From the analysis of the observed Higgs boson coupling structure to the search for more Higgs bosons

– Higgs boson analyses in the di-τ final state –

Roger Wolf 23. Mai 2019

$au^{1/35}$ au-leptons & LHC Higgs physics

• With 1.77 GeV the heaviest known lepton.

• One of the **big five** in the investigation of the Higgs sector @ low mass.

	Channel	Resolution	S/B
$2m_V^2$	$H\to\gamma\gamma$	1-2%	$\mathcal{O}(0.1)$
$\kappa_{HVV} = \frac{v}{v} \left\{ \right.$	$H \to ZZ$	1-2%	$\mathcal{O}(>1)$
	$H \to W W$ $H \to h\bar{h}$	20%	$\mathcal{O}(1)$
$\kappa_{Hff} = \frac{m_f}{m_f}$	$H \rightarrow 00$ $H \rightarrow \tau \tau$	10% 15%	$\mathcal{O}(0.1)$
v ($\Pi \rightarrow \Pi$	1970	$\mathcal{O}(0.1)$

Di-au final state

• High mass allows for **decays into hadrons**:

Di-au final state

• High mass allows for **decays into hadrons**:

Hadronic au-decays

- Start from anti- $k_{\rm T}$ clustered jets of particle flow objects with opening parameter of 0.4.
- Require one or three high p_T charged hadrons (→ prongs).

• Apply ID criteria to increase purity.

$au_{ m h}$ -ldentification

- MVA based τ_h -identification: energy deposits close to τ -candidate + impact parameter information on prongs.
- Discrimination against muons and electrons.

• Predefined working points used in analyses.

Di-au final state

- Search for **2** isolated high p_T leptons (e, μ , τ_h).
- Reduce obvious backgrounds, control what can't be reduced.
- Reconstruct discriminating variable, related to di- τ final state.

Priv. Doz. Dr. Roger Wolf http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

au-embedding

au-embedding

Before:

arxiv:1903.01216

au-embedding

After:

arxiv:1903.01216

8/35 τ -embedding $Z \rightarrow \mu \mu$ Cleaning 13 TeV 13 TeV $\langle \Delta p_{T}(h^{\pm}) \rangle$ (MeV) $\langle \Delta p_T(h^{\pm}) \rangle$ (MeV) CMS CMS 20 Simulation Simulation 300 - $Z \rightarrow \mu\mu$ (simulation) $\rightarrow \mu\mu$ (simulation) $Z \rightarrow \mu\mu$ (embedded) $\rightarrow \mu\mu$ (embedded) 15 Ζ 200 arxiv:1903.01216 10 Control particle flux close 100 to μ to level of **140 MeV** Charged hadrons 0.2 0.0 0.1 0.3 0.4 0.0 0.1 0.2 R (μ , h[±] from PU) R (μ , h[±] from PV) 13 TeV 13 TeV $\langle \Delta p_{T}(h^{0}) \rangle$ (MeV) $\langle \Delta p_T(\gamma) \rangle$ (MeV) Muon 40 CMS CMS 60 - Simulation Simulation direction $Z \rightarrow \mu \mu$ (simulation) $Z \rightarrow \mu \mu$ (simulation) 30 $Z \rightarrow \mu\mu$ (embedded) $Z \rightarrow \mu\mu$ (embedded) 40 20 20 10

8.0

Neutral

hadrons

R (μ, h⁰)

0.2

0.1

Priv. Doz. Dr. Roger Wolf http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

0.1

0.2

0.0

Photons

0.3

0.4

R (μ, γ)

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

${ m SM\,H} o au au$ analysis

- Undoubted that what we observe at 125 GeV is a Higgs boson.
- Measurement scope:
 - Investigate **coupling** structure.
 - Check for deviations from the SM expectation.

Higgs coupling structure

• Part of classic analysis of **rate measurements** in production modes & final states.

BUT: new physics has influence on kinematic distributions.

^{12/35} Simplified template cross section (STXS)

- Define common phasespace regions based on pseudo-observable objects and quantities:
 - Convention to allow for **combination** of final states and across experiments.
 - Kinematic bins help to reduce influence of theory uncertainties (e.g. in $p_{\rm T}^{\rm H}$ or $N_{\rm Jet}$) on measurement.

