
KIT – University of the State of Baden-Wuerttemberg and 
National Research Center of the Helmholtz Association 

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

www.kit.edu

From Lagrangian to Observable

Roger Wolf
13. Mai 2014



Institute of Experimental Particle Physics (IEKP)2  

Recap from Last Time

● Introduced new field    as           doublet in the theory:

● Coupled    to            gauge fields (via covariant derivate).

● Developed     in its energy ground state and obtained massive gauge 
bosons, massive Higgs boson and massive fermions via coupling to    :

● Higgs boson obtains mass via Goldstone potential.

● Gauge bosons obtain mass via gauge invariance requirement (→ covariant derivative).

● Fermions obtain mass via “naïve” Yukawa coupling to    .
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Quiz of the Day

● Wrap up: milestones in the formulation of the SM (including masses)?

● What can we know already about the Higgs boson (mass) from within the 
theory.

● How does the Lagrangian density link to actual observables? How do we 
get from the paper work to something that is measurable?

● Review Feynman rules. What is a propagator? Does a Feynman graph 
have a time direction? 
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Schedule for Today

Milestones in the 
formulation of the 
SM & discussion

From Lagrangian to 
observable (on trees 
and loops).

Boundaries on the Higgs 
boson mass within the SM

1

2

3
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SM (all inclusive): Wrap it up!
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Step 1: Electroweak Interactions

● Combine     and      into a            doublet, which behaves like a vector in 
weak isospin space. Enforce local gauge invariance for    . The      com-
ponent of the electron behaves like a            singlet. 

● Description of weak interactions.
● Gauge bosons       .

● To also obtain a description of the electromagnetic force additionally local 
gauge invariance is enforced for the         symmetry on the doublet as a 
whole and on the singlet. 

● Description of electromagnetic 
interactions (       &      ).



Institute of Experimental Particle Physics (IEKP)7  

Step 2: Weinberg Rotation

● To achieve that the coupling to the    is governed only by a single physical 
field, the fields        and       are rotated by the Weinberg angle      . 

● Obtain physical fields (     &     ).
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Step 3: Higgs Mechanism

● To obtain mass terms for the massive gauge bosons introduce a new field  
    with a potential that leads to spontaneous symmetry breaking for this 
field. The gauge fields are coupled to    via the covariant derivative        .  

● Masses for gauge bosons (       &  
      ).

● Massive Higgs boson   .
● Couplings of gauge bosons to        

                 .

● To obtain mass terms for fermions couple the fermion fields to    via 
Yukawa couplings. 

● Couplings of fermions             .
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SM Full Lagrangian



Institute of Experimental Particle Physics (IEKP)10  

Questions???

● Is there any further questions or need for discussion on your side that we 
can address in the scope of this lecture? 
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Lagrangian Density → Observable
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Lagrangian Density → Observable

● Review the QM model of scattering wave.

● Turning the Dirac equation from a differential equation into an integral 
equation (→ Green's functions).

● Iterative solution of the integral equation with the help of perturbation theory.

● Finding the solution for       when the target particle is moving (→ photon 
propagator).

● 1st oder full solution and the Feynman rules.
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QM Model of Particle Scattering

● Consider incoming collimated beam of projectile particles on target particle:

Initial particle: 
described by plain 
wave    .

Observation (in      ): 
projection of plain wave   
    out of spherical scat-
tering wave         .

Localized potential.

Spherical scat-
tering wave        .

Scattering matrix    transforms initial state 
wave function     into scattering wave        
(                   ). 
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QM Model of Particle Scattering

● Consider incoming collimated beam of projectile particles on target particle:

Initial particle: 
described by plain 
wave    .

Observation (in      ): 
projection of plain wave   
    out of spherical scat-
tering wave         .

Localized potential.

Spherical scat-
tering wave        .

Scattering matrix    transforms initial state 
wave function     into scattering wave        
(                   ). 

Observation 
probability: 
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Solution for          

● In the case of fermion scattering the scattering wave         is obtained as a 
solution of the Dirac equation for an interacting field:

● The inhomogeneous Dirac equation is analytically not solvable.

(+)
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Solution for            (Green's Function)

● In the case of fermion scattering the scattering wave         is obtained as a 
solution of the Dirac equation for an interacting field:

● The inhomogeneous Dirac equation is analytically not solvable. A formal 
solution can be obtained by the Green's Function                :

(+)
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Solution for            (Green's Function)

● In the case of fermion scattering the scattering wave         is obtained as a 
solution of the Dirac equation for an interacting field:

NB: this is not a solution to (+), since         appears on the left- and on the right-
hand side of the equation. But it turns the differential equation into an integral 
equation.

