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Probability AT

Karlsruhe Institute of Technology

Think of throwing a coin three times in a row:

« () = {(Head, Head, Head), (Tail, Head, Head) , ...} — (all possible outcomes)
sample space.

* Each subset A C () is called event.
* The set of all possible events (o-algebra) G((2).

* Probability:

P:6OQ) =R ;A P(A),
* Non-negative: P(A) >0 VA
* Linear . P(AUB)=P(A)+P(B) VYANB=1

* Normalized : P(6(Q2)) =1
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Probability (conditional) ..\\.J(IT
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Probability of event A given event B(# ():

+ Pp(A) =P(AB) = Z552) — (conditional probability).

Bayes theorem:
* Pa(B)-P(A) =Pp(A)-P(B) — (Bayes theorem).

(Statistically) independent events:

* P(ANB)="P(A) -P(B) — (statistical independent).
Pa(B) =P(B)
Pp(A) =P(A)

* Particle physics is a unique field where statistical independence of event is
perfectly fulfilled for an incredibly large sample space.
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Interpretation paradigms

¢
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* Mathematical results need to be interpreted:

* Frequentist:

Example: 500 independent coin flips:
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Relative frequency converges
to probability.

* Bayesian:

Quantification of my degree
of belief that event A turns
out to be true.

Makes sense also for
“experiments”, which can not
be repeated.

Requires reasonable
implementation of probability
distribution (usually coincides
with Frequentist interpretation,
where overlaps, but not
always).
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Bayesian statistics and prior knowledge

¢
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* In Bayesian statistics: “my degree of belief’ that event A turns out to be true

depends on my prejudice (— prior knowledge):

Pbata(Model) o< Priodel (Data) - P(Model)

/

Posterior
Probability

v

\

Prior
probability

Likelihood

Probability of a
given outcome
of the

experiment for
a given model.

This is usually an
open point.

— (Bayes theorem).

* Mapped to our use case: does the measurement support my physics model?
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Exercise-1: Prior @ work ..\X‘(IT
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Assume there is a decease which 0.1% of the population have (— this is your prior).
Assume there is a test that diagnoses this decease with a probability of 98%, while
it gives false positive results with a probability of 3% .

a) Your test is positive. Calculate the
probability that you are ill.

(] Institute of Experimental Particle Physics (IEKP)



Exercise-1: Prior @ work ..\X‘(IT

Karlsruhe Institute of Technology

Assume there is a decease which 0.1% of the population have (— this is your prior).
Assume there is a test that diagnoses this decease with a probability of 98%, while
it gives false positive results with a probability of 3% .

Piu(+)-P(ill)
i1 (+)-PGAI)+Prot i11(+)-P(not ill)

a) Your test is positive. Calculate the Py(ll) = 5
probability that you are ill.

_ 0.98-0.001 B
= 0.980.001+0.03:0099 — 0-032

b) How does the result change if you redo
the test and it is positive again?
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Exercise-1: Prior @ work ..\X‘(IT

Karlsruhe Institute of Technology

Assume there is a decease which 0.1% of the population have (— this is your prior).
Assume there is a test that diagnoses this decease with a probability of 98%, while
it gives false positive results with a probability of 3% .

Piu(+)-P(ill)
i1 (+)-PGAI)+Prot i11(+)-P(not ill)

a) Your test is positive. Calculate the Py(ll) = 5
probability that you are ill.

_ 0.98-0.001 B
= 0.980.001+0.03:0099 — 0-032

P, (HD _ Pin(+)-P(ill)

b) How does the result change if you redo P (0P (Dt Pros 111(+)-P (not 1)

the test and it is positive again?

_ 0.98-0.032 B
= 0.980.032+0.03.0.068 — U-019
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Probability density functions ..\\J(IT
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* In general we assume the underlying statistics model to follow a given probability
density function.

* Most prominent examples:

Poisson: Gaussian:

k 2 2
P(k,p) = Gre™ Pz, p,0) = —/2;76_(93_“) /20
e.g. for counting experiments (like e.g. for parameter estimates (like
for cross sections). for mass measurements) .

* Probability density distributions are themselves functions of parameters.

* If it is the target of the measurement we often call it parameter of interest (POl),
otherwise we often call it nuisance parameter (often indicated by ¢ ).
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Confidence intervals -\\J(IT

* Confidence intervals allow statements about parameters in models.

Double sided (measurement): Single sided (limit):
@ e >
— 68% —
F 95% 1 95% 2
m = i+ ooz @ 68% CL BR < ug.95 @ 95% CL

* Interpretation depending on paradigm:

Frequentist: Bayesian:

Probability to make given Probability of truth to lie in
observation for a given truth. given interval.