^{12/35} Simplified template cross section (STXS)

- Define common phasespace regions based on pseudo-observable objects and quantities:
 - Convention to allow for **combination** of final states and across experiments.
 - Kinematic bins help to reduce influence of theory uncertainties (e.g. in $p_{\rm T}^{\rm H}$ or $N_{\rm Jet}$) on measurement.

^{13/35} Simplified template cross section (STXS)

• Defined for analysis of LHC Run-2 data by LHC HXSWG:

Simplified template cross section (STXS):

 E.g. Higgs production in VBF & gluon fusion.

Fiducial cross section:

- Obey detector acceptance and stick to measurable quantities.
- E.g. Higgs production in association w/ two jets w/ $m_{\rm jj} > 350~{\rm GeV}.$

Signal extraction

- Signal derived from maximum likelihood fit to NN output of each event category.
- Pure background categories help to constrain backgrounds in signal categories.

CMS-PAS-HIG-18-032

NN inputs

• Use one NN for each final state and separated btw. 2016 & 2017 ($_{\rightarrow}$ 8 NNs):

Variable	eμ	$e\tau_h$	$\mu \tau_{\rm h}$	$ au_{\rm h} au_{\rm h}$	Variable	eμ	$e\tau_h$	$\mu \tau_{ m h}$	$ au_{\rm h} au_{\rm h}$
$m_{ au au}^{ m SV}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$p_{\mathrm{T}}^{\mathrm{jj}}$	$\mathbf{A}_{\mathbf{A}}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$m_{T au au}^{SV}$	$\checkmark\checkmark$				$p_{\rm T}({\rm b~jet}_1)$		$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$p_{T au au}^{SV}$	$\checkmark\checkmark$				$p_{\rm T}({\rm b~jet_2})$		$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$m_{\rm vis}$	√ −	\checkmark –	\checkmark –	$\checkmark\checkmark$	$p_{ m T}^{ m miss}$	$ -\checkmark$	$\checkmark\checkmark$	\checkmark –	\checkmark –
$p_{ m T}^{ m vis}$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark –	\checkmark –	D_{ζ}	$\checkmark\checkmark$			
$p_{\mathrm{T}}^{ar{ au}_1}$			\checkmark –	$\checkmark\checkmark$	$m_{\mathrm{T}}^{\mathrm{e}}$		$\checkmark\checkmark$		
$p_{\mathrm{T}}^{ au_2}$	√ –	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark –	$m^{\mu}_{ m T}$	$\checkmark\checkmark$		$\checkmark\checkmark$	
$\Delta R^{e\mu}$	$\checkmark\checkmark$				$m_{ m T}^{{ m e}+\mu}$	√ –			
$p_{\rm T}({\rm jet}_1)$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark –	$\max(m_{\rm T}^{\mu}, m_{\rm T}^{\rm e})$	$\checkmark\checkmark$			
η (jet ₁)	 ✓ – 				$m_{\mathrm{T}}^{\tau_{\mathrm{h}}}$		$\checkmark\checkmark$	\checkmark –	$\checkmark\checkmark$
$p_{\rm T}({\rm jet}_2)$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$p_{\mathrm{T}}^{ au au+\mathrm{miss}}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
η (jet ₂)	√ -				$p_{ ext{T}}^{ au ext{j}+ ext{miss}}$	$-\checkmark$			
m_{ii}	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$N_{\rm b \ iet}$		$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$\Delta \ddot{\eta}_{ m jj}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$N_{\rm jet}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$-\checkmark$

Variables in use: 21(19) 18(13) 17(16) 16(12)

NN inputs

• Use one NN for each final state and seperated btw. 2016 & 2017 (\rightarrow 8 NNs):

Making sure that input variables are well described by our model exploiting goodness-of-fit (GoF) test in 1d...

NN inputs

• Use one NN for each final state and seperated btw. 2016 & 2017 (→ 8 NNs):

Making sure that input variables are well described by our model exploiting goodness-of-fit (GoF) test in 1d... & 2d.

