

fastNLO, NNLO-Bridge, Alpos

Klaus Rabbertz (with a lot of input from Daniel Britzger)

Klaus Rabbertz

fastNLO development for xFitter

- fastNLO adapted to unified 'expression' interface for fastNLO & APPLgrid
- fastNLO part updated to latest version
- Removed specialities from old fastNLO interface code in HERAFitter
- xFitter part now almost identical to separate fastNIo

- Fruitful discussion last September in London during QCD@LHC between:
 - NNLO Theory: Nigel Glover, Tom Morgan, Joao Pires
 - ✤ APPLGRID: Mark Sutton, Claire Gwenlan
 - fastNLO: Daniel Britzger, KR
- Agreed to proceed towards common interface, NNLO-Bridge, to fill interpolation grids
 - Start and test setup with Z+jet process provided by Tom in their desired code structure
 - Jets @ NNLO to be restructured somewhat on theory side
- Mark prepared initial setup discussed via Skype meetings till November
- On hold since then, KR had to prioritize other duties :-(
- Urgently need to take up this thread again to make some progress ...

- Some considerations on one of Mandy's fundamental constants
- The CMS jet analysis shown yesterday by Ringaile also contained combined fit of PDFs & α_s (done by G. Sieber)
- Least precisely known fundamental constant
- Ongoing disputes
 - Value and precision from lattice gauge theory
 - **FOPT vs. CIPT debate in tau decays**
 - Lowish vs. highish value ...
- Some slides (KR) updated from FCC workshop on $\alpha_s \dots$

Klaus Rabbertz

Dubna, Russia, 02.19.2016

xFitter Workshop 201602

6

xFitter

α @ Hadron Colliders

- LHC at 7 TeV and 8 TeV enables measurements up to scales of 2 TeV
- 13 TeV data extend this considerably
- Theory at NNLO QCD + electroweak corrections are a must!
- Typical uncertainties on $\alpha_s(M_z)$:
 - → Experimental: ~ 1 2 %
 - → PDF: ~ 1 2 %
 - **Scale:** 3 5 %
 - Nonpert. Effects: < 1 %</p>
- Beyond CMS:
 - Combined fits of ATLAS & CMS (LHC) measurements
 - Combined fits of HERA, Tevatron, & LHC measurements

• CHALLENGE: Check running of $\alpha_s(Q)$ up to 5 TeV and determine $\alpha_s(M_z)$ to

5 permille accuracy

Perspectives & Educated Guesses

- Experiment:
 - **Done:** Observables $\sigma \sim \alpha_s^2$, α_s^3 ; $R_{3/2} \sim \alpha_s$; 7 TeV; full phase space
 - 8 TeV data: Reduce experimental uncertainty by some permille?
 - Best JEC phase space: Another reduction by some permille?
 - Other observables: Ratios (n+m) / n jets (incl. γ, W, Z), $R_{\Delta\Phi}$, $R_{\Delta R}$ (\rightarrow D0) Normalized cross sections?
- Theory:
 - Scales: NNLO! → reduction by some percent!?
 - PDFs: Much improved after LHC I, also HERA 2 data available
 - → Better known gluon (Attention circularity: jets → g(x) & jets → α_s)
 - Fits combining observables at various \sqrt{s} to disentangle g(x), M_t, α_s

xFitter

C++-based tool for data-to-theory comparisons and fits

Every day's work

- Compare data to theory
- Judge about agreement
- Draw conclusions on
 - Theory parameters
 - Understanding of experimental uncertainties

Profit from and exchange with HERA/xFitter experience

Profit from C++ (heavily object-oriented design)

Well defined interface to 3 components: data, theory, tasks

Attractive to contribute for new students

- Structured into three parts: 'theory', 'data', 'tasks', with caching for performance
- Flexible data specifications (asymmetric uncertainties, any number of uncertainties)
- Flexible and well-defined theory interface..
- Interfaces to Apfel, QCDNUM, fastNLO, APPLgrid, ...
- Multiple minimization algorithms: ROOT::Math::Minimizer: TMinuit, TMinuit2, GSL, ... Constrained least squares: APC, apccpp, aplcon (V. Blobel)
- Many chisq functions: 'HERA', Covariance matrices, LogNormal (H1), D0-style, etc...
- Different PDF parameterisations (as in HERAFitter: HERA-style, BiLog, ...)
- Multiple tasks:

Chisq calculations, minimizations, parameter scans, contour plots

PDF fit of type HERAPDF1.0

- Use QCDNUM for structure functions (ZMVFNS)
- Use QCDNUM for PDF evolution
- \$./src/alpos tutorial/6.herapdf10.str

InitFunctions {{ FunctionName FunctionType QcdnumInit QcdnumInit PDFQ0_HERA_10pts PDFQ0_HERA_10pts QcdnumPDF QcdnumPDF # Headled for "Saweful" }}

QCDNUM is a fortran program

- No object-orientetd
- Solution: One singleton 'function' QcdnumInit
- QcdnumInit is input function to other functions around QCDNUM
 - QcdnumPDF
 - QcdnumAs
 - QcdnumDISCS

QcdnumDISCS.QcdnumInit

QcdnumInit 80.385

Alpos

MIC	RAD MINIMIZATIO	on has conv	/ERGED.	the second second second		(Seconda este accesso)		
FCN	=599.113 FROM N	MIGRAD S	TATUS=CONVERG	ED 1013 CA	LLS	1014 TOTAL		
		EDM=3.99	026e-06 ST	RATEGY= 1 ER	ROR MATRIX	UNCERTAINTY	0.5 per	cent
Ð	T PARAMETER			STEP	FIR	ST		
NC). NAME \	VALUE	ERROR	SIZE	DERIVA	TIVE		
1	PDFQ0_HERA_10	0pts.gB 3	3.15870e-01	3.26536e-02	1.12029e-6	4 1.14505e+	-00	
2	PDFQ0_HERA_10	0pts.gC 9	.41984e+00	7.00901e-01	2.88391e-6	3 -8.52656e-	02	
3	PDFQ0 HERA 10	0pts.uvB	7.06652e-01	1.85413e-02	2.83958e-	05 2.055946	+00	
4	PDFQ0_HERA_10	0pts.uvC	5.12802e+00	2.42370e-01	-5.04500e-	04 -2.39463e	9-01	
5	PDFQ0_HERA_10	0pts.uvE	1.05656e+01	2.27037e+00	-1.11086e-	03 2.619736	9-02	
e	PDFQ0_HERA_10	0pts.dvC	4.58635e+00	3.73857e-01	1.26045e-	03 -6.57842e	9-02	
7	PDFQ0_HERA_10	Opts.UbarC	1.33662e+00	1.88350e-0	1 5.33714	le-04 -1.1458	6e-01	
8	PDFQ0_HERA_10	Opts.DbarA	1.13812e-01	3.84916e-0	3 -4.22832	e-07 -5.2483	36e+00	
9	PDFQ0_HERA_10	Opts.DbarB	-2.13218e-01	4.63145e-0	3 -2.60368	e-06 5.6481	l2e+00	
16	PDFQ0_HERA_10	Opts.DbarC	2.82604e+00	7.80673e-0	1 -1.95571	le-03 -5.9346)4e-02	

HERAFitter

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=	599.0083	FROM MIG	AD STATUS=CO	WERGED 1091	CALLS 1094 TOTAL
EXT	PARAMETER	EDM= 0.5	JZE-05 STRATE	STEP	FIRST
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
2	Bg	0.31589	0.32342E-01	0.33667E-04	-1.0115
3	Cg	9.4195	0.68932	0.49584E-03	0.71943E-01
12	Buv	0.70666	0.18317E-01	0.20803E-04	-1.8531
13	Cuv	5.1276	0.24026	0.17813E-03	0.22745
15	Euv	10.564	2.2212	0.16083E-02	-0.24652E-01
23	Cdv	4.5884	0.37389	0.66150E-03	0.55725E-01
33	CUbar	1.3370	0.19037	0.36544E-03	0.10098
41	ADbar	0.11380	0.38530E-02	0.58487E-05	6.1119
42	BDbar	-0.21323	0.46307E-02	0.58352E-05	-6.0739
43	CDbar	2.8255	0.75066	0.70510E-03	0.50264E-01

