ST

Karlsruhe Institute of Technology

Statistical Methods used for Higgs Boson Searches

Roger Wolf
03. June 2014

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) — PHYSICS FACULTY

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association



Recap from Last Time (Simulation of Processes) ﬂ(“.

Karlsruhe Institute of Technology

* From “paper & pen” statements to high precision predictions on observable
quantities (at the LHC):

JQCD = Z /dxj dxki I}(Xj,p%) fk(xk,u%)é 7 (XjXkS, ;z%,#§)| hadronization
_.l‘k . i ]

------------------ ! b e e —— -

* Discussed in lectures 1-3.
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Recap from Last Time (Data Analysis) ﬂ(".

Karlsruhe Institute of Technology

* Observable — real measurement:

Silicon
Tracker

3 Electromagnetic
}! I ' Calorimeter

Hadran superconducting
Calorimeter Solencid

Iran return yoke interspersed
with Muon chambers

t o 1 5 1 T
e e e e e e
D Barnay, CERM, Febromey 2004

Transverse slice
through CM3
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Recap from Last Time (Data Analysis) ..\X‘(IT

Karlsruhe Institute of Technology

 Observable — real measurement:

om 1m 2m am

Data preparation techniques:

* Reconstruction of traces in the
detector units.

[\

* Alignment of track detectors.

e Calibration of energy response.

 Reconstruction & selection

_IS_iIic:n “ ., .‘l’ .' 1] ] efflCIenCy (“Tag & prObe”1 “MC
, e Embedding”)
\ Electrormagnetic i
i) Caloimeter * How well are background
Hadron Superconducting processes understood?

Calorimeter Solencid

Transverse slice
through CMS
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 NLE WS ES of Today SKIT

 Observable — real measurement:

N " " iques
the
® /2
\ e
>N b\‘\s\\ a \ \«\O\N“ nergy response.
vow v onad Y * Reconstruction & selection
of wyedS efficiency (“Tag & probe”, “MC

Transverse slice
through CMS

Electromagnetic
Calorimeter

Hadran
Calorimeter

Superconducting
Solencid

Embedding”)

* How well are background
processes understood?
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Quiz of the Day

* What is the relation between the Binomial, Gaussian & Poisson
distribution?

« What is the relation between a minimal x“ fit and a Maximum Likelihood
fit?

* How exactly do | calculate a 95% CL limit
and how does it relate to classical
hypothesis tests?

(] Institute of Experimental Particle Physics (IEKP)



Quiz of the Day

* What is the relation between the Binomial, Gaussian & Poisson
distribution?

« What is the relation between a minimal x“ fit and a Maximum Likelihood
fit?

CMS Preliminary, H—tt, 4.9 fb" at 7 TeV, 19.7 fb™ at 8 TeV
60 L] L] I L] L] L] I L] L] L] I L] L] L] I L] L]

- 195% CL Excluded:

* How exactly do | calculate a 95% CL limit
and how does it relate to classical I e
hypothesis tests? Can you interpret this | 2 expacted

plot? > Ofmwe

30}

tanp

20f

10 MSSM m"* scenario
MFUSY =1 TEY ]
200 400 600 800 1000

m, [GeV]

7 Institute of Experimental Particle Physics (IEKP)



Quiz of the Day

* What is the relation between the Binomial, Gaussian & Poisson
distribution?

« What is the relation between a minimal x“ fit and a Maximum Likelihood
fit?

* How exactly do | calculate a 95% CL limit
and how does it relate to classical

% 60 :CMIS P;‘eli:ninlary,l I-ITn,I 4.I9 fbl'1 atl 7 1:“’.19'? fbl" atl 8 'ravl
S P
' ; : B0 | — Sl 5
hypothesis tests? Can you interpret this | e
plot? R ] ;
30f ]
* What does a “30 evidence” or a “5o
discovery” mean?

20f

10

MSSM m"* scenario

M oy = 1 TeV
o L L L L L I L L L F L L L I L L
200 400 600 800 1000
m, [GeV]
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Schedule for Today

Limits, p-values, significances.

Parameter estimates
(=fits).

