From Lagrangian to Observable

Roger Wolf

13. Mai 2014

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) - PHYSICS FACULTY

KIT - University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Recap from Last Time

- Introduced new field ϕ as $S U(2)$ doublet in the theory:

$$
\begin{aligned}
& \mathcal{L}^{S U(2) \times U(1)}=\mathcal{L}^{\text {kin }}+\mathcal{L}^{C C}+\mathcal{L}^{N C}+\mathcal{L}^{\text {gauge }}+\mathcal{L}^{\text {Higgs }} \\
& \mathcal{L}^{\text {Higgs }}=\partial_{\mu} \phi^{+} \partial^{\mu} \phi-V(\phi) \\
& V(\phi)=-\mu^{2} \phi^{+} \phi+\lambda\left(\phi^{+} \phi\right)^{2}
\end{aligned}
$$

- Coupled ϕ to $S U(2)$ gauge fields (via covariant derivate).
- Developed ϕ in its energy ground state and obtained massive gauge bosons, massive Higgs boson and massive fermions via coupling to ϕ :
- Higgs boson obtains mass via Goldstone potential.
- Gauge bosons obtain mass via gauge invariance requirement (\rightarrow covariant derivative).
- Fermions obtain mass via "naïve" Yukawa coupling to ϕ.

Quiz of the Day

-Wrap up: milestones in the formulation of the SM (including masses)?

- How does the Lagrangian density link to actual observables? How do we get from the paper work to something that is measurable?
- Review Feynman rules. What is a propagator? Does a Feynman graph have a time direction?
- What can we know already about the Higgs boson (mass) from within the theory.

Schedule for Today

2
 From Lagrangian to observable (on trees and loops).

SM (all inclusive): Wrap it up!

Step 1: Electroweak Interactions

- Combine ν and e_{L} into a $S U(2)$ doublet, which behaves like a vector in weak isospin space. Enforce local gauge invariance for \mathcal{L}. The e_{R} component of the electron behaves like a $S U(2)$ singlet.

$$
\psi_{L}=\binom{\nu}{e}_{L} \quad \begin{aligned}
& e_{R} \\
& D_{\mu}=\left(\partial_{\mu}+i g W_{\mu}\right)
\end{aligned}
$$

- Description of weak interactions.
- Gauge bosons W_{μ}^{a}.
- To also obtain a description of the electromagnetic force additionally local gauge invariance is enforced for the $U(1)$ symmetry on the doublet as a whole and on the singlet.

$$
\begin{aligned}
& \psi(\vec{x}, t) \\
& \vartheta(\vec{x}, t)
\end{aligned} \stackrel{g}{ }_{\underline{\prime}^{\prime}}^{-B_{\mu}} \underset{\vartheta\left(\vec{x}^{\prime}, t^{\prime}\right)}{g_{\bullet}^{\prime}} \psi\left(\vec{x}^{\prime}, t^{\prime}\right)
$$

- Description of electromagnetic interactions ($W_{\mu}^{a} \& B_{\mu}$).

Step 2: Weinberg Rotation

- To achieve that the coupling to the ν is governed only by a single physical field, the fields W_{μ}^{3} and B_{μ} are rotated by the Weinberg angle θ_{W}.
- Obtain physical fields $\left(Z_{\mu} \& A_{\mu}\right)$.

$$
\begin{aligned}
& \binom{Z_{\mu}}{A_{\mu}}=\left(\begin{array}{rr}
\cos \theta_{W} & -\sin \theta_{W} \\
\sin \theta_{W} & \cos \theta_{W}
\end{array}\right)\binom{W_{\mu}^{3}}{B_{\mu}} \\
& \sin \theta_{W}=\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}
\end{aligned} \cos \theta_{W}=\frac{g}{\sqrt{g^{2}+g^{\prime 2}}} .
$$

Step 3: Higgs Mechanism

- To obtain mass terms for the massive gauge bosons introduce a new field ϕ with a potential that leads to spontaneous symmetry breaking for this field. The gauge fields are coupled to ϕ via the covariant derivative $D_{\mu} \phi$.
- Masses for gauge bosons $\left(m_{Z}\right.$ \& $\left.m_{W}\right)$.
- Massive Higgs boson H.
- Couplings of gauge bosons to H $\propto m_{W / Z}^{2} H$.

- To obtain mass terms for fermions couple the fermion fields to ϕ via Yukawa couplings.
- Couplings of fermions $\propto m_{f} H$.

SM Full Lagrangian

$$
\begin{aligned}
& L^{\mathrm{SM}}=L_{\mathrm{kin}}^{\mathrm{Lepton}}+L_{\mathrm{IA}}^{C C}+L_{\mathrm{IA}}^{N C}+L_{\text {kin }}^{\text {Gauge }}+L_{\text {kin }}^{\text {Higgs }}+L_{V(\phi)}^{\text {Higgs }}+L_{\text {Yukawa }}^{\text {Higgs }} \\
& L_{\mathrm{kin}}^{\mathrm{Lepton}}=i \bar{e} \gamma^{\mu} \partial_{\mu} e+i \bar{\nu} \gamma^{\mu} \partial_{\mu} \nu \\
& L_{\mathrm{IA}}^{C C}=-\frac{e}{\sqrt{2 \sin \theta_{W}}}\left[W_{\mu}^{+} \bar{\nu} \gamma_{\mu} e_{L}+W_{\mu}^{-} \bar{e}_{L} \gamma_{\mu} \nu\right] \\
& L_{\mathrm{IA}}^{N C}=-\frac{e}{2 \sin \theta_{W} \cos \theta_{W}} Z_{\mu}\left[\left(\bar{\nu} \gamma_{\mu} \nu\right)+\left(\bar{e}_{L} \gamma_{\mu} e_{L}\right)\right]-e\left[A_{\mu}+\tan \theta_{W} Z_{\mu}\right]\left(\bar{e} \gamma_{\mu} e\right) \\
& \left.L_{\text {kin }}^{\text {Gauge }}=-\frac{1}{2} \operatorname{Tr}\left(W_{\mu \nu}^{a} W^{a \mu \nu}\right)-\frac{1}{4} B_{\mu \nu} B^{\mu \nu} \right\rvert\, \begin{array}{c}
B_{\mu} \rightarrow A_{\mu} \\
W_{\mu}^{3} \rightarrow Z_{\mu}
\end{array} \\
& L_{\text {kin }}^{\text {Higgs }}=\frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\left(1+\sqrt{\frac{\lambda}{\mu^{2}}} H\right)^{2} m_{W}^{2} W_{\mu}^{+} W^{\mu-}+\left(1+\sqrt{\frac{\lambda}{\mu^{2}}} H\right)^{2} m_{Z}^{2} Z_{\mu} Z^{\mu} \\
& L_{V(\phi)}^{\text {Higgs }}=-\frac{\mu^{4}}{4 \lambda}+\frac{\mu^{2}}{2} H^{2}+\mu \sqrt{\lambda} H^{3}+\frac{\lambda}{4} H^{4} \\
& L_{\text {Yukawa }}^{\text {Higgs }}=-\left(1+\sqrt{\left.\frac{\lambda}{\mu^{2}} H\right) m_{e}^{2} \bar{e} e}\right.
\end{aligned}
$$

Questions???