"Unboxing" the NN

Decipher what the NN is doing using a Taylor expansion of the full NN output function.
 Impact analysis like on LEP likelihood, but here on NN output function.

misc 0.05 0.07 0.05 0.07 0.03 0.04 0.02 0.01 0.02 0.07 0.03 0.04 0.03 0.05 ss 0.21 0.24 0.05 0.03 0.05 0.03 0.04 0.04 0.01 0.02 0.17 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 tt 0.04 0.07 0.05 0.07 0.04 0.04 0.09 0.05 0.05 0.03 0.04 0.04 0.04 0.03 0.08 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.03 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.05 0.07 0.04 0.05 0.05 0.07 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0																			
s 0.21 0.24 0.05 0.03 0.05 0.04 0.04 0.01 0.02 0.04 0.02 0.02 0.02 0.04 0.05 <t< td=""><td>misc-</td><td>0.05</td><td>0.07</td><td>0.05</td><td>0.05</td><td>0.07</td><td>0.03</td><td>0.04</td><td>0.02</td><td>0.12</td><td>0.01</td><td>0.02</td><td>0.07</td><td>0.03</td><td>0.04</td><td>0.03</td><td>0.09</td><td>0.03</td><td>0.05</td></t<>	misc-	0.05	0.07	0.05	0.05	0.07	0.03	0.04	0.02	0.12	0.01	0.02	0.07	0.03	0.04	0.03	0.09	0.03	0.05
t 0.04 0.07 0.05 0.07 0.04 0.09 0.05 0.05 0.03 0.01 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.07 0.04 0.03 0.07 0.04 0.03 0.07 0.04 0.03 0.07 0.04 0.03 0.07 0.04 0.05 0.07 0.07 0.04 0.05 0.07 0.07 0.04 0.05 0.07 0.07 0.04 0.05 0.07 0.07 0.01 0.07 0.01 0.05 0.07 0.01 0.07 0.01 0.05 0.07 0.01 0.07 0.01 0.05 0.07 0.01 <t< td=""><td>SS -</td><td>0.21</td><td>0.24</td><td>0.05</td><td>0.03</td><td>0.05</td><td>0.03</td><td>0.04</td><td>0.04</td><td>0.10</td><td>0.01</td><td>0.02</td><td>0.17</td><td>0.04</td><td>0.02</td><td>0.02</td><td>0.23</td><td>0.04</td><td>0.05</td></t<>	SS -	0.21	0.24	0.05	0.03	0.05	0.03	0.04	0.04	0.10	0.01	0.02	0.17	0.04	0.02	0.02	0.23	0.04	0.05
w 0.11 0.16 0.12 0.04 0.05 0.07 0.07 0.04 0.05 0.07 <t< td=""><td>tt -</td><td>0.04</td><td>0.07</td><td>0.05</td><td>0.07</td><td>0.04</td><td>0.04</td><td>0.09</td><td>0.05</td><td>0.05</td><td>0.03</td><td>0.03</td><td>0.04</td><td>0.04</td><td>0.04</td><td>0.03</td><td>0.08</td><td>0.02</td><td>0.04</td></t<>	tt -	0.04	0.07	0.05	0.07	0.04	0.04	0.09	0.05	0.05	0.03	0.03	0.04	0.04	0.04	0.03	0.08	0.02	0.04
zli 0.16 0.16 0.16 0.10 0.05 0.07 0.04 0.05 0.04 0.05 0.07 0.01	w-	0.11	0.16	0.12	0.04	0.05	0.03	0.07	0.03	0.07	0.04	0.03	0.27	0.09	0.02	0.02	0.20	0.05	0.07
ztt 0.08 0.40 0.08 0.04 0.06 0.03 0.21 0.03 0.05 0.01 0.51 0.04 0.03 qqh 0.05 0.11 0.05 0.03 0.01 0.05 0.11 0.05 0.01 0.05 0.14 0.05 0.05 0.05 0.04 0.05 <t< td=""><td>zll -</td><td>0.16</td><td>0.16</td><td>0.10</td><td>0.05</td><td>0.07</td><td>0.04</td><td>0.05</td><td>0.04</td><td>0.18</td><td>0.03</td><td>0.04</td><td>0.27</td><td>0.12</td><td>0.05</td><td>0.04</td><td>0.93</td><td>0.07</td><td>0.16</td></t<>	zll -	0.16	0.16	0.10	0.05	0.07	0.04	0.05	0.04	0.18	0.03	0.04	0.27	0.12	0.05	0.04	0.93	0.07	0.16
ddp 0.02 0.01 0.02 0.02 0.04 0.21 0.03 0.02 0.01 0.04 0.04 0.04 0.04 gdp 0.01 1	ztt-	0.08	0.40	0.08	0.04	0.06	0.04	0.06	0.03	0.21	0.03	0.03	0.54	0.03	0.03	0.01	0.51	0.04	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	qqh-	0.05	0.09	0.11	0.05	0.03	0.02	0.05	0.04	0.21	0.03	0.02	0.10	0.05	0.14	0.04	0.18	0.09	0.04
pt_1 - pt_2 - jpt_2 - jpt_2 - bpt_1 - bpt_1 - njets - njets - pt_it - pt_it - pt_it - dijetpt - met -	ggh -	0.07	0.24	0.09	0.04	0.05	0.03	0.04	0.02	0.23	0.03	0.03	0.15	0.06	0.05	0.03	0.30	0.05	0.05
		pt_1 -	pt_2 -	jpt_1-	jpt_2 -	bpt_1 -	bpt_2 -	njets -	- nbtag	- vs_m	ht_1	mt_	ptvis -	pt_tt -	- iįm	jdeta -	m_vis -	dijetpt -	met -

