.2012

Dijets separated in Rapidity

Quantities sensitive to potential deviations from DGLAP evolution at small x

 Some MC event generators run into problems ... but also BFKL inspired ones! Large y coverage needed, also useful for WBF tagging jets.Most forward-backward dijet selection

All possible dijet pair distances over leading dijet pair distance

Klaus Rabbertz

Jet Substructure

Jet shape (left) and subjet multiplicity (right) sensitive to differences in quark and gluon initiated jets Can help also in differentiating boosted jets of heavy objects like Z' or t' ... see searches talks for more on such tools.

Klaus Rabbertz
Bad Honnef, 10.12.2012
521. WE-Heraeus-Seminar

(Di-)Photons

To Higgs or not?

Signal Process Fractions

Inclusive

Tevatron

LHC 14 TeV

Background: Non-prompt Photons from Decays, e.g. Π^{0}, η
d'Enterria, Rojo, arXiv:1202.1762
$\left(R_{\text {isol }}=0.4, \mathrm{E}_{\mathrm{T}}^{\text {nad }}<2 \mathrm{GeV}\right.$)
Tevatron, $\mathrm{p} \overline{\mathrm{p}} \rightarrow \gamma_{\mathrm{isol}}+\mathrm{X} @ \sqrt{\mathbf{s}}=1.96 \mathrm{TeV}, \mathrm{y}=\mathbf{0}$

$\left(R_{\text {isol }}=0.4, E_{T}^{\text {had }}<4 \mathrm{GeV}\right)$

Isolated

Bad Honnef, 10.12.2012

Isolated Prompt Photons

- Sensitive to the gluon density in the proton.

JetPhox, Catani et al., JHEP05, 2002

- In agreement with NLO (JetPhox) from ~25 up to $400 \mathrm{GeV},|n|<2.5$
- Limiting factor: Scale uncertainties in theory

ATLAS, PLB706, 2011:ATL-PHYS-PUB-2011-013
521. WE-Heraeus-Seminar

Di-Photons

- Irreducible background to Higgs \rightarrow YY - In agreement with NLO in p_{T}, and mass spectra above $\sim 50 \mathrm{GeV}$ up to 400 GeV

New from ATLAS:

Now much better described by 2 yNNLO

$$
\backslash \overline{\mathrm{s}}=7 \mathrm{TeV}, \mathrm{~L}=36 \mathrm{pb}^{-1}
$$

Boson + Jets

Proton

W/Z + Inclusive Jet Multiplity

In general agreement between data and theory @ NLO up to 4 jets

ATLAS, PRD85 (2012)

Multijets and α_{s}

α_{s} at High Scales

3-Jets and α
 s

- Avoids direct dependence on PDFs and the RGE of QCD
- Use cross-section ratios!
- \rightarrow reduces other theor. and exp. uncertainties along the way
- \rightarrow eliminates luminosity dependence (normalization)
- Choices of CMS:
\Rightarrow Ratio of inclusive 3-jet to 2-jet production
* Average dijet p_{T} as scale

$$
R_{32}=\frac{d \sigma_{3+} / d p_{\mathrm{T}}}{d \sigma_{2+} / d p_{\mathrm{T}}} \propto \alpha_{s}(Q)
$$

$$
Q=\left\langle p_{\mathrm{T} 1,2}\right\rangle=\frac{p_{\mathrm{T} 1}+p_{\mathrm{T} 2}}{2}
$$

- Other 3-jet observables possible, see e.g. propositions by D0

Measurement of Ratio R

Determination of α_{s} (NLO)

- Comparison to extractions from other hadron collider experiments
- Although only one point shown here extraction works equally well in e.g. four subranges

PDF uncertainty: Repeat fit for each replica \rightarrow get estimators for μ and σ Scale uncertainty: Repeat fit for all six variations \rightarrow get maximal deviation

$$
\alpha_{s}\left(M_{Z}\right)=0.1143 \pm 0.0064(\exp) \pm 0.0019(\mathrm{PDF}) \pm_{0.0000}^{0.0050}(\text { scale })
$$

α_{s} from inclusive Jets (NLO)

CDF: $\quad \alpha_{s}\left(M_{Z}\right)=0.1178 \pm 0.0001$ (stat) ${ }_{-0.0095}^{+0.0081}$ (expt.syst)
D0: $\quad \alpha_{s}\left(M_{Z}\right)=0.1161_{-0.0048}^{+0.0041}($ total $)$
M/S: $\quad \alpha_{s}\left(M_{Z}\right)=0.1151 \pm 0.0001($ stat $) \pm 0.0047(\text { expt.syst })_{-0.0073}^{+0.0080}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{R}, \mu, \mathrm{PDF}, \mathrm{NP}\right)$

Attention:

Evolution of PDFs from low to high Q assumes the validity of the renormalization group equation (RGE).