Esp. no probability for “truth

to be true”

* We will concentrate on single sided confidence intervals (— used for upper limits).
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Upper limit -\-\J(IT

* With the upper limit on a model POI n, for a given observation ;s (or N,;s) we
search for the largest value of u for which the probability to make an observation of
x < Tops (Or N < N4 ) is less than a value «.

* We call this value of ;1 the upper limit on 1 at the confidence level (CL) 1 — «.
During the next slides we will indicate this quantity by ;. _,, .

* We particle physics we usually use o = 0.05 (— 95% CL limit).

Meaning:

For i = po.95 iIN 95% of all outcomes of the same experiment x (or V) would have
been larger then =, (Or N,;,) . For > pg.95 this fraction would be even larger. The
observation restricts 1 to be not larger than .95 at 95% CL.

Question:
IS 110.90 < H0.95 OF [0.90 > [0.957
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Confidence interval construction (Frequentist) ..\\J(IT
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* Here shown for 95% CL upper limit on a parameter 1, of a Gaussian distributed
random variable s :

* Neyman construction: " 10 -
& E [ Probability density triiiiipiiseacad
* For each value of 1 find single o oiiiniisseiaii
sided confidence interval for 8 —
given a (e.g. a = 0.05). 20| Je(@, p.o)dz > 0.95 .
* Interconnect interval edges. °F PR
S -i:.liiiizeaneNCArEIERHTCECcODaspfRstiiiiie
* For a given observation find the 4| Assume zops = 3.2 e
largest value for i where x5 iS 5_
still contained in the interval. A S
2 5 dz < 0.05
1 fOooot ot .. - -
DDHEITZTZ’:Z"' MH|H”|HH|H”|HH
o 12 3 46678 80

% < Hos5 = 5.2 @ 95%CL
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Confidence interval construction (Frequentist)

AT

Karlsru

he Institute of Technology
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Here shown for 95% CL upper limit on a parameter . of a Poisson distributed

random variable N :
Neyman construction:

For each value of u find single
sided confidence interval for
given a (e.g. a = 0.05).

Interconnect interval edges.

For a given observation find the
largest value for i where x5 is
still contained in the interval.

Note steps due to discrete nature
of Poisson distribution.

2‘610_— Probability density puoooouononoooopapnnng
~ —— 95% GL upper limit nuooononnoooogoonooong
8— Cogganoogononononn
N R e T T ]
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D—TI_H]‘] |] I]UI]I][Il]u|Iulllu|-|-|-|-|-|-l-I-I-I-I-l-l-l-l-l-l-l-l-l-l-’ i
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Coverage

AT
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For a given limit procedure you can calculate for each value of i« the exact proba-

bility to exclude the theory:
Coverage:

For our Poisson example:
Pezer(p) =22 Pu(N) - 0(p < p10.95)
N > Nops
> (0.95 over coverage
= 0.95 exact coverage
< 0.95 under coverage

Pea:cl (,u)

Over coverage (— exclusion
statement more conservative).

1.02

—:Co:verage
- - 95% CL limit

0.98

0.96

0.94

0

i 2 3 4 5 6 7 8 9 10

1L
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Exercise-2: Frequentist limit

AT

Karlsruhe In: e of Technology

a) Calculate the exclusion probability (i.e.

15

the probability to observe more than 2
events) for the values of i given in the
table on the right:

Peaccl

NB: in root you can use the function given below for your

calculation. Vary p for fixed N = N, until o < 0.05.

(87

= TMath: :Prob(2 u,2(N + 1)) =

N S Nobs

Assume you have an observation of 1 event, were you expect 0 due to already
known processes. You want to quote a 95% CL upper limit on the true value p of
the expected events for a Poisson distributed signal model.

te of Experimental Particle Physics (IEKP)



Exercise-2: Frequentist limit

AT

Karlsruhe Institute of Technology

Assume you have an observation of 1 event, were you expect 0 due to already
known processes. You want to quote a 95% CL upper limit on the true value u of

the expected events for a Poisson distributed signal model.

a) Calculate the exclusion probability (i.e.
the probability to observe more than 2 P Pexe

events) for the values of u given in the 2 0.59
table on the right: 3 0.80
: 4 091
b) Calculate the 95% CL limit on 1 for the 5 0.96
values of N_;,given in the table on the
Nops =1

right:

NB: in root you can use the function given below for your
calculation. Vary p for fixed N = N, until o < 0.05.

o = TMath: :Prob(2 1, 2(N + 1))=>_ G_JIQL!LN

N S Nobs

16 p1—o = TMath: :ChisquareQuantile(l — «,2(N 4 1)) /2

Novs  140.95
0

1
2
4
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Exercise-2: Frequentist limit ..\X‘(IT