- Is there any further questions or need for discussion on your side that we can address in the scope of this lecture?

Lagrangian Density \rightarrow Observable

Lagrangian Density \rightarrow Observable

- Review the QM model of scattering wave.
- Turning the Dirac equation from a differential equation into an integral equation (\rightarrow Green's functions).
- Iterative solution of the integral equation with the help of perturbation theory.
- Finding the solution for A_{μ} when the target particle is moving $(\rightarrow$ photon propagator).
- $1^{\text {st }}$ oder full solution and the Feynman rules.

QM Model of Particle Scattering

- Consider incoming collimated beam of projectile particles on target particle:

Scattering matrix \mathcal{S} transforms initial state wave function ϕ_{i} into scattering wave $\psi_{\text {scat }}$ $\left(\psi_{\text {scat }}=\mathcal{S} \cdot \phi_{i}\right)$.

Observation (in $\Delta \Omega$):
projection of plain wave
ϕ_{i} out of spherical scattering wave $\psi_{\text {scat }}$.

Initial particle: described by plain wave ϕ_{i}.

$$
2 \rightarrow 2 \quad e e \rightarrow e e
$$

Spherical scattering wave $\psi_{\text {scat }}$.

QM Model of Particle Scattering

- Consider incoming collimated beam of projectile particles on target particle:

Scattering matrix \mathcal{S} transforms initial state wave function ϕ_{i} into scattering wave $\psi_{\text {scat }}$ $\left(\psi_{\text {scat }}=\mathcal{S} \cdot \phi_{i}\right)$.

Initial particle: described by plain wave ϕ_{i}.

$$
2 \rightarrow 2 \quad e e \rightarrow e e
$$

Observation (in $\Delta \Omega$): projection of plain wave
ϕ_{i} out of spherical scattering wave $\psi_{\text {scat }}$.

Observation probability:

$$
\begin{aligned}
\mathcal{S}_{f i} & =\phi_{f}^{\dagger} \cdot \psi_{\text {scat }} \\
& =\phi_{f}^{\dagger} \cdot \mathcal{S} \cdot \phi_{i}
\end{aligned}
$$

Spherical scattering wave $\psi_{\text {scat }}$.

Solution for $\psi_{\text {scat }}$

- In the case of fermion scattering the scattering wave $\psi_{\text {scat }}$ is obtained as a solution of the Dirac equation for an interacting field:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi_{\mathrm{scat}}=-e A_{\mu} \psi_{\mathrm{scat}}
$$

- The inhomogeneous Dirac equation is analytically not solvable.

Solution for $\psi_{\text {scat }}$ (Green's Function)

- In the case of fermion scattering the scattering wave $\psi_{\text {scat }}$ is obtained as a solution of the Dirac equation for an interacting field:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi_{\text {scat }}=-e A_{\mu} \psi_{\text {scat }}
$$

- The inhomogeneous Dirac equation is analytically not solvable. A formal solution can be obtained by the Green's Function $K\left(x-x^{\prime}\right)$:

$$
\begin{aligned}
& \left(i \gamma^{\mu} \partial_{\mu}-m\right) K\left(x-x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right) \\
& \psi_{\text {scat }}(x)=-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime} \\
& \left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi_{\text {scat }}(x)=-e \int \underbrace{\left(i \gamma^{\mu} \partial_{\mu}-m\right) K\left(x-x^{\prime}\right.}_{\delta^{4}\left(x-x^{\prime}\right)}) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime} \\
& =-e A_{\mu}(x) \psi(x)
\end{aligned}
$$

Solution for $\psi_{\text {scat }}$ (Green's Function)

- In the case of fermion scattering the scattering wave $\psi_{\text {scat }}$ is obtained as a solution of the Dirac equation for an interacting field:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi_{\mathrm{scat}}=-e A_{\mu} \psi_{\mathrm{scat}}
$$

- The inhomogeneous Dirac equation is analytically not solvable. A formal solution can be obtained by the Green's Function $K\left(x-x^{\prime}\right)$:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) K\left(x-x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right)
$$

$$
\psi_{\text {scat }}(x)=-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
$$

NB: this is not a solution to $(+)$, since $\psi_{\text {scat }}$ appears on the left- and on the righthand side of the equation. But it turns the differential equation into an integral equation.

Finding the Green's Function

- The best way to find the Green's function is to use the Fourier transform:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \tilde{K}(p) e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p \quad \text { (Fourier transform) }
$$

- Applying the Dirac equation to the Fourier transform of $K\left(x-x^{\prime}\right)$ turns the derivative into a product operator:

$$
\begin{aligned}
\underbrace{\left(i \gamma^{\mu} \partial_{\mu}-m\right) K\left(x-x^{\prime}\right)}_{\|} & =(2 \pi)^{-4} \int \underbrace{\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)}_{\|} e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p \\
\delta^{4}\left(x-x^{\prime}\right) & \equiv(2 \pi)^{-4} \int \begin{array}{l}
\mathbb{I}_{4} \\
e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p
\end{array}
\end{aligned}
$$

Finding the Green's Function

- The best way to find the Green's function is to use the Fourier transform:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \tilde{K}(p) e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p \quad \text { (Fourier transform) }
$$

- Applying the Dirac equation to the Fourier transform of $K\left(x-x^{\prime}\right)$ turns the derivative into a product operator:

Finding the Green's Function

- The best way to find the Green's function is to use the Fourier transform:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \tilde{K}(p) e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p \quad \text { (Fourier transform) }
$$

- Applying the Dirac equation to the Fourier transform of $K\left(x-x^{\prime}\right)$ turns the derivative into a product operator:

Finding the Green's Function

- The best way to find the Green's function is to use the Fourier transform:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \tilde{K}(p) e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p \quad \text { (Fourier transform) }
$$

- Applying the Dirac equation to the Fourier transform of $K\left(x-x^{\prime}\right)$ turns the derivative into a product operator:

$$
\begin{aligned}
\underbrace{\left(i \gamma^{\mu} \partial_{\mu}-m\right) K\left(x-x^{\prime}\right)}_{\|} & =(2 \pi)^{-4} \int \underbrace{\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)}_{\|} e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p \\
\delta^{4}\left(x-x^{\prime}\right) & \equiv(2 \pi)^{-4} \int \begin{array}{|cc}
\mathbb{I}_{4} & e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p
\end{array}
\end{aligned}
$$

- From the uniqueness of the Fourier transformation the solution for $\tilde{K}(p)$ follows:
$\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)=\mathbb{I}_{4}$
$\left(\gamma^{\mu} p_{\mu}+m\right) \cdot\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)=\left(\gamma^{\mu} p_{\mu}+m\right) \cdot \mathbb{I}_{4}$

The Fermion Propagator

- The Fourier transform of the Green's function is called Fermion propagator:

$$
\left(\gamma^{\mu} p_{\mu}+m\right) \cdot\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)=\left(\gamma^{\mu} p_{\mu}+m\right) \cdot \mathbb{I}_{4}
$$

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}} \quad \text { (Fermion propagator) }
$$

The Fermion Propagator

- The Fourier transform of the Green's function is called Fermion propagator:

$$
\left(\gamma^{\mu} p_{\mu}+m\right) \cdot\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)=\left(\gamma^{\mu} p_{\mu}+m\right) \cdot \mathbb{I}_{4}
$$

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}} \quad \text { (Fermion propagator) }
$$

- The Fermion propagator is a 4×4 matrix, which acts in the Spinor room.
- It is only defined for virtual electrons since $p^{2}-m^{2}=E^{2}-\vec{p}^{2}-m^{2} \neq 0$.