Relative size of number indicates how sensitive the NN output is on the given input.

"Unboxing" the NN

• Decipher what the NN is doing using a Taylor expansion of the full NN output function. **Impact analysis** like on LEP likelihood, but here on NN output function.

misc	0.05	0.07	0.05	0.05	0.07	0.03	0.04	0.02	0.12	0.01	0.0	2 0.0	7 0.0	3 0	0.04	0.03	0.09	0.03	0.05							
				aab			aab		-				-11							<u> </u>	0				mina	
SS	0.21	0.24	m_vis	m_vis	1.50	m_vis	m_vis	0.44	pt_2	ptvis	1.14	m_vis	m_vis	7.58	m_vis	m_vis	0.83	m_vis	m_vis	0.16	m_vis	m_vis	0.56	m_sv	m_sv	0.23
			ptvis ptvis	m_vis ptvis	0.58	m_sv m_sv	m_vis m_sv	0.39	ptvis ptvis	ptvis m_vis	1.06 0.90	m_sv ptvis	m_vis m_vis	1.29 1.28	pt_2 ptvis	ptvis ptvis	0.43	m_sv nj	m_vis ets	0.11 0.09	pt_2 pt_2	ptvis m_vis	0.42 0.34	m_sv m_vis	m_vis m_vis	0.22
tt	0.04	0.07	pt_2 pt_2	m_vis	0.48 0.48	m_sv	ptvis	0.26	m_sv	ptvis ptvis	0.85 0.67	m_vis	met	1.01 0.89	ptvis	m_vis	0.41 0.29	pt_2	m_vis ipt_1	0.08	ptvis pt.1	m_vis ptvis	0.34	m_sv m	ptvis sv	0.14 0.13
			m_sv	m_vis	0.45	m_sv	dijetpt	0.20	pt_2	m.vis	0.63	pt.tt	m_vis	0.88	P	tvis	0.28	p	t_2	0.08	ptvis	ptvis	0.32	pt_2	ptvis	0.12
	0.11	0.16	m_sv pt_1	ptvis ptvis	0.33	ptvis m	_vis	0.18	pt_2 m_sv	m_sv	0.62	pt_1 pt_2	m_vis	0.87	pt_1 m_sv	m_vis	0.27	ptvis m_	m_vis	0.08	pt_1 pt_1	pt_2 m_vis	0.28	ptvis ptvis	m_vis ptvis	0.11
W.	0.11	0.10	pt_1	Lvis m_vis	0.29 0.29	pt_2 ptvis	m_vis m_vis	0.16 0.16	pt m_vis	vis m.vis	0.57	m_vis	dijetpt m.vis	0.72	jpt_1 m_sv	ptvis ptvis	0.25	קל סל	ot_2	0.07 0.07	m_sv	ptvis	0.25 0.24	pt_2 pt_1	m_vis ptvis	0.09 0.09
			m_vis	met	0.26	ptvis	ptvis	0.16	m.	vis	0.52	ptvis	ptvis	0.62	ptvis	pt_tt	0.21	m_sv	m_sv	0.06	pt_2	pt_2	0.23	pt_2	m_sv	0.09
zll	0.16	0.16	m_sv pt_tt	m_sv m_vis	0.24	m_v1s	aijetpt mjj	0.15	pt_2 m_sv	pt_2 m_vis	0.52	mjj	ptvis m_vis	0.49	n pt_tt	n_vis m_vis	0.20	pt.2 m.sv	pt_2 ptvis	0.06	m. F	vis t_l	0.21	JPt_I m_	vis vis	0.09
