

Statistical Methods used for Higgs Boson Searches

Roger Wolf 03. June 2014

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Recap from Last Time (Simulation of Processes)

 From "paper & pen" statements to high precision predictions on observable quantities (at the LHC):

• Discussed in lectures 1-3.

• Observable \rightarrow real measurement:

• Observable \rightarrow real measurement:

• Observable \rightarrow real measurement:

Quiz of the Day

- What is the relation between the Binomial, Gaussian & Poisson distribution?
- What is the relation between a minimal χ^2 fit and a Maximum Likelihood fit?
- How exactly do I calculate a 95% CL limit and how does it relate to classical hypothesis tests?

Quiz of the Day

- What is the relation between the Binomial, Gaussian & Poisson distribution?
- What is the relation between a minimal χ^2 fit and a Maximum Likelihood fit?
- How exactly do I calculate a 95% CL limit and how does it relate to classical hypothesis tests? Can you interpret this plot?

Quiz of the Day

- What is the relation between the Binomial, Gaussian & Poisson distribution?
- What is the relation between a minimal χ^2 fit and a Maximum Likelihood fit?
- How exactly do I calculate a 95% CL limit and how does it relate to classical hypothesis tests? Can you interpret this plot?
- What does a " 3σ evidence" or a " 5σ discovery" mean?

Schedule for Today

Limits, p-values, significances.

3

2 Parameter estimates (=fits).

Probability distributions & Likelihood functions.

Schedule for Today

Walk through statistical methods that will appear in the next lectures:

- You will see all these methods acting in real life during the next lectures.
- To learn about the interiors of these methods check KIT lectures of Modern Data Analysis Techniques.

Limits, p-values, significances.

Parameter estimates (=fits).

Probability distributions & Likelihood functions.

Theory:

- QM wave functions are interpreted as probability density functions.
- The Matrix Element, S_{fi} , gives the probability to find final state f for given initial state i.
- Each of the statistical processes
 pdf → ME → hadronization →
 energy loss in material → digitization
 are statistically independent.
- Event by event simulation using Monte Carlo integration methods.

Theory:

- QM wave functions are interpreted as probability density functions.
- The Matrix Element, S_{fi} , gives the probability to find final state f for given initial state i.
- Each of the statistical processes
 pdf → ME → hadronization →
 energy loss in material → digitization
 are statistically independent.
- Event by event simulation using Monte Carlo integration methods.

Experiment:

- All measurements we do are derived from rate measurements.
- We record millions of trillions of particle collisions.
- Each of these collisions is independent from all the others.

Theory:

- QM wave functions are interpreted as probability density functions.
- The Matrix Element, S_{fi} , gives the probability to find final state f for given initial state i.
- Each of the statistical processes
 pdf → ME → hadronization →
 energy loss in material → digitization
 are statistically independent.
- Event by event simulation using Monte Carlo integration methods.

Experiment:

- All measurements we do are derived from rate measurements.
- We record millions of trillions of particle collisions.
- Each of these collisions is independent from all the others.

• Particle physics experiments are a perfect application for statistical methods.

Probability Distributions & Likelihood Functions

Characterization of Probability Distributions

• Expectation Value:

$$E[x] = \int_{-\infty}^{\infty} x \cdot p df(x) dx = \mu$$

• Variance:

$$V[x] = \int_{-\infty}^{\infty} (x - \mu) \cdot p df(x) dx = \sigma^{2}$$
$$= E[(x - E[x])^{2}] = E[x^{2} - 2xE[x] + E^{2}[x]] = E[x^{2}] - E^{2}[x]$$

• Covariance:

$$cov[x,y] = E[(x - \mu(x)(y - \mu(y))] = \int_{-\infty}^{\infty} x \cdot y \cdot p df(x,y) dx = E[xy] - \mu(x)\mu(y)$$

• Correlation coefficient:

$$\rho(x,y) = \frac{cov[x,y]}{\mu(x)\mu(y)}$$

	Expectation:	Variance:
$\mathcal{P}(k,n,p) = \binom{n}{k} p^k \cdot (1-p)^{n-k}$ (Binomial distribution)	$\mu = np$	$\sigma^2 = np(1-p)$