Probability distributions
& Likelihood functions.
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Schedule for Today

Walk through statistical methods ‘

that will appear in the next lectures:

. o Limits, p-values, significances.
* You will see all these methods acting in

real life during the next lectures.

* Tolearn about the interiors of these
methods check KIT lectures of
Modern Data Analysis Techniques.

Parameter estimates
(=fits).

Probability distributions
& Likelihood functions.

10 Institute of Experimental Particle Physics (IEKP)


http://www-ekp.physik.uni-karlsruhe.de/~quast/studium_SS12.html

Statistics < Particle Physics

AT

Karlsruhe Institute of Technology

Theory:

* QM wave functions are interpreted
as probability density functions.

* The Matrix Element, S;; ,gives the
probability to find final state f for
given initial state i.

* Each of the statistical processes
pdf — ME — hadronization —
energy loss in material — digitization
are statistically independent.

* Event by event simulation using
Monte Carlo integration methods.

1"
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Statistics < Particle Physics

AT

Karlsruhe Institute of Technology

Theory:

* QM wave functions are interpreted
as probability density functions.

* The Matrix Element, S;; ,gives the
probability to find final state f for
given initial state i.

* Each of the statistical processes
pdf — ME — hadronization —
energy loss in material — digitization
are statistically independent.

* Event by event simulation using
Monte Carlo integration methods.

12

Experiment:

* All measurements we do are
derived from rate measurements.

* We record millions of trillions of
particle collisions.

* Each of these collisions is
independent from all the others.

Institute of Experimental Particle Physics (IEKP)



Statistics < Particle Physics

AT

Karlsruhe Institute of Technology

Theory:

* QM wave functions are interpreted
as probability density functions.

* The Matrix Element, S;; ,gives the
probability to find final state f for
given initial state i.

* Each of the statistical processes
pdf — ME — hadronization —
energy loss in material — digitization
are statistically independent.

* Event by event simulation using
Monte Carlo integration methods.

Experiment:

* All measurements we do are
derived from rate measurements.

* We record millions of trillions of
particle collisions.

* Each of these collisions is
independent from all the others.

* Particle physics experiments are a perfect application for statistical methods.

13
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Probability Distributions & Likelihood Functions  ~CIT

stitute of Technology

| g =

Er

- i
& :
) b
S 4

; u.!q-. *'f*"”' i*
i o
= L
| 5 .III- ﬂ‘:j' vYiFE
T

B
130
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Characterization of Probability Distributions ..\X‘(IT

Karlsruhe Institute of Technology

* Expectation Value:

Elz] = [ x-pdf(z)dz = p

* Variance:

— El(x — Ela])?] = E[¢? — 22B[x] + E?[x]] = El2?] — E2[«]

* Covariance:

covfz,y] = El(z—p(z)(y—p@)] = [Zo z-y-pdf (z,y)dz = Elzy]—p(z)u(y)

e Correlation coefficient:

cov[z,y]

p(x,y) = w(@)p(y)

15 Institute of Experimental Particle Physics (IEKP)



Probability Distributions AT

Karlsruhe Institute of Technology

Expectation: Variance:

P(k7nap> - ( Z )pk'(l_p)n_k po=np 02 :np(l_p)

(Binomial distribution)

16 Institute of Experimental Particle Physics (IEKP)



Probability Distributions AT

Karlsruhe Institute of Technology

Expectation: Variance:
1 k—mnp 2
Plinit) = o et el p=np 0® = np(1 - p)
(Gaussian distribution)

n — oo, p fixed

Central limit theorem of de Moivre &

Laplace.
Pk, n,p) = ( k )pk-(l—m"‘k p=np 7" =np(l —p)

(Binomial distribution)

17 Institute of Experimental Particle Physics (IEKP)



Probability Distributions

AT

Karlsruhe Institute of Technology

_ 1 1 (225 )
P(k,n,p)—\/me (1=p)

(Gaussian distribution)

n — oo, p fixed

Central limit theorem of de Moivre &

Laplace.

i

L )p"“ (1—p)" "

(Binomial distribution)

n — oo, np fixed

Will be shown on next slide.