(+)

● The inhomogeneous Dirac equation is analytically not solvable. A formal 
solution can be obtained by the Green's Function                :
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Finding the Green's Function

● The best way to find the Green's function is to use the Fourier transform:

● Applying the Dirac equation to the Fourier transform of                 turns the 
derivative into a product operator:

(Fourier transform)
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Finding the Green's Function

● The best way to find the Green's function is to use the Fourier transform:

● Applying the Dirac equation to the Fourier transform of                 turns the 
derivative into a product operator:

(Fourier transform)
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Finding the Green's Function

● The best way to find the Green's function is to use the Fourier transform:

● Applying the Dirac equation to the Fourier transform of                 turns the 
derivative into a product operator:

(Fourier transform)

● From the uniqueness of the Fourier transformation the solution for          
follows:



Institute of Experimental Particle Physics (IEKP)22  

The Fermion Propagator

● The Fourier transform of the Green's function is called Fermion propagator:

(Fermion propagator)
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The Fermion Propagator

● The Fourier transform of the Green's function is called Fermion propagator:

(Fermion propagator)

● The Fermion propagator is a          matrix, which acts in the Spinor room. 
● It is only defined for virtual electrons since                                               .
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The Fermion Propagator

● The Fourier transform of the Green's function is called Fermion propagator:

(Fermion propagator)

● The Fermion propagator is a          matrix, which acts in the Spinor room. 
● It is only defined for virtual electrons since                                               .

● The Green's function can be obtained from        by:
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The Fermion Propagator

● The Fourier transform of the Green's function is called Fermion propagator:

(Fermion propagator)

● The Fermion propagator is a          matrix, which acts in the Spinor room. 
● It is only defined for virtual electrons since                                               .

● The Green's function can be obtained from        by:

●                 has two poles in the integration plane (at               ).
● The integral can be solved with the methods of function theory.  
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The Fermion Propagator (Time Integration           )

● Choose path    in complex plain to 
circumvent poles and at the same time 
imply proper time evolution:

● For            (                         for                    ):
→ close contour in lower plane & calculate       
     integral from residual of enclosed pole.  

pole at: residuum:
Sign due to sense of 
integration.
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The Fermion Propagator (Time Integration           )

● Choose path    in complex plain to 
circumvent poles and at the same time 
imply proper time evolution:
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The Fermion Propagator (Time Integration           )

● For            (                         for                    ):
→ close contour in upper plane & calculate       
     integral from residual of enclosed pole.  

pole at: residuum:
Sign due to sense of 
integration.

● Choose path    in complex plain to 
circumvent poles and at the same time 
imply proper time evolution:
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The Fermion Propagator (Time Integration           )

● Choose path    in complex plain to 
circumvent poles and at the same time 
imply proper time evolution:
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The Fermion Propagator (Nota Bene)

● The bending of the integration path can be 
circumvented by shifting the poles by   .

● Choose path    in complex plain to 
circumvent poles and at the same time 
imply proper time evolution:
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The Fermion Propagator (Nota Bene)

● The bending of the integration path can be 
circumvented by shifting the poles by   .

● Choose path    in complex plain to 
circumvent poles and at the same time 
imply proper time evolution:
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The Fermion Propagator (Nota Bene)

● The bending of the integration path can be 
circumvented by shifting the poles by   .

● Choose path    in complex plain to 
circumvent poles and at the same time 
imply proper time evolution:
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The Fermion Propagator (Summary & Time Development)

● Fermion Propagator:

● Green's function (for          ):

for

for

for

for

particle w/ pos. energy 
traveling forward in 
time.

particle w/ pos. energy 
traveling backward in 
time.

