Exercises to Lecture 2: Electroweak Sector of the SM

Exercise 4 (Projection properties of γ^{5}):

In the lecture the projection properties of
$\psi_{L}=\frac{1}{2}\left(1-\gamma^{5}\right) \psi$
$\psi_{R}=\frac{1}{2}\left(1+\gamma^{5}\right) \psi$
have been discussed. It is obvious that $\psi=\psi_{L}+\psi_{R}$.
a)

Proof the following relation:
$\left(\frac{1}{2}\left(1 \pm \gamma^{5}\right)\right)^{2}=\frac{1}{2}\left(1 \pm \gamma^{5}\right)$
i.e. the corresponding operators are projectors.
b)

Proof the following relation:
$\frac{1}{2}\left(1+\gamma^{5}\right) \cdot \frac{1}{2}\left(1-\gamma^{5}\right)=0$
i.e. the two operators are orthogonal to each other.
c)

Proof the relation
$\bar{e} \gamma^{\mu}\left(\frac{1-\gamma^{5}}{2}\right) \nu=\bar{e}_{L} \gamma^{\mu} \nu_{L}$
i.e. the projector acts on the spinors in both directions. For this proof make use of the projector property that you have shown in a).
d)

Proof that
$\bar{e} \gamma^{\mu} \partial_{\mu} e+\bar{\nu} \gamma^{\mu} \partial_{\mu} \nu=\bar{e}_{L} \gamma^{\mu} \partial_{\mu} e_{L}+\bar{e}_{R} \gamma^{\mu} \partial_{\mu} e_{R}+\bar{\nu} \gamma^{\mu} \partial_{\mu} \nu$
even though $e=e_{L}+e_{R}$. For this proof make use of the orthogonality that you have shown in \mathbf{b}).

Exercise 5 (Chiral transformation):

The transformation $\chi: \psi \rightarrow \gamma^{5} \psi$ is called chiral transformation. It turns for instance axial vectors into vectors and vice versa.
a)

Check how the chiral transformation acts on the adjoint spinor $\bar{\psi}$.
b)

Proof that $e_{L}\left(e_{R}\right)$ are eigenstates to the chiral transformation with eigenvalues $-1(+1)$.
c)

Proof that terms of type $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ are covariant under chiral transformations, but terms of type $\bar{\psi} m \psi$ are not.