P(k,n,p) = LEL

(Poisson distribution)

18

Expectation: Variance:
p=mnp 0 =np(1 —p)
p=mnp 0 =np(l —p)
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Probability Distributions

AT

Karlsruhe Institute of Technology

_ 1 1 (225 )
P(k,n,p)—\/me (1=p)

(Gaussian distribution)
n — oo, p fixed

Central limit theorem of de Moivre &
Laplace.

P(k,n,p) = ( Z' )p"“ (1—p)" "

(Binomial distribution)

n — oo, np fixed

Will be shown on next slide.

P(k,n,p) = LEL

(Poisson distribution)

19

Expectation: Variance:
p=mnp 0 =np(1 —p)
p=mnp 0 =np(l —p)

motivation for v/k
<> uncertainty.
—_ i,/’" 2 _ _ \
M= np \? M nl? 4
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Binomial <« Poisson Distribution ..\X‘(IT

Karlsruhe Institute of Technology

20

P(k,n,p) =

_ 1L(1-2)(A=2)-....(1=E2) k- (1 M)n

( Z’ )p’“-(l—m"k

n(n=1)(n=2)-...(n—k+1) p* (1-

=2
k" n’“ (1_&)’g
n

(1_£)k k! n
1 1—)  (=3) 1-22) P p\"
R O I = R (= B
— — I
) — 1 — e M
me "

W = const,n — oo
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Uncertainties on Counting Experiments ..\\.J(IT

itute of Technology

A -

— » counting experiment

» /L uncertainty

uk
P(k,ui): klle i
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Uncertainties on Counting Experiments ..\\.J(IT

e

A

» /L uncertainty

uk
P(/{?,MZ'): klle i

» counting experiment

A Number of events in bin;depends on » and
on probability p;, = f;” pdf.

Binned Histogram

*i%\i

underlying pdf

+

-

bini b?:TLH_l
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Relations between Probability Distributions

AT

Karlsruhe Institute of Technology

23

Central Limit Theorem:

Random variable variable
made up of a sum of many
single measurements.

Gaussian

n — o0, p = cont

Binomial

n — oo, np = cont

Poisson

Look for something that is very rare very often.

Institute of Experimental Particle Physics (IEKP)




Relations between Probability Distributions ..\\J(IT

Karlsruhe Institute of Technology

Central Limit Theorem:

Log-norma| Random variable variable
made up of a sum of many
single measurements.

Random variable variable
made up of a product of
many single measurements.

Gaussian

n — o0, p = cont

Lognommal Density

Binomial

f(x)

n — oo, np = cont

Poisson

Look for something that is very rare very often.

24 Institute of Experimental Particle Physics (IEKP)




Relations between Probability Distributions ..\\J(IT

Karlsruhe Institute of Technology

Central Limit Theorem:

Log-normal Random variable variable X2 Distribution
made up of a sum of many

single measurements.

\O
Random variable variable

made up of a product of
many single measurements.

Gaussian

ol ol
o noun
[S 0 NI SR

n — o0, p = cont

Binomial m;ﬁééfizziziiffg

What does the parameter
: 2
n — 00, np = cont  kcorrespond to in the X
distributions? .

Lognommal Density

f(x)

Poisson

|
Look for something that is very rare very often. l
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Relations between Probability Distributions ..\\J(IT

Karlsruhe Institute of Technology

Central Limit Theorem:

Log-normal Random variable variable X2 Distribution
made up of a sum of many

single measurements.

\O
Random variable variable :
made up of a product of Gaussian b ]
many single measurements. 08t k=ndof=dim of —! ]

Gaussian (for
more details
walit till slides
32ff).

Binomial m;ififézzzzziffg

What does the parameter

n — 00, np = cont  kcorrespond to in the X
distributions? .

[ KN Y

k=
k=
k=

n — o0, p = cont

Lognommal Density

f(x)

Poisson

|
Look for something that is very rare very often. l
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Likelihood Functions AT

Karlsruhe Institute of Technology

* Problem: truth is not known!
* Deduce “truth” from measurements (usually in terms of models).

* Likeliness of a model to be true quantified by likelihood function
LK} {k51)- model parameters.

N

—p» measured number of events (e.g. in bins i).

27 Institute of Experimental Particle Physics (IEKP)



Likelihood Functions AT

Karlsruhe Institute of Technology

* Problem: truth is not known!