	Expectation:	Variance:
$\mathcal{P}(k,n,p) = \frac{1}{\sqrt{2\pi n p(1-p)}} e^{-\frac{1}{2} \left(\frac{k-np}{np(1-p)}\right)^2}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Gaussian distribution)		
$n \to \infty \ , \ p \text{ fixed}$		
Central limit theorem of de Moivre & Laplace.		
$\mathcal{P}(k,n,p) = \begin{pmatrix} n \\ k \end{pmatrix} p^k \cdot (1-p)^{n-k}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Binomial distribution)		

	Expectation:	Variance:
$\mathcal{P}(k,n,p) = \frac{1}{\sqrt{2\pi n p(1-p)}} e^{-\frac{1}{2} \left(\frac{k-np}{np(1-p)}\right)^2}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Gaussian distribution)		
$n \to \infty$, p fixed		
Central limit theorem of de Moivre & Laplace.		
$\mathcal{P}(k,n,p) = \begin{pmatrix} n \\ k \end{pmatrix} p^k \cdot (1-p)^{n-k}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Binomial distribution)		
$n \to \infty \ , \ np \text{ fixed}$		
Will be shown on next slide.		
$\mathcal{P}(k,n,p) = \frac{(np)^k}{k!} e^{-np}$	$\mu = np$	$\sigma^2 = \mu = np$

(Poisson distribution)

	Expectation:	Variance:
$\mathcal{P}(k,n,p) = \frac{1}{\sqrt{2\pi n p(1-p)}} e^{-\frac{1}{2} \left(\frac{k-np}{n p(1-p)}\right)^2}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Gaussian distribution)		
$n \to \infty$, p fixed		
Central limit theorem of de Moivre & Laplace.		
$\mathcal{P}(k,n,p) = \begin{pmatrix} n \\ k \end{pmatrix} p^k \cdot (1-p)^{n-k}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Binomial distribution)		
$n \to \infty \;,\; np \; { m fixed}$		
Will be shown on next slide.		$\frown motivation for \sqrt{k}$ uncertainty.
$\mathcal{P}(k,n,p) = \frac{(np)^k}{k!} e^{-np}$	$\mu = np$	$\sigma^2 = \mu = np$
(Poisson distribution)		1

$$\begin{aligned} \mathcal{P}(k,n,p) &= \binom{n}{k} p^{k} \cdot (1-p)^{n-k} \\ &= \frac{n(n-1)(n-2) \cdot \dots \cdot (n-k+1)}{k!} \cdot \frac{\mu^{k}}{n^{k}} \cdot \frac{(1-\frac{\mu}{n})^{n}}{(1-\frac{\mu}{n})^{k}} \\ &= \frac{1 \cdot (1-\frac{1}{n})(1-\frac{2}{n}) \cdot \dots \cdot (1-\frac{k-1}{n})}{(1-\frac{\mu}{n})^{k}} \cdot \frac{\mu^{k}}{k!} \cdot (1-\frac{\mu}{n})^{n} \\ &= \frac{1}{(1-\frac{\mu}{n})} \cdot \frac{(1-\frac{2}{n})}{(1-\frac{\mu}{n})} \cdot \frac{(1-\frac{2}{n})}{(1-\frac{\mu}{n})} \cdot \dots \cdot \frac{(1-\frac{k-1}{n})}{(1-\frac{\mu}{n})} \cdot \frac{\mu^{k}}{k!} \cdot (1-\frac{\mu}{n})^{n} \\ &\to 1 \\ &\to 1 \\ &\to 1 \\ &\to e^{-\mu} \end{aligned}$$

Uncertainties on Counting Experiments

Karlsruhe Institute

Uncertainties on Counting Experiments

Look for something that is very rare very often.

Look for something that is very rare very often.

Look for something that is very rare very often.

Likelihood Functions

- **Problem**: truth is not known!
- Deduce "truth" from measurements (usually in terms of models).
- Likeliness of a model to be true quantified by *likelihood function L*({k_i}, {κ_j}).
 model parameters. measured number of events (e.g. in bins i).