The Fermion Propagator

- The Fourier transform of the Green's function is called Fermion propagator:

$$
\left(\gamma^{\mu} p_{\mu}+m\right) \cdot\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)=\left(\gamma^{\mu} p_{\mu}+m\right) \cdot \mathbb{I}_{4}
$$

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}} \quad \text { (Fermion propagator) }
$$

- The Fermion propagator is a 4×4 matrix, which acts in the Spinor room.
- It is only defined for virtual electrons since $p^{2}-m^{2}=E^{2}-\vec{p}^{2}-m^{2} \neq 0$.
- The Green's function can be obtained from $\tilde{K}(p)$ by:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \mathrm{~d}^{3} \vec{p} e^{i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)} \int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

The Fermion Propagator

- The Fourier transform of the Green's function is called Fermion propagator:

$$
\left(\gamma^{\mu} p_{\mu}+m\right) \cdot\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)=\left(\gamma^{\mu} p_{\mu}+m\right) \cdot \mathbb{I}_{4}
$$

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}} \quad \text { (Fermion propagator) }
$$

- The Fermion propagator is a 4×4 matrix, which acts in the Spinor room.
- It is only defined for virtual electrons since $p^{2}-m^{2}=E^{2}-\vec{p}^{2}-m^{2} \neq 0$.
- The Green's function can be obtained from $\tilde{K}(p)$ by:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \mathrm{~d}^{3} \vec{p} e^{i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)} \int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- $K\left(x-x^{\prime}\right)$ has two poles in the integration plane (at $p_{0}= \pm E$).
- The integral can be solved with the methods of function theory.

The Fermion Propagator (Time Integration $t>t^{\prime}$)

- Choose path \mathcal{C} in complex plain to circumvent poles and at the same time imply proper time evolution:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- For $t>t^{\prime}\left(e^{-i p_{0}\left(t-t^{\prime}\right)} \rightarrow 0\right.$ for $\left.\operatorname{Im}\left(p_{0}\right) \ll 0\right)$:

\rightarrow close contour in lower plane \& calculate integral from residual of enclosed pole.

$$
\oint_{\mathcal{C}} \mathrm{d} p_{0} \underbrace{\frac{1}{p_{0}-E}}_{\substack{\text { pole at: } \\ p_{0}=+E}} \cdot \underbrace{\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p_{0}+E} e^{-i p_{0}\left(t-t^{\prime}\right)}}_{\text {residuum: } f\left(p_{0}\right)}=-\left.2 \pi i \cdot f\left(p_{0}\right)\right|_{p_{0}=E}
$$

The Fermion Propagator (Time Integration $t>t^{\prime}$)

- Choose path \mathcal{C} in complex plain to circumvent poles and at the same time imply proper time evolution:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

$$
\mathcal{C}: R \rightarrow \infty
$$

$$
\begin{aligned}
& \oint_{\mathcal{C}} \mathrm{d} p_{0} \frac{1}{p_{0}-E} \cdot \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p_{0}+E} e^{-i p_{0}\left(t-t^{\prime}\right)}=-\left.2 \pi i \cdot f\left(p_{0}\right)\right|_{p_{0}=E} \\
& K\left(x-x^{\prime}\right)=-i(2 \pi)^{3} \int \mathrm{~d}^{3} \vec{p} \frac{+\gamma^{0} E-\vec{\gamma} \vec{p}+m}{2 E} \cdot e^{-i E\left(t-t^{\prime}\right)+i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)}
\end{aligned}
$$

The Fermion Propagator (Time Integration $t<t^{\prime}$)

- Choose path \mathcal{C} in complex plain to circumvent poles and at the same time imply proper time evolution:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- For $t<t^{\prime}\left(e^{+i p_{0}\left(t-t^{\prime}\right)} \rightarrow 0\right.$ for $\left.\operatorname{Im}\left(p_{0}\right) \gg 0\right)$:
\rightarrow close contour in upper plane \& calculate integral from residual of enclosed pole.

$$
\oint_{\mathcal{C}} \mathrm{d} p_{0} \underbrace{\frac{1}{p_{0}+E}}_{\substack{\text { pole at: } \\ p_{0}=-E}} \cdot \underbrace{\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p_{0}-E} e^{-i p_{0}\left(t-t^{\prime}\right)}}_{\text {residuum: } f\left(p_{0}\right)}=+\left.2 \pi i \cdot f\left(p_{0}\right)\right|_{p_{0}=E}
$$

The Fermion Propagator (Time Integration $t<t^{\prime}$)

- Choose path \mathcal{C} in complex plain to circumvent poles and at the same time imply proper time evolution:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

$$
\begin{aligned}
& \oint_{\mathcal{C}} \mathrm{d} p_{0} \frac{1}{p_{0}+E} \cdot \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p_{0}-E} e^{-i p_{0}\left(t-t^{\prime}\right)}=+\left.2 \pi i \cdot f\left(p_{0}\right)\right|_{p_{0}=E} \\
& K\left(x-x^{\prime}\right)=-i(2 \pi)^{3} \int \mathrm{~d}^{3} \vec{p} \frac{-\gamma^{0} E-\vec{\gamma} \vec{p}+m}{2 E} \cdot e^{+i E\left(t-t^{\prime}\right)+i \vec{p}\left(\vec{x}-\overrightarrow{x^{\prime}}\right)}
\end{aligned}
$$

The Fermion Propagator (Nota Bene)

- Choose path \mathcal{C} in complex plain to circumvent poles and at the same time imply proper time evolution:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- The bending of the integration path can be circumvented by shifting the poles by ϵ.

$$
\begin{aligned}
{\left[p_{0}+\left(E-\frac{i \epsilon}{2 E}\right)\right] \cdot\left[p_{0}-\left(E-\frac{i \epsilon}{2 E}\right)\right] } & =p_{0}^{2}-\left(\vec{p}^{2}+m^{2}\right)+i \epsilon \\
& =p^{2}-m^{2}+i \epsilon
\end{aligned}
$$

The Fermion Propagator (Nota Bene)

- Choose path \mathcal{C} in complex plain to circumvent poles and at the same time imply proper time evolution:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- The bending of the integration path can be circumvented by shifting the poles by ϵ.

$$
\begin{aligned}
{\left[p_{0}+\left(E-\frac{i \epsilon}{2 E}\right)\right] \cdot\left[p_{0}-\left(E-\frac{i \epsilon}{2 E}\right)\right] } & =p_{0}^{2}-\left(\vec{p}^{2}+m^{2}\right)+i \epsilon \\
& =p^{2}-m^{2}+i \epsilon
\end{aligned}
$$

