

$\boldsymbol{\alpha}_{_{\boldsymbol{s}}}$ Determinations from CMS

Klaus Rabbertz, KIT (on behalf of CMS)

Klaus Rabbertz

Outline

Jets at the LHC

Abundant production of jets:

Highest reach ever to determine the strong coupling constant at high p_τ
 Also learn about hard QCD, electroweak effects at high p_τ, the proton structure, and nonperturbative effects

Jets at the LHC

Abundant production of jets:

- Extract α_s(M_z), the least precisely known fundamental constant!

High-precision lepton measurements:

- W, Z, top measurements provide high-precision cross sections

Also learn about electroweak parameters, the top mass, and the proton structure

- Determination of $\alpha_s(M_2)$ in single-parameter fit
- Test consistency of running of α_s(Q)
- Multi-parameter fit of $\alpha_s(M_2)$ & PDFs
- Jet measurements already in PDF fit?
- Theory at NNLO usable soon

All inclusive

Large transverse momenta

Relevant CMS measurements:

<u>CMS:</u> PRD 87 (2013) 112002; PRD 90 (2014) 072006; EPJC 75 (2015) 288; EPJC 76 (2016) 265; EPJC 76 (2016) 451; JHEP 03 (2017) 156.

Klaus Rabbertz

Trento, Italy, 13.02.2019

alphas-2019

Inclusive jets: measurement

Overall agreement with predictions of QCD at NLO over many orders of magnitude in cross section and even beyond 2 TeV in jet p_T and for rapidities |y| up to 3 ~ 5 at $\sqrt{s} = 2.76$, 7, 8, and 13 TeV.

Inclusive jets: theory corrections

9

anti-kt, R=0.7, 13 TeV, |y| < 1.0

Electroweak correction factors:

- strongly dependent on jet rapidity y

- calculated perturbatively

- very important at high p₊

- uncertainty small

Nonperturbative correction factors:

- estimated from tuned MC event generators at LO+PS and NLO+PS
- non-negligible uncertainty
- strongly dependent on jet size R
- less important at high $\textbf{p}_{_{T}}$

Inclusive jets: α_s

Jets @ NNLO in fits \rightarrow work in progress, see previous talks by D. Britzger & J. Pires

Klaus Rabbertz

Trento, Italy, 13.02.2019

alphas-2019

Simultaneous fit of α_s & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

Reduced uncertainties of gluon PDF

Results for $\alpha_s(M_z)$ at NLO

Orange shading: external PDF sets Bluish shading: PDF fit incl. HERA data

√s [TeV]	lum [fb ⁻¹]	$\alpha_{s}(M_{z})$	exp NP PDF	scale
7	5.0	0.1185	35	+53 -24
8	19.7	0.1164	+29 -33	+53 -28
7	5.0	0.1192	+23 -19	+24 -39
8	19.7	0.1185	+19 -26	+22 -18

Question in progress: Uncertainty of missing higher orders (aka scale uncertainty) in PDF fits

Large masses

Relevant CMS measurements:

Klaus Rabbertz

Trento, Italy, 13.02.2019

<u>CMS:</u> PRD 87 (2013) 112002; EPJC 77 (2017) 746.

alphas-2019

Triple-differential dijets

Most measurements 2-dimensional with respect to dijet mass and either max. rapidity |y|_{max} or rapidity separation y^{*} One CMS result vs. y^* , y_p , $< pT1, 2 > \rightarrow \alpha_s(M_2)$

alphas-2019

Illustration of dijet event topologies

Triple-differential dijets

Multi-jets and α_s

Higher multiplicity

Relevant CMS measurements:

Klaus Rabbertz

Trento, Italy, 13.02.2019

<u>CMS:</u> EPJC 73 (2013) 2604; EPJC 75 (2015) 186; PAS-SMP-16-008 (2017).

alphas-2019

15

- As compared to α_s^2 :
 - Higher sensitivity
 - Smaller statistical precision
 - Smaller dynamical range
 - More scale choices
 - Theory at NNLO not available

3-jet mass

- Determination of $\alpha_s(M_7)$ in single-parameter fit
- Test running of $\alpha_s(Q)$ (reduced PDF dependence)
- Some reduction in sensitivity
- But cancellation of many systematic effects
- More scale choices

Sensitivity vs. systematic effects

3- to 2-jet ratios

20

Running of $\alpha_s(Q)$

Needs an update for latest ATLAS, CMS, & H1 points ...

Klaus Rabbertz

 New range explored at LHC

 Trento, Italy, 13.02.2019
 alphas-2019
 2

Heavy quarks

Relevant CMS measurements:

PLB 728, 496 (2013), JHEP 11, 067 (2012) [Erratum: PLB 738, 526 (2014)], CMS-TOP-17-001, arXiv:1812.10505 CMS-PAS-TOP-18-004.