● Check the highlighted equation.
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The Fermion Propagator (Summary & Time Development)

● Fermion Propagator:

● Green's function (for          ):

for

for

for

for

particle w/ neg. energy 
traveling forward in 
time.

particle w/ neg. energy 
traveling backward in 
time.
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Solution for            (Perturbative Series)

● The integral equation can be solved perturbatively:

● 0th order perturbation theory:

(solution of the homo-
geneous Dirac equation)
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Solution for            (Perturbative Series)

● The integral equation can be solved perturbatively:

● 0th order perturbation theory:

● 1st order perturbation theory:
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Solution for            (Perturbative Series)

● The integral equation can be solved perturbatively:

● 0th order perturbation theory:

● 1st order perturbation theory:

● 2nd order perturbation theory:
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Solution for            (Perturbative Series)

● The integral equation can be solved perturbatively:

● 0th order perturbation theory:

● 1st order perturbation theory:

● 2nd order perturbation theory:

This procedure is justified since    (in natural 

units) is small wrt. to 1:
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The Matrix Element 

●        is obtained from the projection of the scattering wave         on     :

● 1st order perturbation theory:

corresponds to the 
IA term in    .
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The Matrix Element 

●        is obtained from the projection of the scattering wave         on     :

● 1st order perturbation theory:

● 1st order matrix element of 
the scattering amplitude.

corresponds to the 
IA term in    .
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The Matrix Element 

●        is obtained from the projection of the scattering wave         on     :

● 1st order perturbation theory:

● 1st order matrix element of 
the scattering amplitude.

● We still need to know     .corresponds to the 
IA term in    .
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The Photon Propagator 

● Since the target particle is back scattered by the projectile,      also evolves. 

● This happens according to the inhomogeneous wave equation of the photon 
field (in Lorentz gauge               ): 

● Ansatz via Green's function...: 
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The Photon Propagator 

● This happens according to the inhomogeneous wave equation of the photon 
field (in Lorentz gauge               ): 

● Ansatz via Green's function...: 

● … and Fourier transform: 

!

● Since the target particle is back scattered by the projectile,      also evolves. 
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The Photon Propagator 

● This happens according to the inhomogeneous wave equation of the photon 
field (in Lorentz gauge               ): 

● Ansatz via Green's function...: 

● … and Fourier transform: 

(Photon propagator)

● Since the target particle is back scattered by the projectile,      also evolves. 
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On the way to the to completion...

● With an ansatz for the current we now complete the matrix element: 

target
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On the way to the to completion...

● With an ansatz for the current we now complete the matrix element: 

target

● Introduce current and photon propagator into      : 
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On the way to the to completion...

● With an ansatz for the current we now complete the matrix element: 

target

● Introduce current and photon propagator into      : 

● Introduce      and projectile Spinors into      : 

projectile
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The Matrix Element        (complete picture)

targetprojectile virtual photon 
exchange
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The Matrix Element        (complete picture)

targetprojectile virtual photon 
exchange
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The Matrix Element        (complete picture)

targetprojectile virtual photon 
exchange
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The Matrix Element        (complete picture)

targetprojectile virtual photon 
exchange
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Feynman Rules (QED)

● Feynman diagrams are a way to represent the elements of the matrix 
element. 

● The translation follows the Feynman rules: 

● Incoming (outgoing) lepton.

● Incoming (outgoing) photon.

● Incoming (outgoing) lepton.

● Incoming (outgoing) lepton.

● Lepton-photon vertex.

Legs:

Vertexes:

Propagators:

● Four-momenta of all virtual particles have to be integrated out.
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Feynman Rules (QED)

● Feynman diagrams are a way to represent the elements of the matrix 
element. 

● A Feynman diagram:

● is not a sketch, it is a mathematical representation!

● is drawn in momentum space.

● does not have a time direction. Only time information is introduced by choice of 
initial and final state by reader (e.g. t-channel vs s-channel processes). 
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Higher Order
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Fixed Order Calculations

● Scattering amplitude      is only known in perturbation theory.

● Works the better the smaller the perturbation is (= the coupling const.).   

● QED:   

● QFD:   

● QCD:   

● If perturbation theory works well, the first contribution of the scattering 
amplitude is already sufficient to describe the main features of the process. 

● This contribution is of order       . It is often called Tree Level, Born Level or 
Leading Order (LO) scattering amplitude.    

● Any higher order of the scattering amplitude in perturbation theory appears 
at higher orders of        . 
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Order       Diagrams (QED)

● We have only discussed contribution to      , which are of order     in QED. 
(e.g. LO                scattering) .

● Diagrams which contribute to order     would look like this:

Additional legs: Loops:

(loops in propagators or legs) (loops in vertexes)
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Order       Diagrams (QED)

● We have only discussed contribution to      , which are of order     in QED. 
(e.g. LO                scattering) .

● Diagrams which contribute to order     would look like this:

Additional legs: Loops:

(loops in propagators or legs) (loops in vertexes)
● LO term for a           

process.
● NLO contrib. for the     

           process.
● Open phase spaces.



