

# Higgs physics in di- $\tau$ final states with CMS

Roger Wolf 07. December 2017

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY



KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu



#### $\tau$ -leptons & LHC Higgs physics



36/fb @ 13 TeV highly sophisticated analysis leads to  $3.6 \sigma$  evidence.

|                                                                                   |                        |                                                                  | ALL ALL AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL |                                                       |
|-----------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|
| the second second                                                                 | $\mathbf{C}\mathbf{h}$ | annel                                                            | Resolution                                         | S/B                                                   |
| $\kappa_{HVV} = \frac{2m_V^2}{v} \left\{ \begin{array}{c} \\ \end{array} \right.$ | H<br>H ·<br>H          | $ \rightarrow \gamma \gamma \\ \rightarrow ZZ \\ \rightarrow WW$ | 1-2%<br>1-2%<br>20%                                | $\mathcal{O}(0.1)$ $\mathcal{O}(>1)$ $\mathcal{O}(1)$ |
| $\kappa_{Hff} = \frac{m_f}{v} \left\{ \begin{array}{c} \\ \end{array} \right.$    | H · $H$ ·              |                                                                  | 10%<br>15%                                         | ${\cal O}(0.1) \\ {\cal O}(0.1) \\ {\cal O}(0.1)$     |





36/fb @ 13 TeV highly sophisticated analysis leads to  $3.6 \sigma$  evidence.





36/fb @ 13 TeV highly sophisticated analysis leads to  $4.9 \sigma$  discovery.

#### $\tau$ -leptons & LHC Higgs physics



- Difficult to identify b quark initiated jets with high purity.
- b quark production in QCD quite common in hadron collider.
- Identify signal in presence of overwhelming background.
- Reduce event rate during data taking.



- Difficult to identify hadronic  $\tau$ -decay with high purity ( $\rightarrow$  see next slides).
- Background that is most difficult to separate:  $Z \rightarrow \tau \tau$  ( $\rightarrow$  well under control).
- Leptonic nature easier to identify/ tag.

5/46

#### **Di-** $\tau$ final state

• High mass allows for decays into hadrons:





- Search for 2 isolated high  $p_T$  leptons (e,  $\mu$ ,  $\tau_h$ ).
- Reconstruct discriminating variable, related to di- $\tau$  final state:  $m_{\tau\tau}, m_{vis}, m_{T}^{tot}, BDT$ .

### **Di-** $\tau$ final state

• High mass allows for decays into hadrons:



~90% of all di- $\tau$  final states contain at least one  $\tau_h$ .



- Search for 2 isolated high  $p_T$  leptons (e,  $\mu$ ,  $\tau_h$ ).
- Reconstruct discriminating variable, related to di- $\tau$  final state:  $m_{\tau\tau}, m_{vis}, m_{T}^{tot}, BDT$ .

# 7/46 Reminder of CMS

#### What we want to know:

 $\begin{pmatrix} p_T & \eta & \phi \end{pmatrix}$  + particle type (m) from each particle that emerges the collision.







### Hadronic $\tau$ -decay

- Start from anti-  ${\rm k}_{\rm T}$  clustered jets of particle flow objects with opening parameter of 0.4.
- Require one or three high  $p_{T}$  charged hadrons (  $\rightarrow$  prongs).



• Apply ID criteria to increase purity.



# $\tau_h$ -Identification

- MVA based  $\tau_h$ -identification: energy deposits close to  $\tau$ -candidate + impact parameter information on prongs.
- Discrimination against muons and electrons.



• Predefined working points used in analyses.