CDF, PRL88, 2002

D0, PRD80, 2009

Malaescu/Starovoitov, EPJC72, 2012

α_{s} World Summary

S. Bethke, 2012:

But: Jet data from hadron colliders not included! Jets at NNLO urgently needed! In progress by at least groups of Th. Gehrmann et al. and N. Glover et al.

LHC from jets starts here ...

Klaus Rabbertz
Bad Honnef, 10.12.2012
521. WE-Heraeus-Seminar

50

Summary

- We have a powerful accelerator and beautifully working detectors
- Data quantity and quality at the LHC open up new regimes in phase space and precision to be exploited
* New measurements at highest scales and up to high y
* PRECISION measurements
- We have a plethora of new $\mathrm{N}^{?}$ LO calculations (plus showers) and only start to exploit all the new possibilities
- Interplay between strong and electroweak interactions becomes interesting at the TeV scale
- Carefully check everything for new features!

Concluding Remark

- Some people describe the LHC as a * SUSY search machine

Concluding Remark

- Some people describe the LHC as a
- SUSY search machine
* Higgs-like boson discovery machine

Concluding Remark

- Some people describe the LHC as a
- SUSY search machine
* Higgs-like boson discovery machine
* top factory

Concluding Remark

- Some people describe the LHC as a
- SUSY search machine
- Higgs-like boson discovery machine
* top factory
- I hope I could convince you that it is also a

Concluding Remark

- Some people describe the LHC as a
* SUSY search machine
* Higgs-like boson discovery machine
* top factory
- I hope I could convince you that it is also a * high-scale jet laboratory

Make your choice and have fun. Thank you for your attention!

Backup Slides

IC-SM Problem

Iterative Cone with Split/Merge (IC-SM)
\rightarrow not all objekts end up in jets, e.g. when no starting cone close enough (dark jets)
\rightarrow collinear-unsafe because of minimal seed $p T$
\rightarrow infrared-unsafe ...

Fix Trial: MidPoint Cone \rightarrow Additionally investigate all mid-points between seed cones \rightarrow again unsafe, shows up in more complex topologie
Found late: Safe cone algorithm: Seedless Infrared-Safe Cone (SISCone)
\rightarrow needs ~ 2 orders of magnitude more computing time \rightarrow rarely used
Jetography, G. Salam, hep-ph/0906.1833

anti- $_{T}-h h$

Kinematic Plane

Kinematic plane of process scale ${ }^{2}$ vs. x

Photons and PDFs

Kinematic plane including photon data

- Were abandoned for PDF fits due to discrepancies with fixed target experiments at $E_{\text {cms }}$ of $20-40 \mathrm{GeV}$
- new investgation without inclusive data and At $\mathrm{E}_{\text {cms }}>200 \mathrm{GeV}$
- Moderate reduction in uncertainty of the gluon density at x around 0.02 by $\sim 20 \%$

Transverse Thrust

Comparison of unfolded data, CMS 3.2/pb and ATLAS 35/pb,

 to various MC event generatorsBasic description ok, but improvements necessary

$$
\tau_{\perp, C} \equiv 1-\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{\perp, i} \cdot \vec{n}_{T}\right|}{\sum_{i} p_{\perp, i}}
$$

The "Particle Flow" Concept

* Combine measurements of different detector components
\Rightarrow Account for detector particularities with respect to particle type

Inclusive Jet Measurements

Inclusive Jets

ATLAS jet and substructure measurements

Jets @ $\sqrt{ } \mathbf{s}=8 \mathrm{TeV}$

- Inclusive jet pT (left) and dijet mass (right) spectrum for $p p$ collisions at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ for anti- $k_{t} R=0.4$ jets.
- Comparison with $V_{s}=7$ TeV 2011 data and to Pythia 6 (Pythia 8) MC predictions at $\sqrt{s}=7 \mathrm{TeV}\left(V_{\mathrm{s}}=8 \mathrm{TeV}\right)$.
\rightarrow lower center of mass energy in 2011 ; therefore, lower cross section.