* Deduce “truth” from measurements (usually in terms of models).

* Likeliness of a model to be true quantified by likelihood function

E({k&/ model parameters.

—p» measured number of events (e.g. in bins i).
'.(B F
o .

« Example: $ 250 — Stanel
signal on top of known background in a bin- A Background
ned histogram: 200~

LK} Ars1) = [TP(ki, pilky)) 1s0f-

T\ J -

Product of pdfs for 100

each bin (Poisson).

() = pen . o 1T e (r3—2:)? °r

pi(ki) = Ko - € + Ko -e i

\ J X N J Lo b b b b b b b L

background signal Cohr v e mgass [C)Gevl]o
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Parameter Estimates ﬂ(".

Karlsruhe Institute of Technology
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Parameter Estimates ﬂ(“.

Karlsruhe Institute of Technology

* Problem: find most probable parameter(s) x; of a given model.

* Usually minimization of negative /» likelihood function (NVLL):
* [n is a monotonic function and very often numerically easier to handle.
* e.g. products of probability distributions turn into sums.

* e.q. if probability distributions are Gaussians NLL turns into X° minimization:

30 Institute of Experimental Particle Physics (IEKP)



Parameter Estimates _\g(“.

Karlsruhe Institute of Technology

* Problem: find most probable parameter(s) x; of a given model.

* Usually minimization of negative /» likelihood function (NVLL):
* [n is a monotonic function and very often numerically easier to handle.
* e.g. products of probability distributions turn into sums.

* e.q. if probability distributions are Gaussians NLL turns into X° minimization:

- /
'

Clear to everybody?

5’3
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Parameter Estimates

AT

Karlsruhe Institute of Technology

* Problem: find most probable parameter(s) x; of a given model.

* Usually minimization of negative /» likelihood function (NVLL):

* [n is a monotonic function and very often numerically easier to handle.

* e.g. products of probability distributions turn into sums.

* e.q. if probability distributions are Gaussians NLL turns into X° minimization:

- /
e

N\

NLL = —In (H e H (i
1

)zl

i 22
o

)2 Clear to everybody?

\

32

Number of [t;'i determines
dimension of the Gaussian
distribution.

5’3
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Parameter Estimates ..\g(“.

Karlsruhe Institute of Technology

* Problem: find most probable parameter(s) x; of a given model.

* Usually minimization of negative /» likelihood function (NVLL):
* [n is a monotonic function and very often numerically easier to handle.
* e.g. products of probability distributions turn into sums.

* e.q. if probability distributions are Gaussians NLL turns into X° minimization:

- /
h'd

1 g —Hj4 2 2
NLL = —In (H P (07) ) x 3 (xi_ Z_)2 Clear to everybody*
i i

* The minimization usually perfor
Number of [t;'i determines

haol). g dimension of the Gaussian
distribution.

* analytically (like in an optimization exerciSe-

* numerically (usually the more general solution).

* by scan of the NLL (for sure the most robust method). a
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Parameter(s) of Interest (POI)

AT

Karlsruhe Institute of Technology

* Each case/problem defines its own parameter(s) of interest (POI's):

34

* POI could be the mass «s.

Example:

signal on top of known background in a bin-
ned histogram:

Lkt 1) = TP (i, pisg))

J

Product of pdfs for
each bin (Poisson).

. . A \2
pi(kj) = Ko - €771 4 iy - e~ (R0
\ J (g J

Y

signal

background

- — Signal at 7 GeV
250 — Signal at 6 GeV
Y —— Signal at 5 GeV
— Signal at 4 GeV
R T T T Background
200—
150—
100—
50—
| | | | i | | | |

0 1 2 3 4 5 6 7 8 9 10
mass [GeV]
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Parameter(s) of Interest (POI) ..\X‘(IT

Karlsruhe Institute of Technology

* Each case/problem defines its own parameter(s) of interest (POI's):
* POI could be the mass «s.

* In our case POI usually is the signal strength «- for a fixed value for 3.