$\left(-E,+\frac{\epsilon}{2 E}\right)$
$\left(+E,-\frac{\epsilon}{2 E}\right)$

The Fermion Propagator (Nota Bene)

- Choose path \mathcal{C} in complex plain to circumvent poles and at the same time imply proper time evolution:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- The bending of the integration path can be circumvented by shifting the poles by ϵ.

$$
\begin{aligned}
{\left[p_{0}+\left(E-\frac{i \epsilon}{2 E}\right)\right] \cdot\left[p_{0}-\left(E-\frac{i \epsilon}{2 E}\right)\right] } & =p_{0}^{2}-\left(\vec{p}^{2}+m^{2}\right)+i \epsilon \\
& =p^{2}-m^{2}+i \epsilon
\end{aligned}
$$

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}+i \epsilon} \quad \epsilon>0
$$

The Fermion Propagator (Summary \& Time Development)

Karlsruhe Institute of Technology

- Fermion Propagator:

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}+i \epsilon} \quad \epsilon>0
$$

- Green's function (for $t>t^{\prime}$):

$$
K\left(x-x^{\prime}\right)=-i(2 \pi)^{3} \int \mathrm{~d}^{3} \vec{p} \frac{+\gamma^{0} E-\vec{\gamma} \vec{p}+m}{2 E} \cdot e^{-i E\left(t-t^{\prime}\right)+i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)}
$$

$$
\left.\begin{array}{l}
\phi(t, \vec{x})=\left\{\begin{array}{lll}
i \int \mathrm{~d}^{3} \vec{x}^{\prime} K\left(x-x^{\prime}\right) \gamma^{0} \phi\left(t^{\prime}, \vec{x}^{\prime}\right) & \text { for } & t>t^{\prime}
\end{array} \begin{array}{l}
\text { particle w/ pos. energy } \\
0
\end{array}\right. \\
\text { for } \\
t<t^{\prime}
\end{array} \begin{array}{l}
\text { traveling forward in } \\
\text { time. }
\end{array}\right\}
$$

- Check the highlighted equation.

The Fermion Propagator (Summary \& Time Development)

Karlsruhe Institute of Technology

- Fermion Propagator:

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}+i \epsilon} \quad \epsilon>0
$$

- Green's function (for $t<t^{\prime}$):

$$
K\left(x-x^{\prime}\right)=-i(2 \pi)^{3} \int \mathrm{~d}^{3} \vec{p} \frac{-\gamma^{0} E-\vec{\gamma} \vec{p}+m}{2 E} \cdot e^{+i E\left(t-t^{\prime}\right)+i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)}
$$

$$
\begin{aligned}
& \phi(t, \vec{x})=\left\{\begin{array}{lll}
0 & \text { for } & t>t^{\prime}
\end{array} \begin{array}{l}
\text { particle w/ neg. energy } \\
i \int \mathrm{~d}^{3} \vec{x}^{\prime} K\left(x-x^{\prime}\right) \gamma^{0} \phi\left(t^{\prime}, \vec{x}^{\prime}\right)
\end{array} \begin{array}{lll}
\text { traveling forward in } & t<t^{\prime} & \text { time. }
\end{array}\right. \\
& \phi(t, \vec{x})=\left\{\begin{array}{lll}
i \int \mathrm{~d}^{3} \vec{x}^{\prime} \phi\left(t^{\prime}, \vec{x}^{\prime}\right) \gamma^{0} K\left(x-x^{\prime}\right) & \text { for } & t>t^{\prime} \\
0 & \text { for } & t<t^{\prime} \\
\text { particle w/ neg. energy } & \text { traveling backward in }
\end{array}\right.
\end{aligned}
$$

Solution for $\psi_{\text {scat }}$ (Perturbative Series)

- The integral equation can be solved perturbatively:

$$
\psi_{\text {scat }}(x)=-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
$$

- $0^{\text {th }}$ order perturbation theory:

$$
\psi^{(0)}\left(x_{f}\right)=\phi_{i}\left(x_{f}\right)
$$

(solution of the homogeneous Dirac equation)

Solution for $\psi_{\text {scat }}$ (Perturbative Series)

- The integral equation can be solved perturbatively:
$\psi_{\text {scat }}(x)=-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}$
- $0^{\text {th }}$ order perturbation theory:

$$
\psi^{(0)}\left(x_{f}\right)=\phi_{i}\left(x_{f}\right)
$$

- $1^{\text {st }}$ order perturbation theory:

$$
\begin{aligned}
\psi^{(1)}\left(x_{f}\right) & =\psi^{(0)}\left(x_{f}\right) \\
& -e \int K\left(x_{f}-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
\end{aligned}
$$

Solution for $\psi_{\text {scat }}$ (Perturbative Series)

- The integral equation can be solved perturbatively:

$$
\psi_{\text {scat }}(x)=-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
$$

- $0^{\text {th }}$ order perturbation theory:

$$
\psi^{(0)}\left(x_{f}\right)=\phi_{i}\left(x_{f}\right)
$$

- $1^{\text {st }}$ order perturbation theory:

$$
\begin{aligned}
\psi^{(1)}\left(x_{f}\right) & =\psi^{(0)}\left(x_{f}\right) \\
& -e \int K\left(x_{f}-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
\end{aligned}
$$

- $2^{\text {nd }}$ order perturbation theory:

$$
\begin{aligned}
\psi^{(2)}\left(x_{f}\right) & =\psi^{(0)}\left(x_{f}\right) \\
& -e \int K\left(x_{f}-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime} \\
& -e^{2} \iint K\left(x_{f}-x^{\prime \prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime \prime}\right) K\left(x^{\prime \prime}-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime} \mathrm{d}^{4} x^{\prime \prime}
\end{aligned}
$$

Solution for $\psi_{\text {scat }}$ (Perturbative Series)

- The integral equation can be solved perturbatively:

$$
\psi_{\text {scat }}(x)=-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
$$

- $0^{\text {th }}$ order perturbation theory:

$$
\psi^{(0)}\left(x_{f}\right)=\phi_{i}\left(x_{f}\right)
$$

- $1^{\text {st }}$ order perturbation theory:

This procedure is justified since e (in natural units) is small wrt. to 1 :

$$
\alpha=\frac{e^{2}}{4 \pi \hbar c} \quad \hbar=c=1 \longrightarrow \alpha=\frac{e^{2}}{4 \pi} \approx \frac{1}{137}
$$

$$
\begin{aligned}
\psi^{(1)}\left(x_{f}\right) & =\psi^{(0)}\left(x_{f}\right) \\
& -e \int K\left(x_{f}-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
\end{aligned}
$$

- $2^{\text {nd }}$ order perturbation theory:

$$
\begin{aligned}
\psi^{(2)}\left(x_{f}\right) & =\psi^{(0)}\left(x_{f}\right) \\
& -e \int K\left(x_{f}-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime} \\
& -e^{2} \iint K\left(x_{f}-x^{\prime \prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime \prime}\right) K\left(x^{\prime \prime}-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime} \mathrm{d}^{4} x^{\prime \prime}
\end{aligned}
$$