Karlsruhe Institute of Technology

Assume you have an observation of 1 event, were you expect 0 due to already
known processes. You want to quote a 95% CL upper limit on the true value u of
the expected events for a Poisson distributed signal model.

a) Calculate the exclusion probability (i.e.
the probability to observe more than 2 P Pexe Nobs  10.95

events) for the values of i« given in the 2 0.59 0 3.00
table on the right: 3 0.80 1 4.74

. o 4 091 2 6.30
b) Calculate the 95% CL limit on i for the 5 0.96 4 9.15

values of N_;,given in the table on the
right:

NB: in root you can use the function given below for your
calculation. Vary p for fixed N = N, until o < 0.05.

o = TMath: :Prob(2 1, 2(N + 1))=>_ G_JIQL!LN

N S Nobs

17 U1—o = TMath: :ChisquareQuantile (1- Q, 2(N + 1))/2 te of Experimental Particle Physics (IEKP)




Confidence interval construction (Bayesian)

ST
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Here shown for 95% CL upper limit on a parameter p. of an arbitrarily distributed

random variable s :
Bayesian limit:

Assign prior P(Model) to model to

be true and likelihood Pyiogel (Tobs )-

Calculate posterior P, ,. (Model)
for known prior, likelihood & z,; .

Determine pig.95 such that:
H0.95

Ji Paoy (Model) - P(Model)dp

= < 0.05
[ Pes, (Model) - P(Model)dp

= a(p, N)

P()

0.25

0.2

0.15

0.1

0.05

0

----- Prior
— — Likelihood

—— Posterior

Requires numerical
integration of posterior.

1l
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Exercise-3: Bayesian limit

AT

Karlsruhe Institute of Technology

a) Calculate the 95% CL limit on g for

19

Nops = 1 and a flat prior.

Assume you have an observation of 1 event, were you expect 0 due to already
known processes. You want to quote a 95% CL upper limit on the true value u of
the expected events for a Poisson distributed signal model.

NB: the macro below calculates o for you by numerical integration

of the posterior. Vary p for fixed N = N5 until o < 0.05.

GetPosterior.C(u, N)= a(u, N)

Institute of Experimental Particle Physics (IEKP)



Exercise-3: Bayesian limit ..\X‘(IT

Karlsruhe Institute of Technology

Assume you have an observation of 1 event, were you expect 0 due to already
known processes. You want to quote a 95% CL upper limit on the true value u of
the expected events for a Poisson distributed signal model.

a) Calculate the 95% CL limit on y for Nobe  tion
Nas = 1 and a flat prior. o

1 3.00

, 2 4.74

b) Do the same calculation for the prior 3 6.30

P(Model) o p. 5 9.15

P(Model) = const

NB: the macro below calculates « for you by numerical integration
of the posterior. Vary p for fixed N = N5 until o < 0.05.

GetPosterior.C(u, N)= a(u, N)

For exercise b) modify the function
20 GetBayeSPOSterior (mU) ln the 1macro. Institute of Experimental Particle Physics (IEKP)




Exercise-3: Bayesian limit ...\\J(IT

Karlsruhe Institute of Technology

Assume you have an observation of 1 event, were you expect 0 due to already
known processes. You want to quote a 95% CL upper limit on the true value u of
the expected events for a Poisson distributed signal model.

a) Calculate the 95% CL limit on . for N ~
Nobs = 2 and a flat prior. obs 95 obs 195
1 3.00 1 4.75
' 2 4.74 2 6.27
b) Do the same calculation for the prior 3 6.30 3 - 76
P(Model) o p. . 0.15 . 051
P(Model) = const P(Model) o

NB: the macro below calculates o for you by numerical integration
of the posterior. Vary p for fixed N = N, until o < 0.05.

GetPosterior.C(u, N)= a(u, N)

For exercise b) modify the function
21 GetBayeSPOSterior (mU.) ln the ImacCro. Institute of Experimental Particle Physics (IEKP)




Summary (lecture part-l)

—

Short recap of basics about probabilities.

Confidence intervals and limits.

Frequentist limit construction.

Bayesian limit construction.



Excluding signal on top of a known background ..\\_J(IT

itute of Technology

* Usually expected number of events is a sum of (perfectly known) number of
background events plus potential signal events:

pw=s+b
s: expected signal

b: expected background

* Determine limit on i.. To obtain limit on s uses = 1 — b. Assume b to be perfectly
known for the time being.

23 Institute of Experimental Particle Physics (IEKP)



Exclusion sensitivity .\\J(IT
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* With b > 0 it makes sense to talk about the sensitivity of an experiment to exclude a
certain model.