Likelihood Functions

- **Problem**: truth is not known!
- Deduce "truth" from measurements (usually in terms of models).
- Likeliness of a model to be true quantified by likelihood function $\mathcal{L}(\{k_i\},\{\kappa_j\}).$ model parameters. \blacktriangleright measured number of events (e.g. in bins *i*). event Signal Example: • signal on top of known background in a bin-····· Background ned histogram: 200 $\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod \mathcal{P}(k_i, \mu_i(\kappa_j))$ 150 Product of *pdfs* for 100 each bin (Poisson). 50 $\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\checkmark} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\checkmark}$ 10 background signal mass [GeV]

Parameter Estimates

- **Problem**: find most probable parameter(s) κ_j of a given model.
- Usually minimization of negative *ln* likelihood function (*NLL*):
 - *ln* is a monotonic function and very often numerically easier to handle.
 - e.g. products of probability distributions turn into sums.
 - e.g. if probability distributions are Gaussians *NLL* turns into χ^2 minimization:

- **Problem**: find most probable parameter(s) κ_j of a given model.
- Usually minimization of negative *ln* likelihood function (*NLL*):
 - *ln* is a monotonic function and very often numerically easier to handle.
 - e.g. products of probability distributions turn into sums.
 - e.g. if probability distributions are Gaussians <u>*NLL*</u> turns into χ^2 minimization:

Clear to everybody?

- **Problem**: find most probable parameter(s) κ_j of a given model.
- Usually minimization of negative *ln* likelihood function (*NLL*):
 - *ln* is a monotonic function and very often numerically easier to handle.
 - e.g. products of probability distributions turn into sums.
 - e.g. if probability distributions are Gaussians *NLL* turns into χ^2 minimization:

- **Problem**: find most probable parameter(s) κ_j of a given model.
- Usually minimization of negative *ln* likelihood function (*NLL*):
 - *ln* is a monotonic function and very often numerically easier to handle.
 - e.g. products of probability distributions turn into sums.
 - e.g. if probability distributions are Gaussians *NLL* turns into χ^2 minimization:

$$NLL = -\ln\left(\prod_{i} e^{-\frac{1}{2}\left(\frac{x_i - \mu_i}{\sigma_i}\right)^2}\right) \propto \sum_{i} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2$$

Clear to everybody?

- The minimization usually performed:
 - analytically (like in an optimization exercise in school)
 - numerically (usually the more general solution).
 - by scan of the *NLL* (for sure the most robust method).

Number of μ_i 'i determines dimension of the Gaussian distribution.

- Each case/problem defines its own *parameter(s) of interest* (POI's):
 - POI could be the mass κ_3 .

signal on top of known background in a binned histogram:

$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \underbrace{\mathcal{P}(k_i, \mu_i(\kappa_j))}_{\text{Product of } pdf \text{s for each bin (Poisson).}}$$
$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$

- Each case/problem defines its own *parameter(s) of interest* (POI's):
 - POI could be the mass κ_3 .
 - In our case POI usually is the signal strength κ_2 for a fixed value for κ_3 .

- Systematic uncertainties are usually incorporated as nuisance parameters:
 - Example: assume background normalization κ_0 is not absolutely known, but with an uncertainty $\sigma(\kappa_0)$:

- Start with two alternative hypotheses $H_0 \& H_1$.
- Define a test statistic $q : \mathbb{R}^n \to \mathbb{R}$ that can distinguish these two hypotheses.
- The test statistic with the best separation power is the likelihood ratio (LR):
 - $q = -2 \ln \left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0} \right)$
- q can be calculated for the observation (*obs*), for the expectation for H_0 and for the expectation for H_1 :
 - Observed is a single value (outcome of measurement).
 - Expectation is a mean value with uncertainties based on toy measurements.

Hypothesis Separation

Test Statistics (LEP)

- Start with two alternative hypotheses $H_0 \& H_1$.
- Define a test statistic $q : \mathbb{R}^n \to \mathbb{R}$ that can distinguish these two hypotheses.
- The test statistic with the best separation power is the likelihood ratio (LR):

$$q = -2\ln\left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0}\right)$$

$$\begin{aligned} \mathcal{L}(n|b(\kappa_j)) &= \prod_i \mathcal{P}(n_i|b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \\ \mathcal{L}(n|\mu s(\kappa_j) + b(\kappa_j)) &= \prod_i \mathcal{P}(n_i|\mu s_i(\kappa_j) + b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \\ q_\mu &= -2\ln\left(\frac{\mathcal{L}(n|\mu s + b)}{\mathcal{L}(n|b)}\right), \quad 0 \le \mu \end{aligned}$$

nuisance parameters $\tilde{\kappa}_j$ integrated out (by throwing toys \rightarrow MC method) before evaluation of q_{μ} (\rightarrow marginalization).