			jpt_1	ptvis m.vis	0.23	dijetpt	dijetpt dijetpt	: 0.14 : 0.13	p ipt.1	t_2 ptvis	0.40	pt_2 mt_2	ptvis m.vis	0.47	pt_2	pt_2 pt_2	0.18	pt_2	ptvis	0.06	m_sv pt.1	m_vis	0.20	pt m.sv	vis dijetpt	0.08
	0.00	0.40	JPOL	pt_2	0.22	pt_2	ptvis	0.13	pt_1	m_sv	0.31	m_sv	ptvis	0.36	m_vis	met	0.17	ptvis	ptvis	0.06	pt_2	m_sv	0.18	pt_1	m_vis	0.07
Ztt	0.08	0.40	pt_2	n_sv pt_2	0.21	jpt_1 pt_1	ptvis m_vis	0.13	pt_l ptvis	pt_2 dijetpt	0.30	njets pt_1	m_vis pt_2	0.36	pt_l jpt_l	m_vis m_vis	0.17 0.16	jpt_l jpt_l	ptvis m_vis	0.05	pt_jpt_1	tvis ptvis	0.16	pt_l jpt_l	m_sv m_vis	0.07
			ptvis	pt_tt dijetpt	0.19	m_vis	met	0.12	ptvis	met	0.29	jdeta	m_vis	0.32	ptvis	met 2	0.16	m_vis	met 2	0.05	pt_1	m_sv	0.13	int 1	t_2	0.07
ggh-	0.05	0.09	pt_2	m_sv	0.19	jpt_1	m_vis	0.12	ptvis	pt_tt	0.27	pt.	vis	0.30	pt_2	m_sv	0.14	pt_1	m_vis	0.05	ptvis	met	0.12)bc11	st_1	0.07
			ptvis pt_1	dijetpt pt_2	0.18	pt_l j	m_sv pt_1	0.12	nbtag bpt.1	ptvis ptvis	0.26	bpt_2 ptvis	pt_tt \	0.30	pt_2	ptvis pt_tt	0.13	pt_1 pt_2	ptvis jpt_1	0.05	pt_l m_vis	met met	0.12	pt_2 jpt_1	pt_2 jpt_1	0.07
	0.07	0.24	ptvis	met	0.16	jpt_1	m_sv	0.11	pt_1	pt_1	0.25	pt_1	pt_1	0.29	ptvis	dijetpt	0.13	pt_2	m_sv	0.05	jpt_1	m_vis	0.11	pt_1	pt_2	0.06
ggh	0.07	0.24	pc_1	tvis	0.15	pc_cc pt	tvis	0.11	njeca m	_sv	0.23	ptvis	met	0.25	jpt_1	jpt_1	0.13	nb	tag	0.05	pt_tt	m_vis	0.11	jr	st_1	0.06
	<u> </u>		jpt_1 mjj	m_sv m_vis	0.15 0.14	mjj	m_vis ot_2	0.10 0.10	pt_1 m_sv	m_vis dijetpt	0.23	jpt_2 jpt_1	m_vis ptvis /	0.28	pt_2 pt_1	jpt_1 pt_1	0.12 0.12	m. jpt_1	_sv m_sv	0.04 0.04	pt_2 ptvis	jpt_1 dijetpt	0.11 0.11	m_sv m_vis	pt_tt met	0.06 0.06
	다	Ľ	bpt_1	ptvis	0.14	pt_2	m_sv	0.09	pt_2	pt_tt	0.19	nbtag	m_vis	0.26	bpt_1	ptvis	0.12	pt	vis	0.04	bpt_1	ptvis	0.10	m	et	0.06
	d	d	pt_1 njets	pt_1 m_vis	0.14	m_sv	jetpt pt_tt	0.09	pt_2	jpt_1	0.18	ptvis pt_2	pt_2	0.26	F	pt_l	0.12	m_vis	dijetpt	0.04	jpt_1 njets	m_sv ptvis	0.10	m_vis ptvis	pt_tt	0.06