« Assume additional number of . Probability density (i) for b=3
events due to s (in signal region) 2078 8 g § £ fos0=0629
to be small: E £ 9 S5 § fors=0
o H i : :
b large — low sensitivity. > %%F
. sgn wn I H :
b small — high sensitivity. § o5t |
z i ME
* Calculate limit for toy experiments Z 04F i :
for s =0 (b # 0, here Poisson 8 F -
distributed). a 03 o
. 02)- 1
* Usually quote expected exclusion
limit in terms of quantiles of the 01t : : ;
resulting probability distribution A‘ an
for/,L095_ ,D: A I A 11401 |
0 2 4 6 8 10 12 14 16 18
95

Example: 95% CL upper limiton u =5
in absence of signal for b = 3 and using
Frequentist limit setting.
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Limits near boundaries ..\\.J(IT

Karlsruhe Institute of Technology

* Problem: Frequentist limit can fall far below actual exclusion sensitivity and even
lead to unphysical results (e.g. in case of “under fluctuations” of b.)

Probability density {p%} for b=3
b — b GCCp S — O [7)] =
/“60.95 IU’O50< ) ‘E\ 07@ ‘% ,_,8-, g g Lo.50 = 6.29
0 4.74 0 g i 3 = . C fors=0
2 2.74 4.75+1-22 < 06 .
3 1.74  6.29+2-56 3 b
' & 05 s
5 —0.26  9.15+269 g %% 5
2 L E s
Nops = 1 Uncert’s from 68% quantile. E 0.4}— :
: -
g 03F
02k | | 1
0.15 : :
0;‘ L M i L | L i 11 EL_I'I l—i L JJ. Ll
0 2 4 6 8 10 12 14 16 18
I-195

Example: 95% CL upper limiton y = b
in absence of signal for b = 3 and using
Frequentist limit setting.
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Limits near boundaries .\\J(IT

Karlsruhe Institute of Technology

* Problem: Frequentist limit can fall far below actual exclusion sensitivity and even
lead to unphysical results (e.g. in case of “under fluctuations” of b.)

7, 7 p— ( ) Probability density {p%} for b=3
po.os —b  pgse(s =0 e L —
0.50 E‘ 0_?§ E % g g Ho.50 = 6.29
0 4.74 0 E L . . for s =0
s : E E :
2 2.74 4.75+1-22 Sosf -
3 1.74 6.294-2-59 Bk
2.69 & 05} | E
5! —0.26 9.155 8¢ T L : :
> F 0 A
Nops = 1 Uncert’s from 68% quantile. E 04:— :
g b -
& 03F
Countermeasures: 02:}
* Bayesian limit allows to
incorporate prior knowledge 0.1%
about physical boundaries. oil w1 1.
: 0 2 4 6 8 10 12 14 16 18
* Modify Frequentist limit to Mo
prevent exclusion far beyond Example: 95% CL upper limiton ;= b
26 sensitivity. in absence of signal for b = 3 and using
Frequentist limit setting.




Exercise-4: Limits near a boundary ..\X‘(IT
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Assume you have an observation of 1 event, were you expect 0, 2, 3, 5 due to
already known processes. You want to quote a 95% CL upper limit on the true
value 1, of the expected events for a Poisson distributed signal model.

a) Use the numerical integration for the Bayesian limit, modify it to incorporate b and
complete the table below.

NB: for this exercise modify the macro
GetPosterior.C or use the macro given
below in the same way.

GetPosteriorWithBackground.C(s,b, N)= a(s, N)

bt —b (s =0)  ppd b
0 4.74 0

2 2.74 4.754153

3 1.74 6.29+3-50

5  —0.26 9.1542-69

Nops = 1 Uncert's from 68% quantile.
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Exercise-4: Limits near a boundary ..\X‘(IT

Karlsruhe Institute of Technology

Assume you have an observation of 1 event, were you expect 0, 2, 3, 5 due to
already known processes. You want to quote a 95% CL upper limit on the true
value 1, of the expected events for a Poisson distributed signal model.

a) Use the numerical integration for the Bayesian limit, modify it to incorporate b and
complete the table below.

NB: for this exercise modify the macro
GetPosterior.C or use the macro given
below in the same way.

GetPosteriorWithBackground.C(s,b, N)= a(s, N)

bt —b plrei(s=0) s —b
0 4.74 0 4.74
2 2.74 4.754153 3.80
3 1.74 6.29+%85 3.60
5 —0.26 9.15+3-%2 3.45

Nops = 1 Uncert's from 68% quantile.
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Modified Frequentist limit (CLs) AT

Karlsruhe In: echnology

* Prevent exclusion beyond sensitivity of the experiment (“modified Frequentist limit”).