The Matrix Element $\mathcal{S}_{f i}$

- $\mathcal{S}_{f i}$ is obtained from the projection of the scattering wave $\psi_{\text {scat }}$ on ϕ_{f} :

$$
\begin{aligned}
\mathcal{S}_{f i}=\int \mathrm{d}^{3} \vec{x}_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \psi_{\mathrm{scat}}\left(x_{f}\right) & =\int \mathrm{d}^{3} \vec{x}_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \mathcal{S} \phi_{i}\left(x_{f}\right) \\
& =\delta_{f i}+\mathcal{S}_{f i}^{(1)}+\mathcal{S}_{f i}^{(2)}+\ldots
\end{aligned}
$$

- $1^{\text {st }}$ order perturbation theory:

$$
\begin{aligned}
& \mathcal{S}_{f i}^{(1)}=-e \int \mathrm{~d}^{4} x^{\prime} \underbrace{\int \mathrm{d}^{3} x_{f} \phi_{f}^{\dagger}\left(x_{f}\right) K\left(x_{f}-x^{\prime}\right)}_{\equiv-i \phi_{f}\left(x^{\prime}\right)} \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi_{i}\left(x^{\prime}\right) \\
& \mathcal{S}_{f i}^{(1)}=i \cdot e \int \mathrm{~d}^{4} x^{\prime} \underbrace{\phi_{f}\left(x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi_{i}\left(x^{\prime}\right)}_{\begin{array}{c}
\text { corresponds to the } \\
\text { IA term in } \mathcal{L}
\end{array}}
\end{aligned}
$$

The Matrix Element $\mathcal{S}_{f i}$

- $\mathcal{S}_{f i}$ is obtained from the projection of the scattering wave $\psi_{\text {scat }}$ on ϕ_{f} :

$$
\begin{aligned}
\mathcal{S}_{f i}=\int \mathrm{d}^{3} \vec{x}_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \psi_{\mathrm{scat}}\left(x_{f}\right) & =\int \mathrm{d}^{3} \vec{x}_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \mathcal{S} \phi_{i}\left(x_{f}\right) \\
& =\delta_{f i}+\mathcal{S}_{f i}^{(1)}+\mathcal{S}_{f i}^{(2)}+\ldots
\end{aligned}
$$

- $1^{\text {st }}$ order perturbation theory:

$$
\begin{aligned}
& \mathcal{S}_{f i}^{(1)}=-e \int \mathrm{~d}^{4} x^{\prime} \underbrace{\int \mathrm{d}^{3} x_{f} \phi_{f}^{\dagger}\left(x_{f}\right) K\left(x_{f}-x^{\prime}\right)}_{\equiv-i \phi_{f}\left(x^{\prime}\right)} \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi_{i}\left(x^{\prime}\right) \\
& \mathcal{S}_{f i}^{(1)}=i \cdot e \int \mathrm{~d}^{4} x^{\prime} \underbrace{\phi_{f}\left(x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi_{i}\left(x^{\prime}\right)}_{\begin{array}{c}
\text { corresponds to the } \\
\text { IA term in } \mathcal{L}
\end{array}} \text { • } \begin{array}{c}
1^{\text {st }} \text { order matrix element of } \\
\text { the scattering amplitude. }
\end{array}
\end{aligned}
$$

The Matrix Element $\mathcal{S}_{f i}$

- $\mathcal{S}_{f i}$ is obtained from the projection of the scattering wave $\psi_{\text {scat }}$ on ϕ_{f} :

$$
\begin{aligned}
\mathcal{S}_{f i}=\int \mathrm{d}^{3} \vec{x}_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \psi_{\mathrm{scat}}\left(x_{f}\right) & =\int \mathrm{d}^{3} \vec{x}_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \mathcal{S} \phi_{i}\left(x_{f}\right) \\
& =\delta_{f i}+\mathcal{S}_{f i}^{(1)}+\mathcal{S}_{f i}^{(2)}+\ldots
\end{aligned}
$$

- $1^{\text {st }}$ order perturbation theory:

$$
\begin{gathered}
\mathcal{S}_{f i}^{(1)}=-e \int \mathrm{~d}^{4} x^{\prime} \underbrace{\int \mathrm{d}^{3} x_{f} \phi_{f}^{\dagger}\left(x_{f}\right) K\left(x_{f}-x^{\prime}\right)}_{\equiv-i \phi_{f}\left(x^{\prime}\right)} \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi_{i}\left(x^{\prime}\right) \\
\mathcal{S}_{f i}^{(1)}=i \cdot e \int \mathrm{~d}^{4} x^{\prime} \underbrace{\phi_{f}\left(x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi_{i}\left(x^{\prime}\right)}_{\begin{array}{c}
\text { corresponds to the } \\
\text { IA term in } \mathcal{L}
\end{array}}
\end{gathered} \begin{gathered}
\text { • } \begin{array}{c}
1^{\text {st }} \text { order matrix element of } \\
\text { the scattering amplitude. }
\end{array} \\
\text { - We still need to know } A_{\mu} .
\end{gathered}
$$

The Photon Propagator

- Since the target particle is back scattered by the projectile, A_{μ} also evolves.
- This happens according to the inhomogeneous wave equation of the photon field (in Lorentz gauge $\partial_{\mu} A^{\mu}=0$):

$$
\square A^{\mu}=e J^{\mu}
$$

- Ansatz via Green's function...:

$$
\begin{aligned}
& \square D^{\mu \nu}\left(x-x^{\prime}\right)=g^{\mu \nu} \delta^{4}\left(x-x^{\prime}\right) \quad A^{\mu}(x)=e \int \mathrm{~d}^{4} x^{\prime} D^{\mu \nu}\left(x-x^{\prime}\right) J_{\nu}\left(x^{\prime}\right) \\
& \square A^{\mu}(x)=e \int \mathrm{~d}^{4} x^{\prime} \square D^{\mu \nu}\left(x-x^{\prime}\right) J_{\nu}\left(x^{\prime}\right)=e J^{\mu}(x)
\end{aligned}
$$

The Photon Propagator

- Since the target particle is back scattered by the projectile, A_{μ} also evolves.
- This happens according to the inhomogeneous wave equation of the photon field (in Lorentz gauge $\partial_{\mu} A^{\mu}=0$):

$$
\square A^{\mu}=e J^{\mu}
$$

- Ansatz via Green's function...:

$$
\begin{aligned}
& \square D^{\mu \nu}\left(x-x^{\prime}\right)=g^{\mu \nu} \delta^{4}\left(x-x^{\prime}\right) \quad A^{\mu}(x)=e \int \mathrm{~d}^{4} x^{\prime} D^{\mu \nu}\left(x-x^{\prime}\right) J_{\nu}\left(x^{\prime}\right) \\
& \square A^{\mu}(x)=e \int \mathrm{~d}^{4} x^{\prime} \square D^{\mu \nu}\left(x-x^{\prime}\right) J_{\nu}\left(x^{\prime}\right)=e J^{\mu}(x)
\end{aligned}
$$