Test Statistics (Tevatron)

- Start with two alternative hypotheses $H_0 \& H_1$.
- Define a test statistic $q : \mathbb{R}^n \to \mathbb{R}$ that can distinguish these two hypotheses.
- The test statistic with the best separation power is the likelihood ratio (LR):

$$q = -2\ln\left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0}\right)$$

$$\begin{aligned} \mathcal{L}(n|b(\kappa_j)) &= \prod_i \mathcal{P}(n_i|b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \\ \mathcal{L}(n|\mu s(\kappa_j) + b(\kappa_j)) &= \prod_i \mathcal{P}(n_i|\mu s_i(\kappa_j) + b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \\ q_\mu &= -2\ln\left(\frac{\mathcal{L}(n|\mu s(\hat{\kappa}_\mu) + b(\hat{\kappa}_\mu))}{\mathcal{L}(n|b(\hat{\kappa}_{\mu=0}))}\right), \quad 0 \le \mu \end{aligned}$$

nominator maximized for given μ before marginalization. Denominator for $\mu = 0$. Better estimates on nuisance parameters. Reduces uncertainties on nuisance parameters.

Test Statistics (LHC)

- Start with two alternative hypotheses $H_0 \& H_1$.
- Define a test statistic $q : \mathbb{R}^n \to \mathbb{R}$ that can distinguish these two hypotheses.
- The test statistic with the best separation power is the likelihood ratio (LR):

$$q = -2\ln\left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0}\right)$$

$$\begin{aligned} \mathcal{L}(n|b(\kappa_j)) &= \prod_i \mathcal{P}(n_i|b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \\ \mathcal{L}(n|\mu s(\kappa_j) + b(\kappa_j)) &= \prod_i \mathcal{P}(n_i|\mu s_i(\kappa_j) + b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \\ q_\mu &= -2\ln\left(\frac{\mathcal{L}(n|\mu s(\hat{\kappa}_\mu) + b(\hat{\kappa}_\mu))}{\mathcal{L}(n|\hat{\mu} s(\hat{\kappa}_{\hat{\mu}}) + b(\hat{\kappa}_{\hat{\mu}}))}\right), \quad 0 \le \hat{\mu} \le \mu \end{aligned}$$

nominator maximized for given μ before marginalization. For the denominator a global maximum is searched for at $\hat{\mu}$. In addition allows use of asymptotic formulas (\rightarrow no need for toys).

• Classical hypothesis test interested in probability to observe q_{obs} given that H_0 or H_1 is true:

lower bound

upper bound

 We are usually interested in "upper limits", which corresp. to "lower bounds" (→ how often signal ≤ observed deviation?).

- Our *pdf*'s usually depend on another parameter, which is the actual *POI* (μ in SM, $\tan \beta$ in MSSM case).
- Traditionally we set 95% CL upper limits on this POI.

- *pdf*'s move apart from each other.
- The more separate the *pdf*'s are the more H_0 & H_1 are distinguishable.

 $\mathcal{I}_{\mathrm{POI}} = \int_{-\infty}^{q_{\mathrm{obs}}} p df = 0.05$ for this POI_i in 95% of all toys $q \ge q_{\mathrm{obs}}$.

95% CL Upper Limits

- Our *pdf*'s usually depend on another parameter, which is the actual *POI* (μ in SM, $\tan \beta$ in MSSM case).
- Traditionally we set 95% CL upper limits on this POI.

95% CL Upper Limits

- Our *pdf*'s usually depend on another parameter, which is the actual *POI* (μ in SM, $\tan \beta$ in MSSM case).
- Traditionally we set 95% CL upper limits on this POI.

95% CL Upper Limits

- Our *pdf*'s usually depend on another parameter, which is the actual *POI* (μ in SM, $\tan \beta$ in MSSM case).
- Traditionally we set 95% CL upper limits on this POI.

CLs Limits

- In particle physics we set more conservative limits than this, following the *CLs* method:
- Assume H_1 to be signal+background and H_0 to be background only hypothesis.

CLs Limits

- In particle physics we set more conservative limits than this, following the *CLs* method:
- Assume H_1 to be signal+background and H_0 to be background only hypothesis.

CLs Limits

- In particle physics we set more conservative limits than this, following the *CLs* method:
- Assume H_1 to be signal+background and H_0 to be background only hypothesis.