P(N<Nobs)|,,—s
CLs = Gt = ;(NSNob?ﬁ;j
% 03 Probability density (s+b)
CL<1sCasciiis | Bb o o oy
larger signal required to reach the g r N, )
same CL for exclusion. 2 !
-g 0.2 CLy, =0.95
« Zero signal never excluded. * CLg =0.35
0.15 CLy, =0.37

0.1

0.05

0 5 10 15 20 25
Events

Example: CLs value for b=6, s =6,
Nops = 11
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Exercise-4: Limits near a boundary ..\X‘(IT

Karlsruhe Institute of Technology

Assume you have an observation of 1 event, were you expect 0, 2, 3, 5 due to
already known processes. You want to quote a 95% CL upper limit on the true
value 1, of the expected events for a Poisson distributed signal model.

a) Use the numerical integration for the Bayesian limit, modify it to incorporate b and
complete the table below.

b) Calculate the limits using the modified Frequentist approach and CLs.

NB: for this exercise use the macro

GetCLs.C(s,b, N)= a(s, N)

re re bayes s
b Mg.95q —b ngpq(s = 0) M0.9y5 —b H855 —b
0 4.74 0 4.74
2 2.74 4.7547153 3.80
3 1.74 6.29+32-56 3.60
5 —0.26 9.1542:52 3.45

Nops = 1 Uncert's from 68% quantile.
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Exercise-4: Limits near a boundary ..\X‘(IT

Karlsruhe Institute of Technology

Assume you have an observation of 1 event, were you expect 0, 2, 3, 5 due to
already known processes. You want to quote a 95% CL upper limit on the true
value 1, of the expected events for a Poisson distributed signal model.

a) Use the numerical integration for the Bayesian limit, modify it to incorporate b and
complete the table below.

b) Calculate the limits using the modified Frequentist approach and CLs.

NB: for this exercise use the macro

GetCLs.C(s,b, N)= a(s, N)

re re bayes s
b Mg.95q —b ngpq(s =0) M0.9y5 —b H855 —b
0 4.74 0 4.74 4.75
2 2.74 4.75+1:22 3.80 3.81
3 1.74 6.294-2-59 3.60 3.65
5 —0.26 9.1542:52 3.45 3.45

Nops = 1 Uncert's from 68% quantile.
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Coverage (CLs) ..\X‘(IT

Karlsruhe Institute of Technology

* CLs limit has always over coverage (— more conservative than pure Frequentist
approach).

— 95% CL CL limit ~ ---- 95% CL CL_, limit

L —— frequentist o | ¢ —— frequentist 1 2
L Z e ]_ ===+ frequentist modified L b == ‘2 ===~ frequentist modified
++---+ 95% CL limit L <+-e- 95% CL limit

gT
*

M, ON signal
o
| |

[ ]l r X :
L : L )
L 1 o L e
0.98 / A 0.98 / e
Al i ;
0.96 0.96) /

/

P Y| P PO T FUURN FUUTL FYVVE FUUTN BUUTL VTR IO P | FUUN T TTVL FUUTY FYUVE FUVRR PO VTR IO
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
s s
I 6
1 t
o L —— frequentist o L . —— frequentist
L b sy 3 - - = - frequentist modified b = 9 - - =~ frequentist modified
-2-2+ 95% CL limit L +=++++ 95% CL limit 4
i g i it
i i r LI - . . -
098, A obofip 098 Gl e . Ta,
| A L Y IR 2— . L -
H H H H H H i . - b
' 1 H . ' ' ' - - .
I A r Arwat r * - Y
. . . . H -
I AN I3 HImH L ., e LI
0.96] i 0.96 ol "... L e
/ / L / B *Ih "l-‘ '0.
— “‘ WY
L 0 * S
- *
-
f1X. AR FN FEETH PN T S T T A 094l bbbl i b s — - "
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10 - hC
S S B ‘*,- .
-
C | | | [ e
2 L1101 T I L1101 T I I T M I 3 N Y T B

0 1 2 3 4 5 6
Number of background events
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Summary (lecture part-ll)

—

* Limits for signal on top of a known background.
* Problems of Frequentist approach near physical boundaries.
* Differences between Frequentist and Bayesian limit setting.

* Modified Frequentist limit (— CLs).



Limits w/ systematic uncertainties

* Take previous example and extend model by two
typical systematic uncertainties:

* Even simple experiments quickly
turn into complex multi-parameter
problems.

Signal model:
p=L(s+Db)

Simple likelihood model:

Uncertainty model:
L= Lyps AL
b =bops £ Ab
AL, Ab modelled by

(truncted) Gaussian’s.

