Exercises to Lecture 2: Electroweak Sector of the SM

Exercise 4 (Projection properties of γ^5):

In the lecture the projection properties of

$$\psi_L = \frac{1}{2} \left(1 - \gamma^5 \right) \psi$$
$$\psi_R = \frac{1}{2} \left(1 + \gamma^5 \right) \psi$$

have been discussed. It is obvious that $\psi = \psi_L + \psi_R$.

a) Proof the following relation:

 $\left(\frac{1}{2}\left(1\pm\gamma^{5}\right)\right)^{2}=\frac{1}{2}\left(1\pm\gamma^{5}\right)$

i.e. the corresponding operators are projectors.

b)

Proof the following relation:

 $\frac{1}{2}\left(1+\gamma^{5}\right)\cdot\frac{1}{2}\left(1-\gamma^{5}\right)=0$

i.e. the two operators are orthogonal to each other.

c)

Proof the relation

 $\overline{e}\gamma^{\mu}\left(\frac{1-\gamma^{5}}{2}\right)\nu = \overline{e}_{L}\gamma^{\mu}\nu_{L}$

i.e. the projector acts on the spinors in both directions. For this proof make use of the projector property that you have shown in **a**).

d)

Proof that

 $\overline{e}\gamma^{\mu}\partial_{\mu}e + \overline{\nu}\gamma^{\mu}\partial_{\mu}\nu = \overline{e}_{L}\gamma^{\mu}\partial_{\mu}e_{L} + \overline{e}_{R}\gamma^{\mu}\partial_{\mu}e_{R} + \overline{\nu}\gamma^{\mu}\partial_{\mu}\nu$

even though $e = e_L + e_R$. For this proof make use of the orthogonality that you have shown in **b**).

Exercise 5 (Chiral transformation):

The transformation $\chi: \psi \to \gamma^5 \psi$ is called *chiral transformation*. It turns for instance axial vectors into vectors and vice versa.

a)

Check how the *chiral transformation* acts on the adjoint spinor $\overline{\psi}$.

b)

Proof that $e_L(e_R)$ are eigenstates to the chiral transformation with eigenvalues -1(+1).

c)

Proof that terms of type $\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi$ are covariant under chiral transformations, but terms of type $\overline{\psi}m\psi$ are not.