§2] F 1
c -
D 250
[}
- 02500
i{% _ — Signals3
* Example: 200~ 13 } + — signalx2
. . . L — Signal x 1
signal on top of known background in a bin- e S N Background
ned histogram: 150/ i
. 150
LR}, k1) = TP (ke pri(k;)) of
7 \I J L -
- 100
Product of pdfs for sol -
each bin (Poisson). - C
B 50—
i (s —0)? o
pi(k5) = Ko - €75 4 o - @RI —
AN J g J Loooa b
2\ 0
background signal mass [GeV]
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Systematic Uncertainties

AT

Karlsruhe Institute of Technology

* Systematic uncertainties are usually incorporated as nuisance parameters:

36

* Example: assume background normalization ~ is not absolutely known, but

with an uncertainty o (x):

/Li(lﬁlj) = 7)/('%07 Ko, (T(FLO» LeTh1T Ko - e—(f‘%—xi)z

P uncertainty

Example:
signal on top of known background in a bin-
ned histogram:

~

—» expected value

possible values in single measurements

150

Lkt 1) = TP (i, pisg))

J

Product of pdfs for
each bin (Poisson).

. . A \2
pi(Ks) = Ko - €771 4 g - g~ (R 7T0)
. J A\ J
Y Y
background signal

50

100

Y

150

100

50

i

oy

0 1 2 3 4 5 6 7 8

9 10

mass [GeV]
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Hypothesis Tests ﬂ(".

Karlsruhe Institute of Technology
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Hypothesis Separation ﬂ(“.

Karlsruhe Institute of Technology

Start with two alternative hypotheses Iy & H; .

Define a test statistic ¢ : R™ — R that can distinguish these two hypotheses.

The test statistic with the best separation power is the likelihood ratio (LR):

L(obs)|H4
g=—2In (zgobsngo)

obs

[ ]
toys

q can be calculated for the observation
(obs), for the expectation for Hy and for
the expectation for H; :

pdf from toys based
* Observed is a single value on H, (usually sig).

(outcome of measurement).

pdf from toys based

o on Hy (usually BG).
* Expectation is a mean value

with uncertainties based on
toy measurements.
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Hypothesis Separation

AT

Karlsruhe Institute of Technology

39

Start with two alternative hypotheses Hy & H; .
|

Define a test statistic ¢ : R — R the

The test statistic with the best separ

L(obs)|H4
g=—2In (zgobsngo)

q can be calculated for the observat
(obs), for the expectation for Hy and

the expectation for H; :

* Observed is a single value
(outcome of measurement).

* Expectation is a mean value
with uncertainties based on
toy measurements.

\

Signal on top
of background!

Sorry! No price... Qﬂ

pdf from toys based
on H; (usually sig).

pdf from toys based
on Hy (usually BG).
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Test Statistics (LEP) ..\X‘(IT

Karlsruhe Institute of Technology

* Start with two alternative hypotheses Hy & H; .

* Define a test statistic ¢ : R — R that can distinguish these two hypotheses.

* The test statistic with the best separation power is the likelihood ratio (LR):

L(obs)|H4
g=—2In (zgobsngO)

L(n|b(k;)) = ];[P(ni\bi(mj)) X I;IC(’%\’%)
L(n|ps(kj) +b(k;)) = 1;[7>(nz-|usi(mj) + bi(r5)) % l;[C(HjW)

gu = —21n (“&'gfj)b)) , 0< 1

nuisance parameters k; integrated out (by throwing toys — MC method) before evaluation of g,
(—marginalization).
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Test Statistics (Tevatron) _\g(“.

Karlsruhe Institute of Technology

 Start with two alternative hypotheses Hy & H;.

* Define a test statistic ¢ : R — R that can distinguish these two hypotheses.

* The test statistic with the best separation power is the likelihood ratio (LR):

L(obs)|H4
g=—2In (zgobsngO)

L(n|b(k;)) = E[P(ni\bi(’ij)) X I;IC('%j\’%j)
L(n|ps(kj) +b(k;)) = 1;[7>(nz-|usi(mj) + bi(r5)) % 1;[(3(@|i%j)

_ L(n|ps(Ru)+b(Fu))
Gu = —2In ( Z(nlb(Rumo)) ) U=

nominator maximized for given (1 before marginalization. Denominator for 1 = 0. Better
estimates on nuisance parameters. Reduces uncertainties on nuisance parameters.
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Test Statistics (LHC) ..\g(“.