			njets	ptvis	0.13	m_sv	mjj	0.09	m_sv	pt_tt	0.17	pt_1	m_sv	0.23	int 1	jpt_1	0.12	pt 2 pt	_tt	0.04	п	_sv dijetot	0.10	jpt_2	m_sv	0.06
			bpt_1	m_vis	0.12	mjj	mjj	0.08	pt_tt	m_vis	0.16	m_sv	dijetpt	0.21	nbtag	ptvis	0.11	pt-2	pt_tt	0.04	pt_1	jpt_1	0.09	pt_1	pt_1	0.05
			jpt_1 m_sv	jpt_l dijetpt	0.12	pt_2 m_sv	pt_2 met	0.08	jpt_1 pt_2	m_vis njets	0.16 0.15	m_sv m_:	met. sv	0.19	m_sv pt_1	m_sv m_sv	0.11 0.11	ptvis pt.1	dijetpt pt_1	0.04	nbtag pt_2	ptvis pt_tt	0.09	pt_tt ptvis	m_vis met	0.05
			pt_2	pt_tt	0.11	P	t_tt	0.08	jpt_1	jpt_1	0.15	pt_1	met	0.18	jpt_2	ptvis	0.10	bp	t-i	0.04	pt_2	dijetpt	0.08	pt_2	jpt_1	0.05
			jpt_2	m_vis	0.11	bpt_2	m_sv	0.08	pt_2	met	0.15	pt_2	jpt_1	0.17	pt_1	met	0.10	jpt_1	njets	0.04	pt_1	pt_tt	0.08	bpt_1	ptvis	0.05
			nbtag	ptvis ptvis	0.11	jpt_1	mjj m_sv	0.08	pt_1 m_vis	dijetpt met	0.14 0.14	nbtag	ptvis ptvis	0.17 0.17	pt_2 njets	met m.vis	0.09	pt.1	m.sv	0.04 0.04	pt_2	met ptvis	0.08 0.08	jr m.sv	t_2 met	0.05
			bpt_2	m_vis	0.10	jpt_1	jpt_2	0.07	m_sv	met	0.13	bpt_1	ptvis	0.16	mjj	m_vis	0.09		/ tt	0.04	pt_2	bpt_1	0.08	jpt_1	jpt_2	0.05
			jdeta m_sv	m_vis met	0.10	mjj m_sv	dijetpt jdeta	0.07	pt_2 pt_1	aijetpt met	0.13	mt_1 jpt_1	m_vis m_sv	0.16	ppt_1	m_vis dijetpt	0.09	pt_1	jpt_1	0.04	pt_1 njets	aijetpt m_vis	0.08	jpt_1 jpt_2	aijetpt m_vis	0.05
			j m sv	pt_1	0.09	jpt_2	m_vis	0.07	pt_1	jpt_1 m vis	0.13	pt_1	jpt_1	0.15	pt_2	njets	0.08	m int 2	m vie	0.04	pt.1	nbtag	0.08	nj	ets	0.05
			pt_2	dijetpt	0.09	njets	m_vis	0.07	m_vis	dijetpt	0.12	jpt_1	jpt_1	0.14	jpt_2	m_vis	0.08	jpt_2	jpt_2	ΛΙ.	on th			don	o in C	Ы
			nbtag pt_2	m_vis njets	0.09	jdeta jpt_1	m_vis njets	0.07	bpt_2 njets	m_sv m_vis	0.12	pt_2 me	pt_tt	0.14 0.14	pt_2	m_sv dijetpt	0.08	pt_1 pt_2	met jpt_2	AI	รบ เท	is car	i be	e uon	e m z	2 u .
			pt_1	jpt_1	0.09	njets	ptvis	0.07	jpt.2	ptvis	0.12	pt_2	met	0.13	jpt_1	njets	0.08	jpt_2	njets	Ar	nd that	at wag	y or	ne ca	In lea	rn a

