

Likelihood Analyses in BSM Searches: from model-independent to searches in dedicated scenarios

Roger Wolf, Andrew Gilbert, Felix Frensch, Artur Akhmetshin

08. October 2015

Introduction

- Data representation in MSSM $H \rightarrow \tau \tau$ analyses
- Recall: limit setting algorithms
- "Deconstruction" of likelihood function
- Method comparison and conclusions

After discovery is before discovery (Sepp Herberger)

- After the discovery of one Higgs boson we are out for its siblings.
- In many(all?) non-trivial extensions of the SM search for not a single but several particles with well defined relations.
- · Search strategies:

Common problem with many faces:

- Search for deviations from SM in generic Higgs couplings analyses.
- SUSY searches.
- DM searches @ colliders.
- BSM Higgs searches.

• Always do both! To be efficient try to keep the loop as concise as possible.

Case-study: Higgs Bosons in the MSSM

 The MSSM, like any other Two Higgs Doublet Model (THDM) predicts five Higgs bosons:

$$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}, \quad Y_{H_u} = +1, \quad \mathbf{v}_u : \mathbf{VEV}_u$$

$$H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$$
, $Y_{H_d} = -1$, $\mathbf{v}_d : \mathbf{VEV}_d$

$$N_{\text{ndof}} = 8 \quad -3 = 5$$
$$W, Z \quad H^{\pm}, H, h, A$$

• Strict mass requirements at tree level:

two free parameters: m_A , $an eta = {
m v}_u/{
m v}_d$

$$m_{H^{\pm}}^2 = m_A^2 + m_W^2$$

$$m_{H,h}^2 = \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2 - 4m_A^2 m_Z^2 \cos^2 2\beta} \right)^2$$

$$\tan \alpha = \frac{-(m_A^2 + m_Z^2) \sin 2\beta}{(m_Z^2 - m_A^2) \cos 2\beta + \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 \cos^2 2\beta}}$$

(angle btw. H_u & H_d in isospace)

Coupling structure to neutral Higgs Bosons

	g_{VV}/g_{VV}^{SM}	g_{uu}/g_{uu}^{SM}	g_{dd}/g_{dd}^{SM}
A	_	$\gamma_5 \cot\beta$	$\gamma_5 aneta$
H	$\cos(\beta - \alpha) \rightarrow 0$	$\sin lpha / \sin eta \to \cot eta$	$\cos \alpha / \cos \beta \rightarrow \tan \beta$
h	$\sin(\beta - \alpha) \rightarrow 1$	$\cos \alpha / \sin \beta \rightarrow 1$	$-\sin \alpha / \cos \beta \rightarrow 1$

• For $m_A \gg m_Z$: $\alpha \to \beta - \pi/2$ (coupling to down-type fermions enhanced by $\tan \beta$).

Typical discriminating distributions

- Search for additional peak(s) in $m_{\tau\tau}$ distribution.
- Non-observation of signal \rightarrow limits in parameter space of models.

Deliverables of this study

- In general better understanding how signal will show up in exclusion contour.
- Better understanding of relation b.t.w. original exclusion in full benchmark scenarios and construction from model independent LH information.

For this used simplified model of arXiv:1408.3316

- 8TeV, $\mu\tau$ -channel @ 30/fb.
- assume infinite statistics for MC templates.

Recall: limit construction algorithms

Direct limit on full benchmark:

 For fixed values in (m_A, tan β) build templates composed of h+H+A according to model.

- vary whole template (scaling factor μ).
- for fixed value of m_A find value of $\tan \beta$ where $CL_s(\mu = 1) = 0.05$.

Re-interpretation from LH:

- Cluster Higgs bosons if they are close to each other (within exp. Resolution).
- Determine cluster with highest expected exclusion sensitivity (i.e. largest ΔNLL_{exp} from DB based on BG-only Asimov dataset).

• Read off ΔNLL_{obs} for each given point of $(m_A, \tan \beta)$ from DB based on data.

LH components

" $\Delta NLL(m_A, \tan\beta)$ w.r.t. global minimum with floating μ ".

Pseudo-dataset (30/fb): BG + m_h^{mod+} $m_A = 500$, $\tan \beta = 30$

" $\Delta NLL(m_A, \tan \beta)$ for exact model point (with $\mu = 1$) w.r.t. floating μ ". " $\Delta NLL(m_A, \tan \beta)$ for exact model point (with $\mu = 1$) w.r.t. global minimum with floating μ ".