Karlsruhe Institute of Technology

 Start with two alternative hypotheses Hy & H;.

* Define a test statistic ¢ : R — R that can distinguish these two hypotheses.

* The test statistic with the best separation power is the likelihood ratio (LR):

L(obs)|H4
g=—2In (L’Eobs;:HO)

L(n|b(k;)) = [[P(ni|bi(k;)) X I;IC(’ij\’%j)

(}

L(n|ps(kj) +b(k;)) = 1;[7>(nz-|usi(mj) + bi(r5)) % 1;[(3(@|i%j)

_ E(”WS(’%M)‘Fb(’%u)) 2
ap = —2In (£<n|ﬂs<&ﬂ>+b<%ﬂ>>) Uspsp

nominator maximized for given p before marginalization. For the denominator a global maximum
is searched for at j;. In addition allows use of asymptotic formulas (— no need for toys).
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Classical Hypothesis Testing ﬂ(“.

Karlsruhe Institute of Technology

* Classical hypothesis test

interested in probability to o 4o
observe ¢ons giventhat Hy =, =] Ho
or H;is true: I
355II| Hi
q < QObs|H1 q > QObS|H1 -
30—
q =< qObs‘HO q > QObS‘HO -
1N v J v J 25:_
Jobs defines dobs defines - ‘
upper bound lower bound 20— \‘ ||‘
151 | M
* We are usually interested in 10— ‘ ‘ I
“upper limits”, which corresp. - I
““ ” - |
to “lower bounds” (— how often 5S¢ | "‘
I~ I
signal < observed deviation?). 0:' 1l |11 S

-6 -4 -2 0 2 4
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95% CL Upper Limits

AT

Karlsruhe Institute of Technology

* Our pdf's usually depend on another parameter, which is the actual POI ( ¢ in SM,

tan 5 in MSSM case).

* Traditionally we set 95% CL upper limits on this POI.

44

30

25

20

15

10

= [
B @

interested in
& blue pdf
from below

i)

N

IEM
o
o
£

POI,; 12

}

[

“

TR
é,s[m 1
éx’ POI
- +1
r

“

.

R
i
i
i
EI

}

* pdf's move apart from
each other.

* The more separate the
pdf's are the more Hy &
H, are distinguishable.

* Find POI,; for which:
Iror = [ pdf = 0.05

for this POI; in 95% of all
toys ¢ > qobs -
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95% CL Upper Limits AT

Karlsruhe Institute of Technology

* Our pdf's usually depend on another parameter, which is the actual POI ( ¢ in SM,
tan 5 in MSSM case).

* Traditionally we set 95% CL upper limits on this POI.

2| 95% CL Upper Limit: Brt from
* POI; is the value at which in case that H; is the true hypothesis e th
the chance that ¢ = qobs is 95% arate the
- o hore Hy &
: : ishable.
» Still there is a chance of 5% that ¢ < qobs - Jishable
, | ; which:
20 O ig:\ o ‘
a : M POl Iror = [ pdf = 0.05
- interested in /L. , . o
o ableps o BN 0| Y™ f for this POL, in 95% of all

;‘:DWM toys q Z QObS "
POI;_4
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95% CL Upper Limits AT

Karlsruhe Institute of Technology

* Our pdf's usually depend on another parameter, which is the actual POI ( ¢ in SM,
tan 5 in MSSM case).

* Traditionally we set 95% CL upper limits on this POI.

2| 95% CL Upper Limit: art from

* POI, is the value at which in case that 1, is the true hypothesis rate the

the chance that ¢ = qobs is 95%. lore H, &

- Still there is a chance of 5% that ¢ < gobs . lishable.
Wwhich:

- . df = 0.05
* Assume our POl is it: does the 90% CL upper limit on p .

correspond to a higher or a lower value t9o% ? 1 95% of all
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95% CL Upper Limits AT

Karlsruhe Institute of Technology

* Our pdf's usually depend on another parameter, which is the actual POI ( ¢ in SM,
tan 5 in MSSM case).

* Traditionally we set 95% CL upper limits on this POI.