L . integrated Luminosity
s : expected signal

b : expected background

Nobs!
1 _ (L_L"obs)2
Pﬁ (£0b37 A‘CObS) — \/%AE . € 2 Aﬁgb
1 _ (b_bob28)2
Po(bobs, Abops) 28000

— e
34 V21 Abyps

Ps,ﬁ,b(Nob& *Cobsa bobs) — 733 (N0b87 Eobsa bobs) XPE (£0b87 A£obs) ><7Db(bobSa Abobs)

Nobs
Ps(Nobs, Lobs, bobs) = (Lobs (5 + bobs)) ¢ Lobs(stbobs)  (counting experiment)

(luminosity estimate)

(background estimate)




Limits w/ systematic uncertainties ..\\J(IT

itute of Technology

* Take previous example and extend model by two
typical systematic uncertainties:

* Even simple experiments quickly .
. : Bayesian:
turn into complex multi-parameter
problems. Integrate over nuisance
parameters and apply
* Here interpret as estimate of three Bayesian limit procedure
observables N, Lops, bops , Dased on POI.
on likelihood function with three
parameters (two nuisance Frequentist:
parameters 6,6, and one POI /). Neyman construction in 6d
not feasible.
* — 3d likelihood!

Integrate over nuisance
parameters; apply Neyman
construction on POI

(— hybrid method).
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Exercise-5: Limits w/ systematic uncertainties ._\X‘(IT

Karlsruhe Institute of Technology

Assume you have an observation of 1 event, were you expect 0, 2, 3, 5 due to
already known processes. You want to quote a 95% CL upper limit on the true

value 1, of the expected events for a

Poisson distributed signal model.

Complete the table below for a limit with 10% uncertainty on the luminosity.

NB: for this exercise use the macro

GetCLsSys.C(s,b, AL, N)= a(s, N)

b g —b plpi(s=0) g —b uG —b  pf —b(AL)
0 4.74 0 4.74 4.75
2 2.74 4.7447153 3.80 3.81
3 1.74 6.29+3285 3.60 3.65
5  —0.26 9.15+352 3.45 3.45

Nops = 1 Uncert's from 68% quantile.
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Exercise-5: Limits w/ systematic uncertainties ._\X‘(IT

Karlsruhe Institute of Technology

Assume you have an observation of 1 event, were you expect 0, 2, 3, 5 due to
already known processes. You want to quote a 95% CL upper limit on the true
value 1, of the expected events for a Poisson distributed signal model.

Complete the table below for a limit with 10% uncertainty on the luminosity.

NB: for this exercise use the macro

GetCLsSys.C(s,b, AL, N)= a(s,N)

b s —b pulii(s=0) pgs” —b uGc —b e - b(AL)
0 474 0 4.74 4.75 4.84
2 274 AT4HL 3.80 3.81 3.96
3 174 620428 3.60 3.65 3.84
5 026  9.15+38) 3.45 3.45 3.62

Nops = 1 Uncert's from 68% quantile.
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Limits w/ multiple channels ..\X‘(IT

Karlsruhe Institute of Technology

* Take previous example (for simplicity again w/o uncert’s) & extend to multiple
channels, e.g. in form of a binned distribution:

Signal + known background (in 25 bins): R
P(ki, pi) = Tl et
E({ki}v My {(9]}) — H P(ku M (,ua {03}))
L _J
Y

Product of individual probability
densities for each bin.

_ . . - \2
pi(p {05}) = o - e 0% 4 py - e (02720 g T o
\ J ~ J 5250 — Signa
background signal B Background

200—

* Neyman construction in (2-25)d not feasible. 150?—
* Use appropriate test statistic that maps 25d 100/~
sample space toR . !
Q" - R: z— f(x) h
. e e e B T

mass [GeV]




Proper choice of test statistic ..\\J(IT

itute of Technology

Formally base limit on hypothesis test:

Hy: s+0b ("signal+SM”)
Hy: b-only ("SM”)

Fundamental lemma of Neyman-Pearson:

 Best choice for hypothesis when performing a test between H, and H,the
separation — likelihood ratio. | /likelihood ratio test, which rejects H in favor of
Hy when
* For ¢ = —21In( this ratio Q= Lor, ({ki},{0;3) .

-~ Lag({ki}ns{051)

« Exact form of likelihood P(Qki}s 1y 1051) < nlHi) = a

ratio used in HEP evolved is the most powerful test at significance level o
over time. for a threshold .

turns into a difference.
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Example: Higgs searches (LEP ~2000 — 2005) \‘(IT

Karlsruhe In:

* Test signal (41, for fixed mass, m, and fixed signal strength, 11 ) vs. background-
only (Hy).