- ... and Fourier transform:

$$
\begin{aligned}
& D^{\mu \nu}\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \mathrm{~d}^{4} q \tilde{D}^{\mu \nu}(q) e^{-i q\left(x-x^{\prime}\right)} \\
& \square D^{\mu \nu}\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \mathrm{~d}^{4} q\left(-q^{2}\right) \tilde{D}^{\mu \nu}(q) e^{-i q\left(x-x^{\prime}\right)} \stackrel{!}{=} g^{\mu \nu} \delta^{4}\left(x-x^{\prime}\right)
\end{aligned}
$$

The Photon Propagator

- Since the target particle is back scattered by the projectile, A_{μ} also evolves.
- This happens according to the inhomogeneous wave equation of the photon field (in Lorentz gauge $\partial_{\mu} A^{\mu}=0$):

$$
\square A^{\mu}=e J^{\mu}
$$

- Ansatz via Green's function...:

$$
\begin{aligned}
& \square D^{\mu \nu}\left(x-x^{\prime}\right)=g^{\mu \nu} \delta^{4}\left(x-x^{\prime}\right) \quad A^{\mu}(x)=e \int \mathrm{~d}^{4} x^{\prime} D^{\mu \nu}\left(x-x^{\prime}\right) J_{\nu}\left(x^{\prime}\right) \\
& \square A^{\mu}(x)=e \int \mathrm{~d}^{4} x^{\prime} \square D^{\mu \nu}\left(x-x^{\prime}\right) J_{\nu}\left(x^{\prime}\right)=e J^{\mu}(x)
\end{aligned}
$$

- ... and Fourier transform:

$$
D^{\mu \nu}\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \mathrm{~d}^{4} q \tilde{D}^{\mu \nu}(q) e^{-i q\left(x-x^{\prime}\right)}
$$

$$
\tilde{D}^{\mu \nu}(q)=\frac{-g^{\mu \nu}}{q^{2}+i \epsilon} \quad(\epsilon>0) \quad \text { (Photon propagator) }
$$

On the way to the to completion...

-With an ansatz for the current we now complete the matrix element:

$$
\begin{aligned}
& e J^{\mu}(x)=e \cdot \bar{\psi}_{f}(x) \gamma^{\mu} \psi_{i}(x)=e \cdot \bar{u}\left(p_{4}\right) \gamma^{\mu} u\left(p_{2}\right) e^{i\left(p_{4}-p_{2}\right) x} \\
& \psi_{i}(x)=u\left(p_{2}\right) e^{-i p_{2} x} \quad \psi_{f}(x)=u\left(p_{4}\right) e^{-i p_{4} x}
\end{aligned}
$$

target

On the way to the to completion...

-With an ansatz for the current we now complete the matrix element:

$$
\begin{aligned}
& e J^{\mu}(x)=e \cdot \bar{\psi}_{f}(x) \gamma^{\mu} \psi_{i}(x)=e \cdot \bar{u}\left(p_{4}\right) \gamma^{\mu} u\left(p_{2}\right) e^{i\left(p_{4}-p_{2}\right) x} \\
& \psi_{i}(x)=u\left(p_{2}\right) e^{-i p_{2} x} \quad \psi_{f}(x)=u\left(p_{4}\right) e^{-i p_{4} x}
\end{aligned}
$$

- Introduce current and photon propagator into A_{μ} :

$$
\begin{aligned}
A^{\mu}(x) & =e \cdot \int \mathrm{~d}^{4} x^{\prime} \int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \cdot \frac{-g^{\mu \nu}}{q^{2}+i \epsilon} e^{i\left(p_{4}-p_{2}+q\right) x^{\prime}} e^{-i q x} \bar{u}\left(p_{4}\right) \gamma^{\nu} u\left(p_{2}\right) \\
& =e \cdot \int \mathrm{~d}^{4} q \frac{-g^{\mu \nu}}{q^{2}+i \epsilon} \delta^{4}\left(p_{4}-p_{2}+q\right) e^{-i q x} \bar{u}\left(p_{4}\right) \gamma^{\nu} u\left(p_{2}\right)
\end{aligned}
$$

On the way to the to completion...

-With an ansatz for the current we now complete the matrix element:

$$
\begin{aligned}
& e J^{\mu}(x)=e \cdot \bar{\psi}_{f}(x) \gamma^{\mu} \psi_{i}(x)=e \cdot \bar{u}\left(p_{4}\right) \gamma^{\mu} u\left(p_{2}\right) e^{i\left(p_{4}-p_{2}\right) x} \\
& \psi_{i}(x)=u\left(p_{2}\right) e^{-i p_{2} x} \quad \psi_{f}(x)=u\left(p_{4}\right) e^{-i p_{4} x}
\end{aligned}
$$

- Introduce current and photon propagator into A_{μ} :

$$
\begin{aligned}
A^{\mu}(x) & =e \cdot \int \mathrm{~d}^{4} x^{\prime} \int \frac{\mathrm{d}^{4} q}{(2 \pi)^{4}} \cdot \frac{-g^{\mu \nu}}{q^{2}+i \epsilon} e^{i\left(p_{4}-p_{2}+q\right) x^{\prime}} e^{-i q x} \bar{u}\left(p_{4}\right) \gamma^{\nu} u\left(p_{2}\right) \\
& =e \cdot \int \mathrm{~d}^{4} q \frac{-g^{\mu \nu}}{q^{2}+i \epsilon} \delta^{4}\left(p_{4}-p_{2}+q\right) e^{-i q x} \bar{u}\left(p_{4}\right) \gamma^{\nu} u\left(p_{2}\right)
\end{aligned}
$$

- Introduce A_{μ} and projectile Spinors into $\mathcal{S}_{f i}$:

$$
\phi_{i}(x)=u\left(p_{1}\right) e^{-i p_{1} x} \quad \phi_{f}(x)=u\left(p_{3}\right) e^{-i p_{3} x}
$$

The Matrix Element $\mathcal{S}_{f i}$ (complete picture)

$$
i \cdot e^{2} \int \frac{\mathrm{~d}^{4} q}{(2 \pi)^{4}}(2 \pi)^{4} \bar{u}\left(p_{3}\right) \gamma_{\mu} u\left(p_{1}\right) \delta^{4}\left(p_{3}-p_{1}-q\right) \frac{-g^{\mu \nu}}{q^{2}+i \epsilon} \delta^{4}\left(p_{4}-p_{2}+q\right)(2 \pi)^{4} \bar{u}\left(p_{4}\right) \gamma_{\nu} u\left(p_{2}\right)
$$

The Matrix Element $\mathcal{S}_{f i}$ (complete picture)

$i \cdot e^{2} \int \frac{\mathrm{~d}^{4} q}{(2 \pi)^{4}}(2 \pi)^{4} \bar{u}\left(p_{3}\right) \gamma_{\mu} u\left(p_{1}\right) \delta^{4}\left(p_{3}-p_{1}-q\right) \frac{-g^{\mu \nu}}{q^{2}+i \epsilon} \delta^{4}\left(p_{4}-p_{2}+q\right)(2 \pi)^{4} \bar{u}\left(p_{4}\right) \gamma_{\nu} u\left(p_{2}\right)$