§ 95% CL Upper Limit: art from
* POI; is the value at which in case that H; is the true hypothesis rate the
the chance that ¢ > qobs is 95%. hore H, &
: : ishable.
 Still there is a chance of 5% that ¢ < gops . IShabie
Wwhich:
- . df = 0.05
* Assume our POl is it: does the 90% CL upper limit on p / .
correspond to a higher or a lower value too%? —9 It's lower! ! 99% of all
Ho9% 1% bability of ¢ to be “
probability of g 1o be ‘more
Ho8% } background like” than ¢,ys.
[90% —> 10% 2
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 CLs Limits AT

Karlsruhe Institute of Technology

* In particle physics we set more conservative limits than this, following the CLs
method:

* Assume H; to be signal+background and /{, to be background only hypothesis.

45— o dobs
w ¢ y CL(S+B) = d
& w0 Ho ::4\ A POL,, CMOHBI=/ i,
352|]:| Hl !“7 R e ? CL(B) — l[i](;l(); pdeO
0 % % POI;1; * Find PO, for which:
20 interested in E
15 integration of l
- magenta pdf hl'
10— & blue pdf A ’(' \
- from belo Il ”’
5:— m|||| (v |||
0: IvI || N

-4 -2 0 2 4
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 CLs Limits AT

* In particle physics we set more conservative limits than this, following the CLs
method:

* Assume H; to be signal+background and /{, to be background only hypothesis.

45__ éL _ dobs
S ol Ho g}: {\ A |POL,, CHETB) = v,
s — b am =,
- % % POl;41 » Find PO, for which:
20 interested in [ | .
15 integration of l\ - M POI; |f_ H_o& Hl are clearly
- magenta pdf hl' ¥/ - distinguishable CL.g —
10— &blue pdf | ¥ R f CL(S + B).
5}_ from belo | “’ | D
T A rou
oC | vl i A -

-4 -2 0 2 4 U St
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 CLs Limits AT

* In particle physics we set more conservative limits than this, following the CLs
method:

* Assume H; to be signal+background and /{, to be background only hypothesis.

45— étt __ [Yobs
S o o ggg {\ |\ POL,, CMETBI=Iocpdn
35§|]:| Hl “f j‘ TR ? CL(B) — !fi](;:; pdeO
0 % % POLis1 + Find POI, for which:
20 interested in x
15 integration of l\ If. H.0& Hl are clearly
- magenta pdf hl' - distinguishable CL.g —
10— & blue pdf A ’(l ’l - ? CL(S + B).
5o o belo 4 “ | - « If they cannot be
B m|||| ﬂ" y y POI;_4 _ _y ‘
ot M ' : distinguished CLg >
-6 -4 -2 0 2 4 ) T e CL(S _|_ B)
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CLs Limits (more schematic) ﬂ(".

Karlsruhe Institute of Technology

* In particle physics we set more conservative limits than this, following the CLs
method:

* Assume H; to be signal+background and , to be background only hypothesis.

L 45c A
S 40:5 Hy S
lssfm Hy s
30
25
20 interested in
15 integration of “
- magenta pdf il
10— & blue pdf A H' |
- from beIo ! “"
S | [T §
- MII i b
- ! || RN
L 4 o -2 0 2 4 >
q q
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Expected Limit (canonical approach) ﬂ(".
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* To obtain the expected limit mimic calculation of observed, but base it on toy
experiments.

* Make use of the fact that the pdf's do not depend on toys (i.e. schematic plot on the
left does not change).

* Throw number of toys under the BG
only hypothesis (H,) determine
distribution of 95% CL limits on POLI.

A

POI

toys

0.025
0.160

E.5OO
%.840

0.975

>

POI

* Obtain quantiles for expected limit from >

this distribution. q
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And if the signal shows up...




p-Value

AT

Karlsruhe Institute of Technology

* How do we know whether what we see is not just a background fluctuation?

* The p-value is the probability P(q > q.ns|Ho) to observe values of ¢ larger than
dobs Under the assumption that the background only hypothesis Hy is the true

hypothesis.

* Think of...

54

... the limit as a way to falsify the signal

plus background hypothesis (H; ).

... the p-value as a way to falsify the
background only hypothesis (Hj).

toys

10°

104

10°

p > 0.13774
p > 0.05000
p > 0.01871

p > 0.00703
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Significance ﬂ(".
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* If the measurement is normal distributed ¢ is distributed according to a X
distribution.