Institute of Experimental Particle Physics (IEKP)58  

Order       Diagrams (QED)

● We have only discussed contribution to      , which are of order     in QED. 
(e.g. LO                scattering) .

● Diagrams which contribute to order     would look like this:

Additional legs: Loops:

(loops in propagators or legs) (loops in vertexes)
● LO term for a           

process.
● NLO contrib. for the     

           process.
● Open phase spaces.

● Modify (effective) 
masses of particles 
(“running masses”).
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Order       Diagrams (QED)

● We have only discussed contribution to      , which are of order     in QED. 
(e.g. LO                scattering) .

● Diagrams which contribute to order     would look like this:

Additional legs: Loops:

(loops in propagators or legs) (loops in vertexes)
● LO term for a           

process.
● NLO contrib. for the     

           process.
● Open phase spaces.

● Modify (effective) 
masses of particles 
(“running masses”).

● Modify (effective) 
couplings of particles 
(“running couplings”).
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Examples for “Running Constants”

● Running of the constants can be 
predicted and indeed are observed.

● One usually gives the value at a 
reference scale (e.g.      ).

● But they need to be measured at least in 
one point.
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Effect of Higher Order Corrections

● Change over all normalization of cross sections (e.g. via change of coupling, 
but also by kinematic opening of phase space – large effect)

● Change kinematic distributions (e.g. harder or softer transverse momentum 
spectrum of particles)

● In QED effects are usually “small” (correction to LO is already at            level). 
In QCD effects are usually “large” (           ). Therefore reliable QCD 
predictions almost always require (N)NLO. 

● Higher orders can be mixed (e.g.             ).

● In concrete calculations the number of contributing diagrams quickly 
explodes for higher order calculations, which makes these calculations 
very difficult.
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Boundaries on the Higgs Mass within the SM 
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The Running of     in the Higgs Potential

● Like the couplings       ,      and     also the self-coupling    in the Higgs 
potential is subject to higher order corrections:

(Higgs potential)

(Renormalization group equation at    
 1-loop accuracy)

Higgs top quark

● Since the Higgs boson couples proportional to the mass the high energy 
behavior of    will be dominated by the heaviest object in the loop.
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The Running of     in the Higgs Potential

● First case: large Higgs mass (               )

Higgs top quark

solution

(vacuum expectation value:               )

● For                               we get                        and                 .

● For increasing               will run into a pole and become non-perturbative!
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The Running of     in the Higgs Potential

● First case: large Higgs mass (               )

Higgs top quark

solution

(vacuum expectation value:               )

● From this (Landau) pole an upper bound can be derived on             , 
depending on up to which scale the theory should remain perturbative.

● First case: large Higgs mass (               )
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Intrinsic Bounds on 

● The upper bound on       due to the Landau pole is called triviality bound:

(Triviality bound)
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The Running of     in the Higgs Potential

● Second case: small Higgs mass (               )

Higgs top quark

solution

(with:                 )

● With                     and increasing                will turn negative and the Higgs 
potential will no longer be bound from below. The vacuum turns instable. 
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Intrinsic Bounds on 

● The upper bound on       due to the Landau pole is called triviality bound:

(Triviality bound)

(Stability bound)

● The lower bound on       is called stability bound:

● Calculate the boundaries from the equations that have been given.
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Intrinsic Bounds on 
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Concluding Remarks

● The amplitude of scattering processes can be obtained from a QM model 
via perturbation theory.

● We have contracted the propagators and the fermion spinors into the 
matrix element to obtain its final form. 

● We have reviewed the Feynman rules to translate the matrix element into 
a pictorial form and discussed the effect of higher order corrections. 

● We have derived the propagators as formal solutions of the equations of 
motion for the photon and for the electron. 

● Finally we have seen how higher order corrections within the model give 
boundaries on the mass of the Higgs boson already within the model from 
requirements on its applicability. 
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Sneak Preview for Next Week

● Next week Günter Quast will take over for the next two lectures/weeks.

● You will discuss the way from observable to measurement:

● The week after you will discuss basic experimental measurement 
techniques:

● Rate measurements and measurements of particle properties.

● Monte Carlo methods for event simulation.

● Parton showers and hadronization, detector simulation.

● Data acquisition, triggers.

● Event selections, object calibration, reconstruction efficiencies, acceptances.

● Determination of background processes.
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Backup & Homework Solutions
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