#### $\mathbf{SM}\,H \to \tau\tau\,\mathbf{analysis}$

- Based on 36/fb @ 13 TeV,  $e\tau_h$ ,  $\mu\tau_h$ ,  $\tau_h\tau_h$ ,  $e\mu$  channel.
- Statistical inference of signal based on **1D and 2D likelihood discrimination**, depending on final state and event category.

|              | 0-jet                                     | 1-jet boost              | 2-jet VBF       |
|--------------|-------------------------------------------|--------------------------|-----------------|
| $e	au_h$     | $m_{vis} vs$<br>$\tau_h decay$<br>mode    | Ť                        | Ť               |
| $\mu 	au_h$  | $m_{vis} vs$<br>$\tau_h decay$<br>mode    | $m_{	au	au}$ vs          | $m_{	au	au}$ vs |
| $	au_h	au_h$ | $m_{\tau\tau}$ (1D)                       | $p_{\mathrm{T}}(	au	au)$ | $m_{ m jj}$     |
| $e\mu$       | ${ m m_{vis}}~{ m vs}$<br>$p_{ m T}(\mu)$ | ¥                        | ¥               |

arxiv:1708.00373

- Based on 36/fb @ 13 TeV,  $e\tau_h$ ,  $\mu\tau_h$ ,  $\tau_h\tau_h$ ,  $e\mu$  channel.
- Statistical inference of signal based on **1D and 2D likelihood discrimination**, depending on final state and event category.







- Based on 36/fb @ 13 TeV,  $e\tau_h$ ,  $\mu\tau_h$ ,  $\tau_h\tau_h$ ,  $e\mu$  channel.
- Statistical inference of signal based on **1D and 2D likelihood discrimination**, depending on final state and event category.







- Based on 36/fb @ 13 TeV,  $e\tau_h$ ,  $\mu\tau_h$ ,  $\tau_h\tau_h$ ,  $e\mu$  channel.
- Statistical inference of signal based on **1D and 2D likelihood discrimination**, depending on final state and event category.







# **Background estimation**

# **DY**: from simulation w/ corrections from data.



### Observation





#### Observation





### Observation





#### Observation





### Observation





### Observation





#### **Results**

• Combined ML fit to all distributions in all event categories:



- Largest significance @ 125 GeV  $4.9(4.7)\sigma$ .
- +  $5.9(5.9)\sigma$  when combined with the LHC run-1 result.

#### **Results**

• **Consistency** across production modes (left) and final states (right):



- Overall signal strength:  $\mu = 1.09 \pm_{0.26}^{0.27}$
- Largest uncertainties equally shared b.t.w. template population, systematics, statistics  $(\mathcal{O}(13\%))$ , theory uncertainty  $\mathcal{O}(10\%)$ .

# **Conclusions part-I**

• First single-channel, single-experiment  $> 5\sigma$  observation of coupling to fermions.



### **Conclusions part-I**

- First single-channel, single-experiment  $> 5\sigma$  observation of coupling to fermions.
- Major source of Higgs boson events @ 125 GeV (e.g. for study of dedicated final states like VBF).

| Decay           | $\sqrt{s} = 8 \text{ TeV}, 20 \text{ fb}^{-1}$ | $\sqrt{s} = 13 \text{ TeV}, 300 \text{ fb}^{-1}$ |                  |            |      |      |                  |
|-----------------|------------------------------------------------|--------------------------------------------------|------------------|------------|------|------|------------------|
| Channel         | inclusive                                      | inclusive                                        | $gg \to H$       | $qq \to H$ | WH   | ZH   | $t\overline{t}H$ |
| $\gamma\gamma$  | 1k                                             | 37k                                              | 32k              | 2,5k       | 1k   | 750  | 375              |
| ZZ              | 50                                             | 2k                                               | 1,75k            | 140        | 60   | 40   | 10               |
| WW              | $5\mathrm{k}$                                  | 200k                                             | 175k             | 14k        | 6k   | 4k   | 1k               |
| $b\overline{b}$ | 250k                                           | $10000\mathrm{k}$                                | $8750\mathrm{k}$ | 700k       | 300k | 200k | 50k              |
| au	au           | 30k                                            | $1000\mathrm{k}$                                 | 875k             | 70k        | 30k  | 20k  | 5k               |
| $\mu\mu$        | 100                                            | $3.7\mathrm{k}$                                  | 3.2k             | 250        | 100  | 70   | 30               |

based on  $\sigma \cdot BR$  before reconstruction

### **Conclusions part-I**

- First single-channel, single-experiment  $> 5\sigma$  observation of coupling to fermions.
- Major source of Higgs boson events @ 125 GeV (e.g. for study of dedicated final states like VBF).
- Only unbiased environment to measure CP of the Higgs boson:



### **Conclusions part-I**

- First single-channel, single-experiment  $> 5\sigma$  observation of coupling to fermions.
- Major source of Higgs boson events @ 125 GeV (e.g. for study of dedicated final states like VBF).
- Only unbiased environment to measure CP of the Higgs boson:
- Prime source to search for non-trivial extended Higgs sectors (→ e.g. in SUSY, see next slides)!



#### Standard particles

#### SUSY particles



# $MSSM H \rightarrow \tau \tau \text{ analysis}^{(*)}$



(\*) as proxi for a well motivated THDM extension of the SM

#### **Higgs Bosons in the MSSM**

• Any 2 Higgs Doublet Model (2HDM) predicts five Higgs bosons:



 $\alpha$  : angle between H and h in mass matrix

#### Mass of observed Higgs Boson and $\tan\beta$



 $\alpha$  : angle between H and h in mass matrix

### **Special role of down-type fermions**

|   | $g_{VV}/g_{VV}^{SM}$                 | $g_{uu}/g_{uu}^{SM}$                   | $g_{dd}/g_{dd}^{SM}$                      |
|---|--------------------------------------|----------------------------------------|-------------------------------------------|
| A | _                                    | $\gamma_5 \cot\beta$                   | $\gamma_5 	aneta$                         |
| H | $\cos(\beta - \alpha) \rightarrow 0$ | $\sin lpha / \ \sin eta \ 	o \cot eta$ | $\cos lpha / \cos eta  ightarrow 	an eta$ |
| h | $\sin(\beta - \alpha) \rightarrow 1$ | $\cos lpha / \sin eta \ 	o \ 1$        | $-\sinlpha/\coseta  ightarrow 1$          |

X

For  $m_A \gg m_Z$ :  $\alpha \to \beta - \pi/2$  (coupling to down-type fermions enhanced by  $\tan \beta$ ).



#### **Production modes:**

#### Decay channels:





27/46



27/46







- Brand new CMS result discussed in the
  following (based on 36/fb @ 13TeV).
- What's special about this publication:
  - Maximally data driven background estimates.
  - Increased sensitivity due to more complex event categorization.
  - Differential signal modeling consistently @ NLO QCD accuracy.
  - Sophisticated statistical inference for signal.

# **Additional event information**

• Increase sensitivity to signal by making use of further **signal specific event information** (e.g. enhanced presence of b quarks).



Signal region (SR) Control region













Control regions used for in situ determination of normalization and partially shapes of backgrounds in ML fit used for statistical inference of the signal.

# **Background modeling**

- Background related to  $jet \rightarrow \tau_h$  misidentification estimated from data using **fake factor** (FF) method.
- Background model cross checked by two alternative estimation methods (MC driven, embedded)