« The x° probability can then be interpreted as a Gaussian confidence interval.

p-values:
P(q > 30|Hg) =1-1073
P(q > 50'|H0) =2.107°

- 34.1% 34.1%

0.0 01 0.2 0.3 0.4
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Significance (in practice) _\g(“.

Karlsruhe Institute of Technology

* If the measurement is normal distributed ¢ is distributed according to a X
distribution.

« The x° probability can then be interpreted as a Gaussian confidence interval.

* Usual approximation in practice is to
estimate significances by:

0
G Signal
S 250 — Signa
Q

----- Background

200

S — Mobs—=Mb 150

100

50

o=

mass [G
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Significance (in practice) _\g(“.

Karlsruhe Institute of Technology

* If the measurement is normal distributed ¢ is distributed according to a X
distribution.

« The x° probability can then be interpreted as a Gaussian confidence interval.

* Usual approximation in practice is to
estimate significances by:

0
G Signal
S 250 — Signa
Q

R O 1 N LU Background
expected signal events

* 200

S — | nObS_nb 150__
ny :
100—
30—
:IIII|IIII|IIII||I|I|IIII|I|II|IIII|IIII|IIII|IIII
0 1 2 3 4 5 6 i 8 9 10

mass [G
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Significance (in practice) _\g(“.

Karlsruhe Institute of Technology

* If the measurement is normal distributed ¢ is distributed according to a X
distribution.

« The x° probability can then be interpreted as a Gaussian confidence interval.

* Usual approximation in practice is to
estimate significances by:

0
G Signal
S 250 — Signa
Q

----- Background

expected signal events

* 200
s T

v 100

Poisson uncertainty on
expected background
events.

50

0 1 2 3 4 5 6 7 8 9 10
mass [G
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Significance (in practice)

AT

Karlsruhe Institute of Technology

* If the measurement is normal distributed ¢ is distributed according to a X

distribution.

« The x° probability can then be interpreted as a Gaussian confidence interval.

* Usual approximation in practice is to

estimate significances by:

expected signal events

Poisson uncertainty on
expected background
events.

59

250 — Signal
R Background
200—
150—
100—
50—

0 1 2 3 4 5 6 7 8 9 10
mass [G
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Concluding Remarks ﬂ(“.
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60

Reviewed all statistical tools necessary to search for the Higgs signal (— as a
small signal above a known background):

* Probability distributions, likelihood functions, limits, p-values, ...

Limits are a usual way to '‘exclude’ the signal hypothesis (Hy).

p-values are a usual way to 'exclude’ the background hypothesis (Hy).

Under the assumption that the test statistic ¢ is X* distributed p-values can be
translated into Gaussian confidence intervals o.

In particle physics we call an observation with > 30 an evidence.

We call an observation with > 50 a discovery.

Institute of Experimental Particle Physics (IEKP)



Concluding Remarks ﬂ(“.
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Reviewed all statistical tools necessary to search for the Higgs signal (— as a
small signal above a known background):

* Probability distributions, likelihood functions, limits, p-values, ...

Limits are a usual way to '‘exclude’ the signal hypothesis (Hy).

p-values are a usual way to 'exclude’ the background hypothesis (Hy).

Under the assumption that the test statistic ¢ is X* distributed p-values can be
translated into Gaussian confidence intervals o.

In particle physics we call an observation with > 30 an evidence.

We call an observation with > 50 a discovery.

Once a measurement is established the search is over! Measurements of
properties are new and different world!
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Sneak Preview for Next Week ﬂ(“.
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62

Review indirect estimates of the Higgs mass and searches for the Higgs boson
that have been made before 2012:

Estimates of m; and m from high precision measurements at the Z-pole mass
at LEP.

Direct searches for the Higgs boson at LEP.

Direct searches for the Higgs boson at the Tevatron.

For the remaining lectures we then will turn towards the discovery of the Higgs
boson at the LHC.

During the next lectures we will see 1:1 life examples of all methods that have
been presented here.

Institute of Experimental Particle Physics (IEKP)
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Backup & Homework Solutions ..\X‘(IT
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