Also this can be done in 2d. And that way one can learn a lot about the NN task and how it is solved.

- Confusion matrix tells how well the NN can identify each individual process:
- In this representation: all columns normalized to unity.
- 72% of all qqH events can be identified as such.
- Assess success of NN by comparison to random association (prob. 1/8=12.5%).

		μτ _h (2	017)	CMS Simulation Prelimin								
	ggH	0.27	0.08	0.08	0.07	0.01	0.05	0.11	0.08			
SS	qqH	0.21	0.72	0.07	0.06	0.06	0.12	0.05	0.06			
nt cla	ztt	0.23	0.06	0.63	0.26	0.01	0.09	0.14	0.18			
d ever	qcd	0.02	0.01	0.02	0.17	0.02	0.06	0.04	0.13			
dicted	tt	0.01	0.04	0.01	0.06	0.75	0.23	0.01	0.02			
N pre	misc	0.02	0.04	0.06	0.07	0.14	0.28	0.02	0.09			
Z	zll	0.17	0.03	0.08	0.13	0.00	0.04	0.53	0.14			
	wj	0.07	0.02	0.06	0.19	0.02	0.13	0.10	0.31			
		ggH	Hpp	ztt	dcd	tt	misc	zll	wj			
CMS	S-PAS-H	HG-18-0	32	Τrι	le eve	ent cla	ISS					

STXS classification

• After classification of ggH and qqH events are split into STXS bins, based on selection requirements on theory-related quantities after reconstruction:

Results (inclusive)

Inclusive signal (sorted by log(S/(S+B)))

Signal strength: (top) split by final state and (bottom) inclusive

CMS-PAS-HIG-18-032

• Clear signal seen, though a bit on the low side, compared to other Higgs decay modes.

• More differential measurement in 9 predefined STXS bins:

Correlation matrix

 $^{(*)}$ as proxy for a well motivated Two Higgs Doublet Model (2HDM) extension of the SM.

Higgs sector in SUSY

• SUSY requires @ least 2 Higgs doublets (2HDM type-II) → five Higgs bosons:

$$\phi_{u} = \begin{pmatrix} \phi_{u}^{+} \\ \phi_{u}^{0} \end{pmatrix}, \quad Y_{\phi_{u}} = +1, \quad v_{u} : \text{VEV}_{u}$$

$$\phi_{d} = \begin{pmatrix} \phi_{d}^{0} \\ \phi_{d}^{0} \end{pmatrix}, \quad Y_{\phi_{d}} = -1, \quad v_{d} : \text{VEV}_{d}$$

$$\overline{N_{\text{ndof}}} = 8 \quad -3 = 5$$

$$W, Z \quad H^{\pm}, H, h, A$$
• Strict mass requirements imposed by symmetry
• At tree level two free parameters: m_{A} , $\tan \beta = v_{u}/v_{d}$.
$$\overline{m_{H^{\pm}}^{2}} = m_{A}^{2} + m_{W}^{2}$$

$$\overline{m_{H^{\pm}}^{2}} = m_{A}^{2} + m_{W}^{2}$$

$$m_{H, h}^{2} = \frac{1}{2} \left(m_{A}^{2} + m_{Z}^{2} \pm \sqrt{(m_{A}^{2} + m_{Z}^{2})^{2} - 4m_{A}^{2}m_{Z}^{2} \cos^{2} 2\beta} \right)$$

$$\tan \alpha = \frac{-(m_{A}^{2} + m_{Z}^{2}) \sin 2\beta}{(m_{Z}^{2} - m_{A}^{2}) \cos 2\beta + \sqrt{(m_{A}^{2} + m_{Z}^{2})^{2} - 4m_{A}^{2}m_{Z}^{2} \cos^{2} 2\beta}}{\alpha : \text{ angle between H and h in mass matrix}$$

Down-type fermions in the MSSM

NB: w/o CP-violation in the SUSY Higgs sector.