L(ki ] pes(07) + b(05)) = LTP (il pesi (65) + bi(0 ))XHC(9 16,005)

quz—an(%), 0<p

* Interpret C(6,]60,..5s) a@s probability for 6; given 6; . (like in Bayesian
statistics — hybrid method).

* Integrate over all 4, (— marginalization) and make Neyman construction.
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Higgs searches @ LEP qu = —21In (Elnlestb)) © g <
i L(n|b) T = |
850 L T ‘ T | T | ]
Z00.05 - LEP =40 [ o
g my, =110 GeV/c — g ]
3 W S
>}0.04 - (@) IS
= 20 [ S -
= 0.03 - - No .
= 10 — B
e ]
i r ]
A 0.02 0 F -
- 10 - T
0.01 - —— Observed 0 C h
I Lo Expected for backgrqu‘hd k=2 =
[ | | L | | L Observed EEI:IIS GeV/c -20 i - EKpL'L'lL'dI'lll'sign'dl;p]ll.'iIJ'(ll'kgr[lllnLl 2} E
Q60 40 200 20 a0 6o = Expected for background Y N R T P R R
77 Expected for signal 106 108 110 112 114 116 118 120
L plus background
2In(Q) | CeV/c
= 008 | m,(GeV/c)
=0
]
= -
© 0.06 LT /
» signal-ike - | / Ibli:\ckgroun(i!- LEP 2
T oL like my, =120 GeV/e
0.04 - - 4 / > \ H

* Determine probability densities for
Gl g, , (for exp. limits) from toys.

41

-2 In(Q)
To0dF
0.05 -
0 .,.-%.'.--. -|2. L

Experimental Particle Physics (IEKP)

-2 In(Q)




Example: Higgs searches (Tevatron ~2005 — 2010) \‘(IT

Karlsruhe In:

* Test signal (41, for fixed mass, m, and fixed signal strength, 11 ) vs. background-
only (Hy).

L(ki ] pes(07) + b(05)) = LTP (il pesi (65) + bi(0 ))XHC(9 16,005)

. £(n|ps(0,) +5(0,.))
U = 21“( £(n|b(Bo)) )

* Interpret C(6,]60,..5s) a@s probability for 6; given 6; . (like in Bayesian
statistics — hybrid method).

* Determine best fit values 9j + Aéj for all §; from initial fit under both
hypotheses before marginalization (— profiling).
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J¥ hypothesis tests @ LHC

L(0T+BG)

* Test statistic: ¢ = —21n (L‘,(JP-I-BG)

expected limits) from toys.

).

Determine probability densities for ¢,

|H0,1

(for

Pseudoexperiments

CMS preliminary Yys=7TeV,L=51f" ys=8TeV,L= 196 fb"

©
—

0.08

0.06

0.04

0.02

_III|IIII|IIII|IIII|IIII|IIII_I_

20 -10 0 10 20 30
2xIn{L /L)
0 0

CMS Vs=7TeV,L=511"(s=8TeV,L=19.0___
;% [ -8~ CMS data - - - Median expected : : : :
Q> 60 WMO* =10 [ NP ]
£ 0"+ 20 M+ 20
R 40k 0+:30. JF:SO. ]
20 -
oﬁﬁﬁﬁﬁﬁﬁ
—20
40}
0 0, 1 1 1 1 2, 2, 2, 2, 2 2,
any any qg—X any qg—X any gg—X qGg—X any gg—X gg—X gg—X
43
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Example: Higgs searches (LHC ~2010 — now) \‘(IT

Karlsruhe In:

* Test signal (41, for fixed mass, m, and fixed signal strength, 11 ) vs. background-
only (Hy).

L(ki ] pes(07) + b(05)) = LTP (il pesi (65) + bi(0 ))XHC(9 16,005)

— ﬁ(ﬂl#S(QuHMQu)))
u 2ln(c<nms<eﬂ>+b<eﬂ>> » 0

<p<up

* Interpret C(6,]60,..5s) a@s probability for 6; given 6; . (like in Bayesian
statistics — hybrid method).

* Profile numerator for fixed ;. and denominator for 0 < /i <
(— profile likelihood ratio).
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Profile likelihood ratio (- asymptotic limit) A

itute of Technology

* Since numerator always smaller than denominator ¢,, > 0.

* In the large number limit probability density f(q,.|¢") can be approximated by
analytical function (— see arXiv:1007.1727):

( N 2

1 1 Y 2/ .2

N (Y w%\/@eXp( 2(Vq“ o )) 0<g<p/o
f(qu‘u ) - @ o (Q,U')_‘_< 1 1 qu_(MQ_ZMM/)/Oj)Z 5 5
e (4 ) i

1 :  u value for model in question
u' : True value of POI that leads to global likelihood maximum in denominator

o : Uncertainty on u’

* o can be estimated from Asimov dataset of b -only hypothesis to be 02 = 1?/q4 .