Klaus Rabbertz

Trento, Italy, 13.02.2019

alphas-2019

- Determination of $\alpha_s(M_z)$ correlated with m_{top} (and gluon like for jets)
- Differential cross sections
- What top mass? Pole? MS_{bar}?
- Top measurements already in PDF?
- Theory at NNLO or NNLO+NNLL

Solution Section Cross Section

 $\frac{\text{Top-pair production is especially sensitive to:}}{m_t \text{ and } \alpha_s \text{ and } g(x, \mu_f^2) \text{ as the main production process at LHC is from gg} Using only the ttbar cross section measurement (dilepton channel) combined fits are not possible.}$

Fix m_t (& PDF) \rightarrow constrain α_s (or vice versa)

Klaus Rabbertz

Analysis @ 13 TeV much improved:

- Obtain σ_{tt} in sim. fit from data with m^{MC}_t as nuisance parameter
- Running MS_{bar} mass m_t(m_t) as scale
- Conventional scale uncertainty
- Choose PDF and fix m_t(m_t) as given
- **Determine** $\alpha_s(M_z)$ from fit to σ_{tt}
- Try various PDF sets

Sensitivity of differential cross section

Fits using tt differential distributions

Fits using tt differential distributions

NLO

Comparison of χ^2 for $\alpha_s(M_z)$ with HERA only and with additional tt data

Cross check $\alpha_s(M_z)$ fit @ NLO with external PDFs ABMP16, HERAPDF20, and CT14

Klaus Rabbertz

Summary α_s from CMS

a_{s} overview plot

Klaus Rabbertz

Trento, Italy, 13.02.2019

alphas-2019

29

- Jet data at 7 and 8 TeV \rightarrow running of α_s up to scales of 2 TeV
- Jet data at 13 TeV with NNLO+EW yet to be evaluated
- tt production cross section at 7 & 13 TeV $\rightarrow \alpha_s(M_z)$ at NNLO (or m_t)
- Top pair+jet differential distributions provide input to α_s, m_t, and PDFs
- Typical uncertainties on $\alpha_s(M_z)$:
 - → Experimental: ~ 1 2 %
 - → PDF: ~ 1 2 %
 - Scale: 3-5% → 1-2% at NNLO(?) but still an issue. Central scale choice? Asymmetry?
 - Nonpert. Effects: <1 % (really?)</p>
- Beyond CMS (see also \rightarrow LHC EW Working Group):
 - Combined fits of ATLAS & CMS (LHC), and of HERA & Tevatron data
- CHALLENGE: α_s(M_z) at 1% from hadron colliders!

Thank you for your attention and the invitation to speak here!

Klaus Rabbertz

Trento, Italy, 13.02.2019

alphas-2019

31

Backup Slides

Scale choices

Inclusive jets
$$\mu_{0} = p_{T,1}, \quad p_{T,jet}, \quad H_{T}^{p}$$
Dijets
$$\mu_{0} = p_{T,1}, \quad p_{T,1} \cdot \exp(0.3y^{*})?$$

$$\mu_{0} = (p_{T,1} + p_{T,2})/2, \quad (m_{jj})/2?$$
3-jets
$$(p_{T,1} + p_{T,2})/2, \quad (m_{jj})/2?$$
Ratios
$$(p_{T,1} + p_{T,2})/2, \quad (m_{jj})/2?$$
Number 2
$$\mu_{0} = p_{T,3}, \quad \mu_{0} = \sqrt{M_{Z}^{2} + p_{TZ}^{2}} + H_{T,jet}?$$

$$\mu_{0} = m_{t}, 2 \cdot m_{t}?$$
Klaus Rabbertz
Trento, Italy, 13.02.2019

- Correlations to LHC data already in PDF fits
- Correlations between $\alpha_s(M_z)$, M_{top} , g(x)
- Gu)estimation of nonperturbative effects:
 - Different event generators & tunes, different orders, different ...
 - Incoherent among ATLAS, CMS, Tevatron, ...
- Conventional scale variation by factors of $\frac{1}{2}$, 2 and 1 σ assumption
- Central scale choice ...!

Perspectives & educated guesses

- **Experiment:**
 - **Done:** Observables $\sigma \sim \alpha_s^2$, α_s^3 ; $R_{3/2} \sim \alpha_s$; 7, 8 TeV; full phase space
 - In progress, 13 TeV data: Some reduction in experimental uncertainty
 - Best JEC phase space: Further reduction by some permille?
 - Other observables: Ratios (n+m) / n jets (incl. γ , W, Z), Normalized cross sections (A)TEEC, $R_{\Delta\Phi}$, $R_{\Delta R}$ (\rightarrow ATLAS)
- Theory:
 - Scales: NNLO important → reduction by 2 3 percent!?
 - PDFs: Much improved after LHC I &HERA 2 data available
 - Better known gluon (Circularity jets \rightarrow g(x) & jets $\rightarrow \alpha_s$)
 - Fits combining observables at various \sqrt{s} to disentangle g(x), M_t, α_s
 - NNLO ratios?
 - NP effects?

Klaus Rabbertz