The Matrix Element $\mathcal{S}_{f i}$ (complete picture)

$i \cdot e^{2} \int \frac{\mathrm{~d}^{4} q}{(2 \pi)^{4}}(2 \pi)^{4} \bar{u}\left(p_{3}\right) \gamma_{\mu} u\left(p_{1}\right) \delta^{4}\left(p_{3}-p_{1}-q\right) \frac{-g^{\mu \nu}}{q^{2}+i \epsilon} \delta^{4}\left(p_{4}-p_{2}+q\right)(2 \pi)^{4} \bar{u}\left(p_{4}\right) \gamma_{\nu} u\left(p_{2}\right)$

The Matrix Element $\mathcal{S}_{f i}$ (complete picture)

$i \cdot e^{2} \int \frac{\mathrm{~d}^{4} q}{(2 \pi)^{4}}(2 \pi)^{4} \bar{u}\left(p_{3}\right) \gamma_{\mu} u\left(p_{1}\right) \delta^{4}\left(p_{3}-p_{1}-q\right) \frac{-g^{\mu \nu}}{q^{2}+i \epsilon} \delta^{4}\left(p_{4}-p_{2}+q\right)(2 \pi)^{4} \bar{u}\left(p_{4}\right) \gamma_{\nu} u\left(p_{2}\right)$

Feynman Rules (QED)

- Feynman diagrams are a way to represent the elements of the matrix element.
-The translation follows the Feynman rules:

$$
\begin{array}{lll}
\hline \text { Legs: } & & \\
\longrightarrow & u(p) & (\bar{u}(p)) \\
- & - & \epsilon_{\mu}(k)
\end{array}\left(\epsilon_{\mu}^{*}(k)\right)
$$

Vertexes:

$$
-i(\pm e) \cdot(2 \pi)^{4} \cdot \delta^{4}\left(p_{f}-p_{i}-q\right) \quad \text { - Lepton-photon vertex. }
$$

Propagators:
$\longrightarrow \quad \frac{i\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}+i \epsilon}$

- Incoming (outgoing) lepton.
$\bullet-\longrightarrow \frac{-i g^{\mu \nu}}{q^{2}+i \epsilon}$
- Incoming (outgoing) lepton.
- Four-momenta of all virtual particles have to be integrated out.

Feynman Rules (QED)

- Feynman diagrams are a way to represent the elements of the matrix element.
- A Feynman diagram:
- is not a sketch, it is a mathematical representation!
- is drawn in momentum space.
- does not have a time direction. Only time information is introduced by choice of initial and final state by reader (e.g. t-channel vs s-channel processes).

Higher Order

Fixed Order Calculations

- Scattering amplitude $\mathcal{S}_{f i}$ is only known in perturbation theory.
- Works the better the smaller the perturbation is (= the coupling const.).
- QED: $\alpha_{\mathrm{em}} \approx \frac{1}{137}$
- QFD: $\alpha_{\mathrm{w}}=\alpha_{\mathrm{em}} / \sin ^{2}\left(\theta_{W}\right) \approx 4 \cdot \alpha_{\mathrm{em}} \quad \theta_{W}=28.74^{\circ}$
- QCD: $\alpha_{s}\left(m_{Z}\right) \approx 0.12$
- If perturbation theory works well, the first contribution of the scattering amplitude is already sufficient to describe the main features of the process.
- This contribution is of order " α ". It is often called Tree Level, Born Level or Leading Order (LO) scattering amplitude.
- Any higher order of the scattering amplitude in perturbation theory appears at higher orders of " α ".

Order α^{2} Diagrams (QED)

Karlsruhe Institute of Technology

- We have only discussed contribution to $\mathcal{S}_{f i}$, which are of order α^{1} in QED. (e.g. LO $e e \rightarrow e e$ scattering).
- Diagrams which contribute to order α^{2} would look like this:

Additional legs:

Loops:

Order α^{2} Diagrams (QED)

- We have only discussed contribution to $\mathcal{S}_{f i}$, which are of order α^{1} in QED. (e.g. LO $e e \rightarrow e e$ scattering).
- Diagrams which contribute to order α^{2} would look like this:

Additional legs:

- LO term for a $2 \rightarrow 4$ process.
- NLO contrib. for the $2 \rightarrow 2$ process.
- Open phase spaces.

Order α^{2} Diagrams (QED)

- We have only discussed contribution to $\mathcal{S}_{f i}$, which are of order α^{1} in QED. (e.g. LO $e e \rightarrow e e$ scattering).
- Diagrams which contribute to order α^{2} would look like this:

Additional legs:

- LO term for a $2 \rightarrow 4$ process.
- NLO contrib. for the $2 \rightarrow 2$ process.
- Open phase spaces.

Loops:

Order α^{2} Diagrams (QED)

- We have only discussed contribution to $\mathcal{S}_{f i}$, which are of order α^{1} in QED. (e.g. LO $e e \rightarrow e e$ scattering).
- Diagrams which contribute to order α^{2} would look like this:

Additional legs:

- LO term for a $2 \rightarrow 4$ process.
- NLO contrib. for the $2 \rightarrow 2$ process.
- Open phase spaces.

Examples for "Running Constants"

Karlsruhe Institute of Technology

- Running of the constants can be predicted and indeed are observed.
- But they need to be measured at least in one point.
- One usually gives the value at a reference scale (e.g. m_{Z}).

Effect of Higher Order Corrections

- Change over all normalization of cross sections (e.g. via change of coupling, but also by kinematic opening of phase space - large effect)
- Change kinematic distributions (e.g. harder or softer transverse momentum spectrum of particles)
- In QED effects are usually "small" (correction to LO is already at $O(1 \%)$ level). In QCD effects are usually "large" $(O(10 \%))$. Therefore reliable QCD predictions almost always require (N)NLO.
- Higher orders can be mixed (e.g. $O\left(\alpha \alpha_{s}^{2}\right)$).
- In concrete calculations the number of contributing diagrams quickly explodes for higher order calculations, which makes these calculations very difficult.

Boundaries on the Higgs Mass within the SM

The Running of λ in the Higgs Potential

- Like the couplings $\alpha_{\mathrm{em}}, \alpha_{\mathrm{w}}$ and α_{s} also the self-coupling λ in the Higgs potential is subject to higher order corrections:

$$
\mathcal{L}_{V(\phi)}^{\text {Higgs }}=-\frac{\mu^{4}}{4 \lambda}+\frac{\mu^{2}}{2} H^{2}+\mu \sqrt{\lambda} H^{3}+\frac{\lambda}{4} H^{4} \quad \text { (Higgs potential) }
$$

$$
\underbrace{\frac{\mathrm{d} \lambda}{\mathrm{~d} \log Q^{2}}=\frac{1}{16 \pi^{2}}[\underbrace{\left[12 \lambda^{2}+\right.}_{\text {top quark }}+\underbrace{\left.6 \lambda f_{t}^{2}-3 f_{t}^{4}-\frac{3}{2} \lambda\left(3 \alpha_{\mathrm{em}}^{2}+\alpha_{\mathrm{w}}^{2}\right)+\ldots\right]}_{\begin{array}{c}
\text { (Renormalization group equation at } \\
\text { 1-loop accuracy) }
\end{array}}}_{\text {Higgs }}
$$

- Since the Higgs boson couples proportional to the mass the high energy behavior of λ will be dominated by the heaviest object in the loop.