| background process | misidentification                                                       | $e\mu$                  | $e	au_h$                                                            | $\mu	au_h$                 | $	au_h	au_h$               |
|--------------------|-------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------|----------------------------|----------------------------|
| $Z \to \tau \tau$  |                                                                         | $\mathrm{MC}^\dagger$   | $\mathrm{MC}^{\dagger}$                                             | $\mathrm{MC}^\dagger$      | $\mathrm{MC}^\dagger$      |
| $Z \to \ell \ell$  | $\begin{array}{c} \ell \to \tau_h \\ \text{jet} \to \tau_h \end{array}$ | MC                      | MC<br>FF                                                            | MC<br>FF                   | MC<br>FF                   |
| Diboson+single top | $	au/\ell 	o 	au_h \ 	ext{jet} 	o 	au_h$                                | MC                      | MC<br>FF                                                            | MC<br>FF                   | MC<br>FF                   |
| $t\overline{t}$    | $	au/\ell 	o 	au_h$<br>jet $	o 	au_h$                                   | $\mathrm{MC}^{\dagger}$ | $\begin{array}{c} \mathrm{MC}^{\dagger} \\ \mathrm{FF} \end{array}$ | $\mathrm{MC}^{\dagger}$ FF | $\mathrm{MC}^{\dagger}$ FF |
| W + jets           | $\mathrm{jet} \to \tau_h$                                               | $\mathbf{MC}$           | FF                                                                  | $\operatorname{FF}$        | FF                         |
| QCD                | $\mathrm{jet} \to \tau_h$                                               | $\operatorname{CR}$     | FF                                                                  | $\operatorname{FF}$        | FF                         |

<sup>†</sup> Normalization from control region in data.

### Fake factor (FF) method

• **Fake factor**: number of isolated over number of anti-isolated  $\tau_h$ .



### Fake factor (FF) method

• **Fake factor**: number of isolated over number of anti-isolated  $\tau_h$ .



# Signal modeling

**Test MSSM vs SM hypothesis:** allows for well defined statistical problem, even when reaching sensitivity to the 125 GeV Higgs boson.

- $p_T(A, H, h)$  @ NLO QCD + PS  $\rightarrow$  multiscale problem.
- Plus: b contribution varies as a function of  $\tan \beta$ .



- Typical scan to determine exclusion contours in specific models.
- Determine CLs in each point in parameter space to obtain limit at significance level  $\alpha$ .

### Signal modeling

- $p_T(A, H, h)$  @ NLO QCD + PS  $\rightarrow$  multiscale problem.
- Plus: b contribution varies as a function of  $\tan \beta$ .



### Signal modeling

- $p_T(A, H, h)$  @ NLO QCD + PS  $\rightarrow$  multiscale problem.
- Plus: b contribution varies as a function of  $\tan \beta$ .





### Signal modeling





- Taking into account all  $\tan \beta$  enhanced SUSY corrections and non-trivial  $\tan \alpha$  dependency for H/h.
- Worked out with E. Bagnaschi and S. Liebler in frame of LHCHXSWG-3.



Powheg NLO (2HDM)

#### Observation

Shown are the most sensitive categories with an MSSM  $m_h^{\text{mod}+}$  hypothesis w/  $m_A = 700 \text{ GeV}$  and  $\tan \beta = 20$  fitted to the data.



### **Model independent limits**

• Narrow width approximation, two parameters of interest,  $\mu_{gg\phi}$  and  $\mu_{bb\phi}$ .



- No deviation beyond  $2\sigma$  found.
- Cross checks discussed e.g. in Ph.D. thesis from Rene Caspart and master thesis from Janek Bechtel.

# **Model independent limits**

• Narrow width approximation, two parameters of interest,  $\mu_{gg\phi}$  and  $\mu_{bb\phi}$ .



### Model dependent exclusion contours

• Exclusion contours in **predefined benchmark models**:



• In general parameter space is explored down to  $\tan\beta\gtrsim 6$  for  $m_A\lesssim 250~{\rm GeV}$  and up to  $m_A\leq 1600~{\rm GeV}$ .