For $m_A \gg m_Z$: $\alpha \to \beta - \pi/2$ (coupling A/H to down-type fermions enhanced by $\tan \beta$).

X

Production modes:

Decay channels: $m_{\rm h}^{\rm mod+}$

Additional event information/categorization

- Exploiting high mass of di- τ final state (via $m_{\rm T}$) and increased coupling to b quarks (via b-tag).
- Apart from this stay **more simplistic** with event categorization w.r.t SM analysis.

Signal modeling

Test MSSM vs SM hypothesis: allows for well defined statistical problem, even when reaching sensitivity to the 125 GeV Higgs boson.

- Typical scan to determine exclusion contours in specific models.
- Determine CLs in each point in parameter space to obtain limit at significance level α .

Priv. Doz. Dr. Roger Wolf http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

^{30/35} Signal modeling

- $p_T(A, H, h)$ @ NLO QCD + PS \rightarrow multiscale problem.
- Plus: b contribution varies as a function of $\tan \beta$.

^{30/35} Signal modeling

- $p_T(A, H, h)$ @ NLO QCD + PS \rightarrow multiscale problem.
- Plus: b contribution varies as a function of $\tan \beta$.

30/35 Signal modeling

٠

Powheg NLO (2HDM)

31/35 Signal modeling

- $p_T(A, H, h)$ @ NLO QCD + PS \rightarrow multiscale problem. Plus: b contribution varies as a function of $\tan \beta$. • .00000000 00000000 $\sigma_{\rm MSSM}^{\rm tot} \propto$ h, H, Ah, H, A0000000 0000000 60 anβ $\sigma_{\mathrm{MSSM}}^{\mathrm{t}}\left(Q_{\mathrm{t}}\right) + \sigma_{\mathrm{MSSM}}^{\mathrm{b}}\left(Q_{\mathrm{b}}\right)$ 50 - • • • $\left(\sigma_{\text{MSSM}}^{\text{t+b}}\left(Q_{\text{tb}}\right) - \sigma_{\text{MSSM}}^{\text{t}}\left(Q_{\text{tb}}\right) - \sigma_{\text{MSSM}}^{\text{b}}\left(Q_{\text{tb}}\right) \right)$ 40 $\times Y_{\rm b}^2$ $\times Y_t^2$ 30 $\times Y_{\rm t} Y_{\rm b}$ 20 t quark b quark alone tb-interference alone 10
- Taking into account all $\tan \beta$ enhanced SUSY • corrections and non-trivial $\tan \alpha$ dependency for H/h.
- Developed with S. Liebler (KIT) and E. Bagnashi (DESY). •

^{32/35} Observation

JHEP 09 (2018) 5

Shown are the most sensitive categories with an MSSM $m_h^{\text{mod}+}$ hypothesis w/ $m_A = 700 \text{ GeV}$ and $\tan \beta = 20$ fitted to the data.

• Narrow width approximation, two parameters of interest, $\mu_{gg\phi}$ and $\mu_{bb\phi}$.

- No deviation beyond 2σ found.
- Cross checks discussed e.g. in ETP-KA/2017-21 and ETP-KA/2017-31.

Model dependent exclusion contours

• In predefined benchmark models:

• In general parameter space is explored down to $\tan \beta \gtrsim 6$ for $m_A \lesssim 250 \text{ GeV}$ and up to $m_A \leq 1600 \text{ GeV}$.

Summary

- Di- τ is one of the most interesting final states in the Higgs physics program of the LHC.
 - Best access to Higgs boson couplings to fermions.
 - Large event yields, reasonably well accessible (e.g. for studies of specific production modes, like VBF).
 - Most interesting final state to search for extensions of the SM Higgs sector.
- CMS had a very successful start in analyzing the LHC Run-2 data.
- KIT has a significant contribution to everything that has been shown.
- We are looking forward to analyze the full LHC Run-2 data.

Reminder of CMS

What we want to know:

 $\begin{pmatrix} p_T & \eta & \phi \end{pmatrix}$ + particle type (m) from each particle that emerges the collision.

