

Hunt for the Higgs Boson and its Coupling to Fermions

Roger Wolf

27. June 2014

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

www.kit.edu

Constituents of Matter

• All matter we know off today is made up of six quark and six lepton flavors:

• All of them are fermions with spin 1/2.

Fundamental Interactions

• We know four fundamental interactions, which act between them:

Strong Force:

Fundamental Interactions

Electromagnetic Force:

Particles to light to be

significantly influenced by gravitation.

Strong Force:

Local Gauge Symmetries

Glory of Local Gauge Symmetries

• Local gauge symmetries strictly require force mediating particle to have m = 0:

• Local gauge symmetries strictly require force mediating particle to have m = 0:

• Local gauge symmetries strictly require force mediating particle to have m = 0:

 $m_Z = 91.1876 \pm 0.0021 \text{ GeV}$ $m_W = 85.385 \pm 0.015 \text{ GeV}$

• Local gauge symmetries strictly require force mediating particle to have m = 0:

Local gauge symmetries strictly require force/ Weak interactions are described mediating particle to have m = 0: by weak gauge symmetries! \rightarrow symmetry exists. Fermions Bosons Force mediating particles Quarks explicitly break symmetry! \rightarrow t U С symmetry not realized in nature. charm up top photon d b S Ζ down strange bottom Z boson Weak interaction makes a Leptons V_{τ} Ve difference between left- & right-W boson electron muon tau handed coordinate systems. neutrino neutrino neutrino auе и This property destroys local electron muon tau gluon gauge invariance for all weak interactions if fermions have $m_Z = 91.1876 \pm 0.0021 \text{ GeV}$ mass $m \neq 0$. $m_W = 85.385 \pm 0.015 \text{ GeV}$

Spontaneous Symmetry Breaking

- Symmetry present in the system (i.e. in Lagrangian density \mathcal{L}).
- BUT symmetry broken in energy ground state of the system (=quantum vacuum).
- Three examples from classical mechanics:

Higgs Mechanism

- Incorporation of spontaneous symmetry breaking in gauge field theory = Higgs mechanism:
- Introduce new field \u03c6 with characteristic interaction potential.
- Leads to prediction of new particle: → Higgs boson!
- Allows to incorporate mass terms in the theory.

 Gauge symmetry compromising mass terms compensated by characteristic couplings to Higgs particle:

$$\begin{aligned} \kappa_V &= \frac{2m_v^2}{v} \quad \text{(for force mediating } W \& Z \text{ boson).} \\ \kappa_f &= \frac{m_f}{v} \quad \text{(for weakly interacting fermions).} \end{aligned}$$

Wanted: Higgs Boson (Dead or Alive)

• If m_H is given all properties of the (SM) Higgs boson are known:

The Large Hadron Collider

The Large Hadron Collider

Key demands on Experiments

Stopping power

•

The Compact Solution (CMS)

LHC History (measured in physics measurements)

Snapshot of our Physics Understanding of Today

Discovery of a new particle 4th July 2012

Institute of Experimental Particle Physics (IEKP)

Discovery of a new particle 4th July 2012

- Scratching magic 5σ boundary.
- Discovery driven by high resolution channels $(H \rightarrow \gamma \gamma \& H \rightarrow ZZ)$.
- Broad moderate excesses for $H \rightarrow WW$.
- No signal seen in fermionic decay channels.

$H \rightarrow \tau \tau$ Decay Channel

Performance of Hadronic τ Reconstruction

Institute of Experimental Particle Physics (IEKP)

Analysis Strategy

- Analyze all six inclusive decay channels (τ_hτ_h, μτ_h, eτ_h, eμ, μμ, ee) & many more exclusive decay channels for VH production (Z → ℓℓ, W → ℓν).
- Select two isolated leptons (τ_h , μ , e).
- Restrict \mathcal{E}_T to reduce background from W + jets events.
- Use fully reconstructed $m_{\tau\tau}$ as discriminating variable:

- Inputs: visible leptons, x-, y-component of E_T .
- Free parameters: φ , θ^* , $(m_{\nu\nu})$ per τ .

Background Control

• Further event categorization to increase sensitivity of the analysis:

Further Event Categorization

		0-jet	1-jet		2-jet		
				p _T ^π > 100 GeV	m _{jj} > 500 GeV Δη _{jj} > 3.5	$\begin{array}{l} p_{T}^{\tau\tau} > 100 \; GeV \\ m_{jj} > 700 \; GeV \\ \left \Delta \eta_{jj} \right > 4.0 \end{array}$	
	$p_T^{\tau h} > 45 \text{ GeV}$	$high-p_{T}^{\tau h}$	$high-p_{T}^{\tau h}$	high-p _T ^{τh} boosted	loose	tight VBE tag	
μτ _h	baseline	low-p _T ^{τh}	low-p _T th		VBF tag	(2012 only)	
eτ _h	$p_T^{\text{th}} > 45 \text{ GeV}$	high-p _T ^{πh}	-high-p ₁ ^{τh}	high-p _T ^{τh} boosted	loose	tight VBF tag	
	baseline	low-p _T ^{τh}	low-p _T th		VBF tag	(2012 only)	
			$E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV				
eh	р _т ^µ > 35 GeV	high-p _T µ	high-p _T µ		loose VBF tag	tight VBF tag (2012 only)	
	baseline	$low-p_T^\mu$	$\text{low-p}_{\text{T}}^{\mu}$				
ee, µµ	p _⊤ ' > 35 GeV	high-p _T I	high-p _T I		2-jet		
	baseline	low-p _T ^I	low-p _T I				
T _h T _h (8 TeV only)	T _h T _h TeV only) baseline		boosted	highly boosted	VBF tag		
			p _T ^π > 100 GeV	p _T ^π > 170 GeV	$\begin{array}{l} p_{T}^{\pi} > 100 \; \text{GeV} \\ m_{jj} > 500 \; \text{GeV} \\ \Delta \eta_{jj} > 3.5 \end{array}$		

- Nearly 100 exclusive event categories.
- 6 inclusive decay channels.
- Exclusive decay channels for production in association with *W*, *Z* bosons.
- On 7 TeV and 8 TeV dataset.

Distribution of $m_{\tau\tau}$

Institute of Experimental Particle Physics (IEKP)

3σ Evidence of Higgs Coupling to Fermions

Quo Vadis $H \rightarrow \tau \tau$

- Why is $H \rightarrow \tau \tau$ still hot?
 - Most promising channel to have access to Higgs fermion couplings.
 - $H \rightarrow \tau \tau$ needs to be rediscovered in 2015 data.
 - 3σ need to be turned into an unquestionable 5σ discovery.

- $H \rightarrow \tau \tau$ is the only channel to measure direct CP violation in the Higgs sector.
- Exciting for two reasons:
 - CP violation alone as in the SM cannot explain that our universe today is made of matter and not of matter and anti-matter to more equal parts.
 - A CP odd Higgs boson is theoretically a very interesting candidate to find another Higgs boson! Very generally a CP odd Higgs boson does not couple to bosons at tree level BUT to fermions!

How to Measure CP in $H \rightarrow \tau \tau$ (in a nutshell)

• Recapping C and P: f: P = +1 \overline{f} : P = -1 $P = (-1)^{L} \prod_{i} (-1) = (-1)^{L+1}$ $C = (-1)^{L+S}$ Intrinsic parities

How can we distinguish CP = -1 from CP = +1?

How to Measure CP in $H \rightarrow \tau \tau$ (in a nutshell)

• A CP odd Higgs boson is theoretically predicted in Two Higgs Doublet models (2HDM) like the MSSM:

$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}$$
, $Y_{H_1} = -1$, v_1 : VEV₁

$$H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$$
, $Y_{H_2} = +1$, v_2 : VEV₂

$$N_{\rm ndof} = 8$$
 $-3 = 5$
 $W, Z = H^{+/-}, H, h, A$

Strong mass requirements at tree level:

Two free parameters: m_A , $\tan\beta = \frac{v_1}{v_2}$

$$m_{H^{+/-}} = m_A^2 + m_W^2$$

$$m_{H,h} = \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} + \frac{1}{2} \left(m_A^2 + m_Z^2 + m_Z^2\right)^2 + \frac{1}{2} \left(m_A^2 + m_Z^2\right)^2 + \frac{1}{2} \left(m_Z^2 + m_Z^2\right)^2 + \frac{1}{2} \left(m_Z^$$

MSSM and $H \to \tau \tau$

- The combination of MSSM (as 2HDM) and $H \rightarrow \tau \tau$ is even more interesting!
- Different coupling to up-type and down-type fermions (usually down-type enhanced).
- Quick check with slightly modified SM analysis:

odd Higgs boson between 110 GeV and 145 GeV.

here.

Search for additional neutral Higgs Bosons

• Exploit predicted increased sensitivity to down-type fermions and remain as model independent as possible:

Institute of Experimental Particle Physics (IEKP)

Model independent limits

• Search for a narrow resonance in $gg \rightarrow H$ & $bb \rightarrow H$ production mode:

Limits in dedicated MSSM Benchmark Models

Explicit prediction for three neutral Higgs bosons:

 m_{A} =500GeV 10 $\tan\beta=15$ CMS Preliminary, $H \rightarrow \tau \tau$, 4.9 fb⁻¹ at 7 TeV, 19.7 fb⁻¹ at 8 TeV 60 10 tanβ 10 Excluded: Observed 10 SM H(125 GeV) 50 10 injected 10 Expected ± 1σ Expected 10⁻⁸ \pm 2 σ Expected 40 10-9 1500 m_e [GeV] LEP 500 Note: a Higgs @ 130 GeV 30 already observed! 20 With increasing sensitivity new statistical interpretation 10 needed: "1 Higgs vs 3 Higgses". MSSM m_b^{max} scenario M_{susy} = 1 TeV 0 200 400 600 800 1000 m₄ [GeV]

- Hunt for the Higgs boson has been exciting!
- One of the main questions: does the new particle couple to fermions has been answered.
- The $H \rightarrow \tau \tau$ decay channel remains exciting in future:
 - Re-discovery & establish 5σ .
 - Direct measurement of CP.
 - Exciting channel for discovery of additional Higgs bosons.
- (Higgs) physics with τ at the LHC remains fun!