#### Summary

- Di- $\tau$  is one of the most interesting final states in the Higgs physics program of the LHC.
  - Best access to Higgs boson couplings to fermions.
  - Large event yields still reasonably well accessible (e.g. for studies of specific production modes).
  - Most interesting final state to **search for extensions** of the SM Higgs sector.
- CMS had a very successful year 2017 with two major publications on SM and MSSM Higgs physics in the di- $\tau$  final state on the full dataset of 2016.
- We are well prepared to analyze the full LHC run-2 dataset from 2019 on. Looking forward to these analyses.



$$\tau_1^{\text{vis}} = \mu, \, e, \, \tau_h \qquad \tau_2^{\text{vis}} = \mu, \, \tau_h$$

$$m_{\rm T}^{\rm tot} = \sqrt{m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_1^{\rm vis}) + m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_2^{\rm vis}) + m_{\rm T}^2(\tau_1^{\rm vis}, \tau_2^{\rm vis})},$$

$$m_{\rm T}(1,2) = \sqrt{2p_{\rm T}(1)p_{\rm T}(2)(1-\cos\Delta\phi(1,2))},$$



#### **Reconstruction of** $m_{\tau\tau}$

• Likelihood approach:

 $\mathcal{L} = \bullet \overbrace{\overline{\theta_2}}^{0} \bullet$  ×



- ME for leptonic  $\tau$  decay or phase space kinematics of 2-body decay of  $\tau_h$ .
- Estimate of expected  $E_T$  resolution on event by event basis.
- Inputs: visible decay products, x-, ycomponent of  $E_T$ .
- Free parameters:  $\varphi$  ,  $\theta^*$ , ( $m_{\nu\nu}$ ) per  $\tau$ .



• Find minimum of  $\mathcal{L}$  for given  $m_{\tau\tau}$  and scan over all possible values of  $m_{\tau\tau}$  to find global minimum.

# 2D likelihood scans

• Coupling to fermions and vector bosons:



• These plots include  $H \rightarrow WW$  as signal process;  $\kappa_V$  driven by VBF &  $e\mu$ .

# **Higgs: CP properties (**from $H \rightarrow f\bar{f}$ **)**

• Obtain *P* from an angular momentum analysis of the QM system:

Orbital momentum:  $P(Y_l^m(\theta, \varphi)) = (-1)^l \cdot Y_l^m(\theta, \varphi)$ 

Intrinsic parity of fermions:  

$$P(f) = (+1) \cdot f$$
  $P(\bar{f}) = (-1) \cdot f$ 

• Obtain *C* from  $P \times (\pm 1)$  for permutations of objects (  $\neg$  spin statistics):

$$\begin{array}{l} |1,\pm1\rangle = & |1/2,\pm1/2\rangle \otimes |1/2,\pm1/2\rangle \\ |1, \ 0\rangle = \sqrt{\frac{1}{2}} \left( |1/2,+1/2\rangle \otimes |1/2,-1/2\rangle + (|1/2,-1/2\rangle \otimes |1/2,+1/2\rangle) \right\} \\ (+1) \text{ under permutations.} \\ |0, \ 0\rangle = \sqrt{\frac{1}{2}} \left( |1/2,+1/2\rangle \otimes |1/2,-1/2\rangle - (|1/2,-1/2\rangle \otimes |1/2,+1/2\rangle) \right) \\ (-1) \text{ under permutations.} \end{array}$$

Х

• For two fermion system:

$$P = (-1)^{L+1}$$

$$C = (-1)^{L+S}$$

$$CP = (-1)^{S+1}$$

$$CP = (-1)^{S+1}$$

$$CP = (-1)^{S+1}$$

#### **Higgs: CP properties (**from $H \rightarrow f\bar{f}$ **)**



• For two fermion system:

$$P = (-1)^{L+1}$$

$$C = (-1)^{L+S}$$

$$CP = (-1)^{S+1}$$

$$CP = (-1)^{S+1}$$

$$CP = (-1)^{S+1}$$



#### Transverse spin polarization in the di- $\tau$ system



# **Embedding cross check**



# 2D NLL picked up by theory

• First application to new models (using HiggsBounds): arXiv:1507.06706





 $\sigma(gg\phi) \cdot B(\phi \rightarrow \tau \tau)$  [pb]



3D database:  $1.25 \cdot 10^6 \Delta NLL$  points for 31 masses between  $m_{\phi} = 90 \dots 1000$  GeV.

#### arXiv:1408.3316