The Running of λ in the Higgs Potential

- First case: large Higgs mass ($m_{H} \gg Q^{2}$)
$\underbrace{\frac{\mathrm{d} \lambda}{\mathrm{d} \log Q^{2}}=\frac{1}{16 \pi^{2}}[\underbrace{\left[12 \lambda^{2}\right.}_{\text {top quark }}+\underbrace{6 \lambda-3 f_{t}^{4}}_{\text {抳 }}-\frac{3}{2} \lambda\left(3 \alpha_{\mathrm{em}}^{2}+\alpha_{\mathrm{w}}^{2}\right)+\ldots]}_{\text {Higgs }}$

$$
m_{H} \gg Q^{2}
$$

$$
\frac{\mathrm{d} \lambda}{\mathrm{~d} \log Q^{2}}=\frac{3}{4 \pi^{2}} \lambda^{2}\left(Q^{2}\right) \text { solution } \rightarrow \lambda\left(Q^{2}\right)=\frac{\lambda\left(\mathrm{v}^{2}\right)}{1-\frac{3}{4 \pi^{2}} \lambda\left(\mathrm{v}^{2}\right) \log \left(Q^{2} / \mathrm{v}^{2}\right)}
$$

(vacuum expectation value: $\mathrm{v}^{2}=\mu^{2} / \lambda$)

- For $Q^{2} \ll \mathrm{v}^{2}=246 \mathrm{GeV}$ we get $\log \left(Q^{2} / \mathrm{v}^{2}\right) \ll 0$ and $\lambda\left(Q^{2}\right) \rightarrow 0$.
- For increasing $Q^{2} \lambda\left(Q^{2}\right)$ will run into a pole and become non-perturbative!

The Running of λ in the Higgs Potential

- First case: large Higgs mass ($m_{H} \gg Q^{2}$)

$\frac{\mathrm{d} \lambda}{\mathrm{d} \log Q}$	$\frac{1}{16 \pi^{2}}$	$\left[12 \lambda^{2}+6 \lambda f_{t}^{2}-3 f_{t}^{4}-\frac{3}{2} \lambda\left(3 \alpha_{\mathrm{em}}^{2}+\alpha_{\mathrm{w}}^{2}\right)+\right.$
		$\underbrace{\underbrace{}_{\text {top quark }}}_{\text {Higgs }}$

$$
m_{H} \gg Q^{2}
$$

$$
\frac{\mathrm{d} \lambda}{\mathrm{~d} \log Q^{2}}=\frac{3}{4 \pi^{2}} \lambda^{2}\left(Q^{2}\right) \text { solution } \rightarrow \lambda\left(Q^{2}\right)=\frac{\lambda\left(\mathrm{v}^{2}\right)}{1-\frac{3}{4 \pi^{2}} \lambda\left(\mathrm{v}^{2}\right) \log \left(Q^{2} / \mathrm{v}^{2}\right)}
$$

(vacuum expectation value: $\mathrm{v}^{2}=\mu^{2} / \lambda$)

- From this (Landau) pole an upper bound can be derived on $m_{H}=\mu$, depending on up to which scale the theory should remain perturbative.

Intrinsic Bounds on m_{H}

- The upper bound on m_{H} due to the Landau pole is called triviality bound:

$$
\begin{aligned}
& m_{H}\left(Q(\text { Landau })=10^{3} \mathrm{GeV}\right) \leq 800 \mathrm{GeV} \\
& m_{H}\left(Q(\text { Landau })=10^{16} \mathrm{GeV}\right) \leq 170 \mathrm{GeV}
\end{aligned}
$$

(Triviality bound)

The Running of λ in the Higgs Potential

- Second case: small Higgs mass ($m_{H} \ll m_{t}$)
$\underbrace{\frac{\mathrm{d} \lambda}{\mathrm{d} \log Q^{2}}=\frac{1}{16 \pi^{2}}[\underbrace{\left[12 \lambda^{2}+6 \lambda f_{t}^{2}-3 f_{t}^{4}\right.}_{\text {top quark }}-\frac{3}{2} \lambda\left(3 \alpha_{\mathrm{em}}^{2}+\alpha_{\mathrm{w}}^{2}\right)+\ldots]}_{\text {Higgs }}$
$m_{H} \ll m_{t}$

solution $\rightarrow \lambda\left(Q^{2}\right)=\lambda\left(\mathrm{v}^{2}\right)-\frac{3}{16 \pi^{2}} \frac{m_{t}^{4}}{\mathrm{v}^{4}} \log \left(Q^{2} / \mathrm{v}^{2}\right)$
(with: $f_{t}=m_{t} / \mathrm{v}$)
- With $\lambda\left(\mathrm{v}^{2}\right)=\mu^{2} / \mathrm{v}^{2}$ and increasing $Q^{2} \lambda\left(Q^{2}\right)$ will turn negative and the Higgs potential will no longer be bound from below. The vacuum turns instable.

Intrinsic Bounds on m_{H}

- The upper bound on m_{H} due to the Landau pole is called triviality bound:
$m_{H}\left(Q(\right.$ Landau $\left.)=10^{3} \mathrm{GeV}\right) \leq 800 \mathrm{GeV}$
$m_{H}\left(Q(\right.$ Landau $\left.)=10^{16} \mathrm{GeV}\right) \leq 170 \mathrm{GeV}$
(Triviality bound)
- The lower bound on m_{H} is called stability bound:

$$
\begin{aligned}
& m_{H}\left(Q(\text { Landau })=10^{3} \mathrm{GeV}\right) \geq 20 \mathrm{GeV} \\
& m_{H}\left(Q(\text { Landau })=10^{16} \mathrm{GeV}\right) \geq 90 \mathrm{GeV}
\end{aligned}
$$

(Stability bound)

- Calculate the boundaries from the equations that have been given.

Intrinsic Bounds on m_{H}

Concluding Remarks

- The amplitude of scattering processes can be obtained from a QM model via perturbation theory.
- We have derived the propagators as formal solutions of the equations of motion for the photon and for the electron.
- We have contracted the propagators and the fermion spinors into the matrix element to obtain its final form.
- We have reviewed the Feynman rules to translate the matrix element into a pictorial form and discussed the effect of higher order corrections.
- Finally we have seen how higher order corrections within the model give boundaries on the mass of the Higgs boson already within the model from requirements on its applicability.

Sneak Preview for Next Week

- Next week Günter Quast will take over for the next two lectures/weeks.
- You will discuss the way from observable to measurement:
- Rate measurements and measurements of particle properties.
- Monte Carlo methods for event simulation.
- Parton showers and hadronization, detector simulation.
- The week after you will discuss basic experimental measurement techniques:
- Data acquisition, triggers.
- Event selections, object calibration, reconstruction efficiencies, acceptances.
- Determination of background processes.

Backup \& Homework Solutions