Investigate behavior of signal templates & • likelihood. 10³ tanβ tanβ 60 60 $\Delta NLL (= q_{\mu}/2)$ 10² 50 10 40 30 30 **10**⁻¹ 20 20 10⁻² 10 10 10⁻³ 100 200 300 400 500 600 700 800 900 1000 m_A [GeV] 14

Direct limit

Inject signal for decreasing values of $\tan \beta$:

Walk across $(m_A, \tan\beta)$ plane

٠

 m_h^{mod+} $m_A = 500 \text{ GeV} \quad \tan \beta = 30$

Direct limit

Direct limit

1000 m₄ [GeV]

10³

10²

10

1

10⁻¹

10⁻²

10⁻³

b-tag

Method comparison

Method comparison (more quantitative)

Method comparison (more quantitative)

Method comparison (exclusion contour)

Method comparison (exclusion contour)

Conclusions

- Started thorough investigation of likelihood function approach generally used to set exclusion contours in neutral MSSM Higgs Boson searches.
- Genuine MSSM signal would give notice in form of non-trivial exclusion contours "ahead of discovery" (reveal information about exact model parameters already).
- CMS has provided a large DB of likelihood values of a model independent search, which allows re-interpretation in form of full pledged models.
- The similarities and differences of both interpretation methods have been investigated.
 - Long-range correlations of A + H + h.
 - CL_S versus CL_{S+B} .
 - Correlated cross section between $gg\phi$ and $bb\phi$.
- Big playground to increase our general understanding!

Reconstruction of hadronic τ **-leptons**

- Exploit particle flow algorithm: distinguish between γ , neutral and charged hadron.
 - Isolation (based on energy deposits in vicinity of reconstructed τ_h candidate).
 - Discrimination against electrons (based on shower shape & E/p).
 - Discrimination against muons.
 - Allows for independent cross check of τ_h energy calibration (use 3% uncert.).
 - Efficiency $\approx 60\%$ ($\approx 3\%$ fakerate), flat as function of $p_T(\tau_h)$ and N(vtx).

Performance of Hadronic τ **Reconstruction**

- Control efficiency within $\pm 7\%$ using tag & probe methods:
- Control τ_h energy scale within $\pm 3\%$ from fits to $m_{\tau, vis}$:

events/10 GeV/c² Data $Z/\gamma \rightarrow \tau^{+}\tau^{-}$ 60 OCD W + jets $Z/\gamma \rightarrow \mu^{+}\mu^{-}$ tt + jets 40 passed HPS loose 20 50 100 150 200 μ-jet visible mass (GeV/c²) events/15 GeV/c² Data $Z/\gamma^{-} \rightarrow \tau^{+} \tau^{-}$ QCD W + jets $\mathbf{Z}/\gamma \rightarrow \mu^{+}\mu^{-}$ 🔲 tī + jets failed HPS loose 50 50 100 150 200 μ -jet visible mass (GeV/c²)

• Uncertainties further constrained by maximum likelihood fit in the statistical inference for signal extraction.

• Likelihood approach:

 $\mathcal{L} = \mathbf{e}_{\mathbf{\hat{\theta}_2}} \mathbf{\hat{\theta}_1}$

• ME for leptonic τ decay or phase space kinematics of 2-body decay of τ_h .

Х

- Estimate of expected E_T resolution on event by event basis.
- Inputs: visible decay products, x-, y- component of \mathcal{E}_T .
- Free parameters: φ , θ^* , ($m_{\nu\nu}$) per τ .

• Find minimum of \mathcal{L} for given $m_{\tau\tau}$ and scan over all possible values of $m_{\tau\tau}$ to find global minimum.

Control of backgrounds

(*) categorization based on $p_T(\tau_h), p_T(\ell_1)$.

Reprise of MSSM model dependent limit setting

• For fixed values in m_A and $\tan \beta$ build templates composed of h + H + A according to model:

• With this template perform fit to data with single signal strength modifier μ .

$$q_{\mu} = -2 \ln \left(\frac{\mathcal{L}(\mu, \hat{\theta}_{\mu})}{\mathcal{L}(\hat{\mu}, \hat{\theta})} \right) \Big|_{\mu \cdot s + t}$$

NB: $\mu = 1$ hits the proper model for given $m_A \tan \beta$.

• Do the same with a BG-only template:

$$q_A = -2 \ln \left(\frac{\mathcal{L}(\mu, \hat{\theta}_{\mu})}{\mathcal{L}(\hat{\mu}, \hat{\theta})} \right) \Big|_{b-\text{only}}$$

• Calculate (asymptotic) *CL_s* value:

$$CL_s = \frac{1 - \Phi(\sqrt{q_\mu})}{\Phi(\sqrt{q_A} - \sqrt{q_\mu})}$$

• For the 95% CL exclusion contour: for fixed value of m_A find value of $\tan \beta$ with $CL_s(\mu = 1) = 0.05$.

LH construction as used by 💼

• Cluster Higgs bosons if they are close to each other, i.e:

 $d_{ij} = \frac{|m_i - m_j|}{\max(m_i, m_j)} < 0.2^{(8)}$

- Cluster obtains a mass of σ_k × BR_k⁽⁹⁾ weighted mean of m_i and m_j and a cross section of ∑ σ_k × BR_k, according to model and point in m_A and tan β.
- Determine cluster with highest expected sensitivity (i.e. largest value of ΔNLL_{exp} from DB based on BG-only Asimov dataset).
- Read off observed value of ΔNLL_{obs} for selected point of (m_A, tan β) from DB.