Local Gauge Symmetries (Crash Course)

- Equations that describe quantum mechanical system are invariant under global phase transformations (example U(1) symmetry):
 - Can choose arbitrary phase ϑ for wave functions $\psi(\vec{x},t) \rightarrow \psi(\vec{x},t)e^{i\vartheta}$.
 - But phase must be the same at any point in space, at any time! (→ global symmetry)

Local Gauge Symmetries (Crash Course)

- Equations that describe quantum mechanical system are invariant under global phase transformations (example U(1) symmetry):
 - Can choose arbitrary phase ϑ for wave functions $\psi(\vec{x},t) \rightarrow \psi(\vec{x},t)e^{i\vartheta}$.
 - But phase must be the same at any point in space, at any time! (→ global symmetry)
 - Possible to allow arbitrary phase $\vartheta(\vec{x},t)$ of $\psi(\vec{x},t)$ at each point in space and any time. (\rightarrow local symmetry)
 - But this requires introduction of a mediating field A_{μ} , which transports phase information from point to point:

$$\begin{array}{c} \psi(\vec{x},t) \\ \vartheta(\vec{x},t) \end{array} \bullet \begin{array}{c} e \\ \end{array} - \begin{array}{c} A_{\mu} \\ - \end{array} - \begin{array}{c} e \\ \bullet \end{array} \\ \begin{array}{c} \psi(\vec{x'},t') \\ \vartheta(\vec{x'},t') \end{array}$$

Application to Particle Physics

• Goldstone Potential:

$$\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$$
$$V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$
$$\mathcal{L}(\phi) = \partial_\mu \phi \partial^\mu \phi^* - V(\phi)$$

- invariant under U(1) transformations (i.e. φ symmetric).
- metastable in $\phi = 0$.
- ground state breaks U(1) symmetry, BUT at the same time all ground states are in-distinguishable in φ .

Application to Particle Physics

• Goldstone Potential:

$$\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$$
$$V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$
$$\mathcal{L}(\phi) = \partial_\mu \phi \partial^\mu \phi^* - V(\phi)$$

- invariant under U(1) transformations (i.e. φ symmetric).
- metastable in $\phi = 0$.
- ground state breaks U(1) symmetry, BUT at the same time all ground states are in-distinguishable in φ .

• ϕ has radial excitations in the potential $V(\phi)$.

Application to Particle Physics

• Goldstone Potential:

$$\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$$
$$V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$
$$\mathcal{L}(\phi) = \partial_\mu \phi \partial^\mu \phi^* - V(\phi)$$

- invariant under U(1) transformations (i.e. φ symmetric).
- metastable in $\phi = 0$.
- ground state breaks U(1) symmetry, BUT at the same time all ground states are in-distinguishable in φ .

• ϕ can move freely in the circle that corresponds to the minimum of $V(\phi)$.

Higgs Mechanism

- Incorporation of spontaneous symmetry breaking in gauge field theory = Higgs mechanism:
- Introduce new field ϕ with characteristic potential.
- Leads to prediction of new particle: → Higgs boson!

- Fermion masses via simple (=Yukawa) coupling to Higgs boson.
- Higgs boson itself obtains mass from Higgs potential.
- Gauge invariance compromising mass terms compensated by characteristic couplings to Higgs particle:

A Long Road of Theory Developments

Performance of Hadronic τ **Reconstruction**

- Control efficiency within $\pm 7\%$ using tag & probe methods:
- Control τ_h energy scale within $\pm 3\%$ from fits to $m_{\tau, vis}$:

events/10 GeV/c² Data $Z/\gamma \rightarrow \tau^{+}\tau^{-}$ 60 OCD W + jets $Z/\gamma \rightarrow \mu^{+}\mu^{-}$ tt + jets 40 passed HPS loose 20 50 100 150 200 μ-jet visible mass (GeV/c²) events/15 GeV/c² Data $Z/\gamma^{-} \rightarrow \tau^{+} \tau^{-}$ QCD W + jets $\mathbf{Z}/\gamma \rightarrow \mu^{+}\mu^{-}$ 🔲 tī + jets failed HPS loose 50 50 100 150 200 μ -jet visible mass (GeV/c²)

• Uncertainties further constrained by maximum likelihood fit in the statistical inference for signal extraction.

Status July 2012:

Status March 2013:

Status Summer 2014:

Treating contributions from $H \rightarrow WW$ as background.