CLs Limits (more schematic)

- In particle physics we set more conservative limits than this, following the *CLs* method:
- Assume H_1 to be signal+background and H_0 to be background only hypothesis.

Expected Limit (canonical approach)

- To obtain the expected limit mimic calculation of observed, but base it on toy experiments.
- Make use of the fact that the *pdf*'s do not depend on toys (i.e. schematic plot on the left does not change).

• Obtain quantiles for expected limit from this distribution.

And if the signal shows up...

p-Value

- How do we know whether what we see is not just a background fluctuation?
- The p-value is the probability $\mathcal{P}(q \ge q_{obs}|H_0)$ to observe values of q larger than q_{obs} under the assumption that the background only hypothesis H_0 is the true hypothesis.
- Think of...

... the limit as a way to falsify the signal plus background hypothesis (H_1) .

... the p-value as a way to falsify the background only hypothesis (H_0) .

Significance

- If the measurement is normal distributed q is distributed according to a χ^2 distribution.
- The χ^2 probability can then be interpreted as a Gaussian confidence interval.

- If the measurement is normal distributed q is distributed according to a χ^2 distribution.
- The χ^2 probability can then be interpreted as a Gaussian confidence interval.
- Usual approximation in practice is to estimate significances by:

$$\mathcal{S} = rac{n_{
m obs} - n_b}{\sqrt{n_b}}$$

Significance (in practice)

- If the measurement is normal distributed q is distributed according to a χ^2 distribution.
- The χ^2 probability can then be interpreted as a Gaussian confidence interval.
- Usual approximation in practice is to estimate significances by: events Signal 250 ····· Background expected signal events 200 $n_{\rm obs} - n_b$ 150 100 50 5 8 9 10 mass [G

8

mass [G

9

10

5

Significance (in practice)

- If the measurement is normal distributed q is distributed according to a χ^2 distribution.
- The χ^2 probability can then be interpreted as a Gaussian confidence interval.
- Usual approximation in practice is to estimate significances by: events Signal 250 ····· Background expected signal events 200 $n_{\rm obs} - n_b$ 150 Пh 100 Poisson uncertainty on expected background 50 events.

8

mass [G

9

10

5

Significance (in practice)

- If the measurement is normal distributed q is distributed according to a χ^2 distribution.
- The χ^2 probability can then be interpreted as a Gaussian confidence interval.
- Usual approximation in practice is to estimate significances by: events Signal 250 ····· Background expected signal events 200 $n_{\rm obs} - n_b$ 150 Th 100 Poisson uncertainty on expected background 50 events.

- Reviewed all statistical tools necessary to search for the Higgs signal (→ as a small signal above a known background):
 - Probability distributions, likelihood functions, limits, p-values, ...
- Limits are a usual way to 'exclude' the signal hypothesis (H_1) .
- p-values are a usual way to 'exclude' the background hypothesis (H_0) .
- Under the assumption that the test statistic q is χ^2 distributed p-values can be translated into Gaussian confidence intervals σ .
- In particle physics we call an observation with $\geq 3\sigma$ an evidence.
- We call an observation with $\geq 5\sigma$ a discovery.

- Reviewed all statistical tools necessary to search for the Higgs signal (→ as a small signal above a known background):
 - Probability distributions, likelihood functions, limits, p-values, ...
- Limits are a usual way to 'exclude' the signal hypothesis (H_1) .
- p-values are a usual way to 'exclude' the background hypothesis (H_0) .
- Under the assumption that the test statistic q is χ^2 distributed p-values can be translated into Gaussian confidence intervals σ .
- In particle physics we call an observation with $\geq 3\sigma$ an evidence.
- We call an observation with $\geq 5\sigma$ a discovery.
- Once a measurement is established the search is over! Measurements of properties are new and different world!

Sneak Preview for Next Week

- Review indirect estimates of the Higgs mass and searches for the Higgs boson that have been made before 2012:
- Estimates of m_t and m_H from high precision measurements at the Z-pole mass at LEP.
- Direct searches for the Higgs boson at LEP.
- Direct searches for the Higgs boson at the Tevatron.
- For the remaining lectures we then will turn towards the discovery of the Higgs boson at the LHC.

During the next lectures we will see 1:1 life examples of all methods that have been presented here.