Also 'HERAPDF2.0' benchmark available

Klaus Rabbertz

Sphinx based Documentation

<u>Alpos Documentation</u>

Growing documentation for newcomers in preparation

 \mathbf{Alpos} is an object-oriented data to theory comparison and fitting tool

The project homepage is found at <u>http://www.desy.de/~britzger/alpos/</u> Tutorial with 8 examples exists

Publically accessible svn repository

People welcome

Local table of contents

- Alpos Documentation
 - Introduction
 - Contributors
 - Contact
- Download, installation and first steps
 - Requirements
 - Download and installation
- Alpos 'Functions'
 - Alpos default built-in functions
 - AExampleFunction
 - ASingleConstant
 - ASuperData
 - ASubsetFunction
 - ASubsetData
 - QCDNUM functions
 - QcdnumInit

Klaus Rabbertz

- Find Alpos also useful, because
 - Known problem, expertise lost when students leave
 - Multiple reinventions of X^2 and α_s fitting codes
 - In CMS at least four different codes used for α_s fits
 - Unify and conserve in form of Alpos tasks

- Cannot show any result, D.Haitz & G. Sieber show their "private work" at the German Phys. Soc. Meeting beg. of March, Hamburg
- PhD work of Dominik Haitz:
 - JEC & 8 TeV Z(→ ee) +jet |y| & pT distributions, NLO theory from BlackHat/Sherpa/MCgrid/fastNLO, PDF fits with xFitter
- PhD work of Georg Sieber:
 - 8 TeV dijet measurement, NLO theory from NLOJet++/fastNLO, PDF fits with xFitter
- PhD student from India:
 - X² comparisons of data vs. theory with xFitter & Alpos (matched)
- New master student Daniel Savoiu:
 - Developing & benchmarking Alpos, exactly reproduce H1 α_s fit (done), CMS (in progress), and D0 (To do) in Alpos
 - Combined fits, add ATLAS data into fit

Klaus Rabbertz

- Concentrated on α_s as fundamental parameter, of course correlated to i.a. gluon PDF ...
- Alpos used for EW-parameter fit in H1
- More global fits conceivable in principle
- Combined effort required from experimenters, theorists, and tools developers

Many thanks to the Organizers of the Meeting here in Dubna! Thank you.

Backup Slides

\mathbf{A}_{s} Uncertainties at Hadron Colliders

Process	LO	\sqrt{s}	Q	N_p	$\alpha_{ m s}(m_Z)$	$\Delta \alpha_{\rm s}(m_Z) / \alpha_{\rm s}(m_Z) [\%]$				ó]
$ep, p\overline{p}, pp$	$lpha_{ m s}^n$	$[\mathrm{TeV}]$	[GeV]			\exp	PDF	\mathbf{scale}	NP	other
H1 jets low Q^2	1	0.32	5 - 57	62	0.1160	1.2	1.4	8.0	scl	_
ZEUS γp jets	1	0.32	21 - 71	18	0.1206	1.9	1.9	2.5	0.4	—
H1 jets high Q^2	1	0.32	10 - 94	64	0.1165	0.7	0.8	3.1	0.7	—
CDF incl. jets	2	1.8	40 - 250	27	0.1178	7.5	5.0	5.0	_	2.5
D0 incl. jets	2	1.96	50 - 145	22	0.1161	2.9	1.0	2.5	1.1	—
D0 ang. corr.	1	1.96	50 - 450	102	0.1191	0.7	1.2	5.5	0.1	_
ATLAS incl. jets	2	7	45 - 600	42	0.1151	4.3	1.8	3.8	1.9	5.2
ATLAS EEC	1	7	250 - 1300	22	0.1173	0.9	1.4	5.4	0.2	—
CMS $R_{3/2}$	1	7	420 - 1390	21	0.1148	1.2	1.6	4.4	scl	—
CMS $\sigma(t\overline{t})$	2	7	$M_t^{ m pole}$	1	0.1151	2.2	1.5	0.7	—	1.1
CMS 3-jet mass $% \left({{\rm{TMS}}} \right)$	3	7	332 - 1635	46	0.1171	1.1	2.0	5.9	0.7	—
CMS incl. jets	2	7	114 - 2116	133	0.1185	1.6	2.4	4.5	0.3	—