NLO and matched Showers

Ratios to NLO NLOJet++ times NP

Magenta squares: NLO POWHEG \rightarrow agreement as expected

Black circles: Data

\rightarrow fine within uncertainties

New tool:

POWHEG NLO + matched parton showers using

Red triangles: Pythia tune AUET2B Green squares: Pythia tune Perugia2011 Blue triangles: Herwig tune AUET2
\rightarrow discrepancies to be understood

NLOJet++, Z.Nagy, PRD68 (2003), PRL88 (2002), POWHEG, S. Alioli et al., JHEP 1104 (2011), Pythia, T. Sjöstrand et al., JHEP05 (2006), Herwig, G. Marchesini et al., CPC67 (1992).

$\int L \mathrm{dt}=37 \mathrm{pb}^{-1}$ $\sqrt{ }=7 \mathrm{TeV}$ anti- K_{t} jets, $R=0.6$

Data with statistical error Systematic uncertainties

NLOJET++ (CT10, $\left.\mu=p_{\mathrm{T}}^{\text {max }}\right) \times$
Non-pert. corr.

> POWHEG

- $\quad\left(\mathrm{CT} 10, \mu=p_{\mathrm{T}}^{\text {Born }}\right) \otimes$

PYTHIA AUET2B
POWHEG

- $\quad\left(\right.$ CT10, $\left.\mu=p_{T}^{\text {Born }}\right) \otimes$

PYTHIA Perugia2011
POWHEG
v $\quad\left(\mathrm{CT} 10, \mu=p_{\mathrm{T}}^{\text {Born }}\right) \otimes$
HERWIG AUET2
POWHEG fixed order

- $\quad\left(\mathrm{CT} 10, \mu=p_{\mathrm{T}}^{\text {Born }}\right) \times$ Non-pert. corr.

Electroweak Corrections

- Net effect on dijet mass cross sections at the LHC in red
* here $\mathbf{O}(8 \%)$ at high mass low \mathbf{y}^{*}
* negligible at higher y^{*}

$$
y^{*}=\frac{\left|y_{1}-y_{2}\right|}{2}
$$

See theory talk by L. Dixon.

$\mathrm{pp} \longrightarrow j j+X$ at $\sqrt{s}=8 \mathrm{TeV}$
--..--...... $\delta_{\text {weak }}^{1-\text { loop }}$
---------- $\quad \delta_{\text {EW }}^{\text {tree }}$

$$
\delta_{\mathrm{EW}}^{\text {tree }}+\delta_{\text {weak }}^{1 \text {-loop }}
$$

S. Dittmaier et al., JHEP11 (2012).

Dijet Mass ATLAS

$\frac{d^{2} \sigma}{d M_{J J} d y^{*}} \propto \alpha_{s}^{2} \quad \begin{aligned} & \text { New choice for binning in rapidity by ATLAS } \\ & \text { Also new choice for scale setting }\end{aligned} \mu=p_{T} e^{0.3 y^{*}}$

$$
y^{*}=\frac{1}{2}\left|y_{1}-y_{2}\right|=\frac{1}{2} \ln \left(\frac{1+\left|\cos \Theta^{*}\right|}{1-\left|\cos \Theta^{*}\right|}\right)
$$

Attention: Figure somewhat misleading ... Negative NLO cross sections appear when checking scale uncertainties $\mu \rightarrow \mu / 2$

3-Jet Mass DO

No result from LHC yet: Here D0

* Sensitive to α_{s} beyond $\mathbf{2 \rightarrow 2}$ process
* Known at NLO (NLOJet++)
* Sensitive to PDFs
* Involves additional "scale" $p_{\mathrm{T}, 3}$

D0, PLB704 (2011) $M_{3 \text { jet }}(T e V)$
Klaus Rabbertz

Most PDFs work ok, CT10 is off D0 investigated 3 different lower pT thresholds $\mathrm{p}_{\mathrm{T}, 3}$ and 3 max. rap. y

$$
\frac{d \sigma_{3 j e t}}{d M_{3 j e t}} \propto \alpha_{s}^{3}
$$

Dijet Azimuthal Decorrelation

Dijets in pp collisions:
$\Delta \varphi$ dijet $=\pi \rightarrow$
Exactly two jets, no further radiation
$\Delta \varphi$ dijet small deviations from $\pi \rightarrow$
Additional soft radiation outside the jets
$\Delta \varphi$ dijet as small as $2 \pi / 3 \rightarrow$ One additional high-pT jet
$\Delta \varphi$ dijet small - no limit \rightarrow
Multiple additional hard jets in the event

Dijet Azimuthal Decorrelation