45 Institute of Experimental Particle Physics (IEKP)


https://arxiv.org/abs/1007.1727

Asimov dataset .\\J(IT

Karlsruhe Institute of Technology

. Dgfined such that when one uses it to evaluate the estimators for all parameters
{6,}, i one obtains the true parameter values.

* In practice obtain Asimov dataset by adding all MC templates with nuisance
parameters at expected values to obtain exact expectation (— assume no
biases).

N2
/ ' 2\/%@6)@(_% (\/@_\/QAMMM> ) 0<¢g<qa
flaplw) =@ (| = —1)qa ) 6(qu)+4 1 1 [ (qu—aa(w®—2pp")/u?)?
\ 2V yaa P <_§ ( Iqa ) q>qa
(
: 1 3o v P _%q“> = 5X*(qu,1) 0<qg<qa
flauly' = p) = Saa 0(gu)+H 1 larany? o
| 2Vervaa CXP\ 27 4qa ) ~5x°(qa,1) ¢>gqa
( 2
1 1
—3 Y 0<qg<qa
2V21.\/q, eXp ( 2 <\/@ C]A)
flauly’ =0) = ®(=/qa) 6(qu)+: (.=94)”
1 1 \dp—gqA
| 2Veryaa exXp (_5 iga ) q>qa
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Confidence intervals

AT

Karlsruhe Institute of Technology

* Confidence intervals obtained from cumulative distribution functions of f(g.|¢’) .

[ 1= & (/o)

. JobstgAa
- (—é’m

CLg, =

N\

CLy, =

7\

_ dobs —4dA
-

0<qg<qa
q > qa

[ @ (/34 — /Tobs) 0<q<qa

q > qa

* Limit can be obtained from knowledge of goss and g4 only — no need for toys!
Expected limit (for s = 0) obtained from quantiles of CLs fromq4 .
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Limits @ the LHC AT

Karlsruhe Institute of Technology

* Last published limit before Higgs boson discovery (example from CMS):

0 o T B TR mEmSe | ool sifcane
B ; = 1k L. ..., = E ]| of 30 eV.
\g FL=46-48f" | Expected (68%)|1 = 1§
bt sl Expected (95%)[1| |& [ o
= 10" Ef= E
o B 7 ; /'/ e \ e
= B n [ i
= S 102k E \ 199
— E S - ] PLB710(2012)26-48
B O E il | peEmaspERssssREnEEaUEEERRS
O A ot iy \/\\ A : —=— Observed
o 1 — N - 110 '1'15';_1".26‘ 125 130 135 1'46';}'45 ------ Expected (68%)
||?o - “. /', . - , iggs boson mass (GeV) || Expected (95%)
o> E "\ Ra/ N N g: é ;
E ' ¢ 1 e - ]
= E ] 1 o - g
i 8 i 1909
E R 1 12401k e
Tl HE 10 - ! + 595%]
S =S E : ‘| ,’
10 i 1 | 1 o | lIIIIIIIIIIIII|IIIIIIIII|IIII|IIII— CD i “‘ "' £
100 200 300 400 500 e : ol 99%
1 o 10 = A 5 =
Higgs boson mass (GeV) o E :
o . o [ :
* Five different final states, O(2500) - i
. 8L . o
nuisance parameters. 107 1§ E
" 100 200 300 400
Higgs boson mass (GeV)



http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-11-032/index.html

Summary (lecture part-lil)

—

 Limits for multichannel measurements (e.g. binned distributions).
* Likelihood ratio test.

* Asymptotic approximation.



Backup _\g(“.

Karlsruhe Institute of Technology

50 Institute of Experimental Particle Physics (IEKP)



Relation between Poisson & X2distribution _\\J(IT

itute of Technology

« Relation between sum over Poisson terms and XxZdistribution:

2 N _—2up/2 N
X2 (20, 2(N +1)) = sy = s5re ™ = 5PV, )

ONFIT(NT1)
N 00 00
(i, N) = S Plhkot) = [ 32 (@, 2(N + 1)) dz =2 [ X2 (24, 2(N + 1)) dy
1=0 21 i

« Standard root functions for the evaluation of x°:

TMath: :Prob(2 u,2(N + 1)) = [ x*(z,2(N + 1))dz = > &re ™ = a(u, N)
21 i1 < N

f1—o = TMath: :ChisquareQuantile(l — a, 2 (N + 1)) /2.

24
Returns the upper boundary of the integral [ x?(z,2(N + 1))dz for which the

0
integral has the value 1 — a (— quantile to value1 — «).
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