Workshop Proceeedings: arXiv: 1512.05194

Snippets of Rivet+MCgrid analysis Fitter #include "Rivet/Analysis.hh" #include "mcarid/mcarid.hh" . . . **Setup Rivet** namespace Rivet { with MCgrid /// CDF Z boson rapidity modified to generate grid files class MCgrid CDF 2009 S8383952 : public Analysis { public: using namespace MCgrid: Histo1DPtr hist yZ; // Rivet histogram gridPtr grid yZ; // Corresponding grid // Init phase subprocessConfig subproc("DY-ppbar.str", BEAM_PROTON, BEAM ANTIPROTON); **Book & config** fastnloGridArch arch(50, 1, "Lagrange", "OneNode", "sgrtlog10", "linear"); fastnloConfig config(0, subproc, arch, 1960.0); grid and histos hist yZ = bookHisto1D(2, 1, 1);// Book Rivet grid yZ = bookGrid(hist yZ, histoDir(), config); // Book MCgrid/fastNLO // Analyse phase PDFHandler::HandleEvent(event, histoDir()); // Update subprocess statistics Fill events in _hist_yZ->fill(yZ, weight); // Fill Rivet // Fill MCgrid/fastNLO grid yZ->fill(yZ, event); event loop. // Finalise phase **Final check out,** scale(hist yZ, normalisation); // Scale Rivet normalize, write grid yZ->scale(normalisation); // Scale MCgrid/fastNL0 PDFHandler::CheckOutAnalysis(histoDir()); // Finalise table.

- Various datasets (~40-60)
 - ATLAS, CMS, H1, ZEUS, D0, CDF
 - PDG parameters: mt, mH, mW, ...
- Functions:
 - ApfelDISCS, ApfelAs, ApfelPDF, ApfelQEDEvol
 - QcdnumDISCS, QcdnumAs, QcdnumPDF
 - EPRC
 - CRunDec
 - fastNLO, fastNLOInterpol, fastNLOnormDIS
 - Applgrid
 - Lhapdf6, Lhapdf6Alphas

- Tasks
 - AFitter, ApcFit, AApcalc, AConstLQFitter
 - StatAnalysis, Chi2Scan, Contour
 - PDFUncertainty, ScaleUncertainty
 - SavePDFTGraph,
 - PrintErrorSummary, PrintInputSteering

- Not discussing details on data or theory interface
- The expert: → Daniel Britzger, see also his talk in xFitter developers meeting
- Tasks are classes with simple, well-defined duties
 - Fits
 - Do some data-to-theory comparison
 - Write-out or print results (save PDFs or tables of fit-parameters)
 - Make contour plots
 - Calculate PDF uncertainties
 - Perform model tests
 - Do chisq scans

Execution

- Tasks are specified in the steering
- Execute one after the other ...
- Concept
 - Tasks have full access to all theory-parameters
 - Tasks have their own steering
 - Object-oriented approach: A task may be executed multiple times with different steering-parameters

Write out (fitted) PDF

Task 'SavePDFTGraph'

- Write out PDFs as TGraph into ROOT-File
- Missing: Fitted PDF uncertainties not yet transformed into eigenvalues

SavePDFTGraph

- Specify scales muf in steering
- Numerous flavor compositions
- For each PDF set
- Including uncertainty (for LHAPDF)

Klaus Rabbertz

Dubna, Russia, 02.19.2016

