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Recap from Last Time (Simulation of Processes)

● From “paper & pen” statements to high precision predictions on observable 
quantities (at the LHC):

● Discussed in lectures 1-3.
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Recap from Last Time (Data Analysis)

● Observable → real measurement:



Institute of Experimental Particle Physics (IEKP)4  

Recap from Last Time (Data Analysis)

● Observable → real measurement:

Data preparation techniques:

● Calibration of energy response.

● Alignment of track detectors.

● Reconstruction of traces in the 
detector units.

● Reconstruction & selection 
efficiency (“Tag & probe”, “MC 
Embedding”)

● How well are background 
processes understood?
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                                 of Today

● Observable → real measurement:

Data preparation techniques:

● Calibration of energy response.

● Alignment of track detectors.

● Reconstruction of traces in the 
detector units.

● Reconstruction & selection 
efficiency (“Tag & probe”, “MC 
Embedding”)

● How well are background 
processes understood?

How to establish a new (small) signal on top 

of a “reasonably” well known background?



Institute of Experimental Particle Physics (IEKP)6  

Quiz of the Day

● What is the relation between the Binomial, Gaussian & Poisson 
distribution?

● What is the relation between a minimal     fit and a Maximum Likelihood 
fit?  

● How exactly do I calculate a 95% CL limit 
and how does it relate to classical 
hypothesis tests?
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Quiz of the Day

● What is the relation between the Binomial, Gaussian & Poisson 
distribution?

● What is the relation between a minimal     fit and a Maximum Likelihood 
fit?  

● How exactly do I calculate a 95% CL limit 
and how does it relate to classical 
hypothesis tests? Can you interpret this 
plot?
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Quiz of the Day

● What is the relation between the Binomial, Gaussian & Poisson 
distribution?

● What does a “     evidence” or a “     
discovery” mean?

● What is the relation between a minimal     fit and a Maximum Likelihood 
fit?  

● How exactly do I calculate a 95% CL limit 
and how does it relate to classical 
hypothesis tests? Can you interpret this 
plot?
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Schedule for Today

Probability distributions 
& Likelihood functions.

Parameter estimates 
(=fits).

Limits, p-values, significances.

1

2

3
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Schedule for Today

Probability distributions 
& Likelihood functions.

Parameter estimates 
(=fits).

Limits, p-values, significances.

1

2

3Walk through statistical methods 
that will appear in the next lectures:
● You will see all these methods acting in 

real life during the next lectures.

● To learn about the interiors of these 
methods check KIT lectures of 
Modern Data Analysis Techniques.

http://www-ekp.physik.uni-karlsruhe.de/~quast/studium_SS12.html
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Statistics ↔ Particle Physics

Theory:
● QM wave functions are interpreted 

as probability density functions.

● The Matrix Element,      ,gives the 
probability to find final state f  for 
given initial state i.

● Each of the statistical processes 
pdf → ME → hadronization → 
energy loss in material → digitization 
are statistically independent. 

● Event by event simulation using 
Monte Carlo integration methods. 
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Statistics ↔ Particle Physics

Theory: Experiment:
● QM wave functions are interpreted 

as probability density functions.

● All measurements we do are 
derived from rate measurements. 

● We record millions of trillions of 
particle collisions.

● Each of these collisions is 
independent from all the others.

● The Matrix Element,      ,gives the 
probability to find final state f  for 
given initial state i.

● Each of the statistical processes 
pdf → ME → hadronization → 
energy loss in material → digitization 
are statistically independent. 

● Event by event simulation using 
Monte Carlo integration methods. 
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Statistics ↔ Particle Physics

● Particle physics experiments are a perfect application for statistical methods.

Theory: Experiment:
● QM wave functions are interpreted 

as probability density functions.

● All measurements we do are 
derived from rate measurements. 

● We record millions of trillions of 
particle collisions.

● Each of these collisions is 
independent from all the others.

● The Matrix Element,      ,gives the 
probability to find final state f  for 
given initial state i.

● Each of the statistical processes 
pdf → ME → hadronization → 
energy loss in material → digitization 
are statistically independent. 

● Event by event simulation using 
Monte Carlo integration methods. 
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Probability Distributions & Likelihood Functions
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Characterization of Probability Distributions

● Expectation Value:

● Variance:

● Covariance:

● Correlation coefficient:
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Probability Distributions

(Binomial distribution)

Expectation: Variance:
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Probability Distributions

Central limit theorem of de Moivre & 
Laplace.

(Binomial distribution)

(Gaussian distribution)

Expectation: Variance:
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Probability Distributions

Central limit theorem of de Moivre & 
Laplace.

(Binomial distribution)

(Gaussian distribution)

(Poisson distribution)

Will be shown on next slide.

Expectation: Variance:
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Probability Distributions

Central limit theorem of de Moivre & 
Laplace.

(Binomial distribution)

(Gaussian distribution)

(Poisson distribution)

Will be shown on next slide.

Expectation: Variance:

motivation for     
uncertainty.
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Binomial ↔ Poisson Distribution
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Uncertainties on Counting Experiments

counting experiment

      uncertainty
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Uncertainties on Counting Experiments

Binned Histogram 

counting experiment

      uncertainty

Number of events in       depends on    and 
on probability                      .

underlying
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Relations between Probability Distributions

Binomial

Gaussian

Poisson

Look for something that is very rare very often.

Random variable variable 
made up of a sum of many 
single measurements.

Central Limit Theorem:
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Relations between Probability Distributions

Binomial

Gaussian

Poisson

Log-normal

Look for something that is very rare very often.

Random variable variable 
made up of a sum of many 
single measurements.

Random variable variable 
made up of a product of 
many single measurements.

exp

Central Limit Theorem:
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Relations between Probability Distributions

Binomial

Gaussian

Poisson

Log-normal        Distribution

Look for something that is very rare very often.

Random variable variable 
made up of a sum of many 
single measurements.

Random variable variable 
made up of a product of 
many single measurements.

logexp

What does the parameter 
k correspond to in the       
distributions?

Central Limit Theorem:
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Relations between Probability Distributions

Binomial

Gaussian

Poisson

Log-normal        Distribution

Look for something that is very rare very often.

Random variable variable 
made up of a sum of many 
single measurements.

Random variable variable 
made up of a product of 
many single measurements.

logexp

k=ndof=dim of 
Gaussian (for 
more details 
wait till slides 
32ff).

What does the parameter 
k correspond to in the       
distributions?

Central Limit Theorem:
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Likelihood Functions

● Problem: truth is not known!

● Deduce “truth” from measurements (usually in terms of models).

● Likeliness of a model to be true quantified by likelihood function      
                     .

model parameters.

measured number of events (e.g. in bins i).
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Likelihood Functions

● Problem: truth is not known!

● Deduce “truth” from measurements (usually in terms of models).

● Likeliness of a model to be true quantified by likelihood function      
                     .

● Example:
signal on top of known background in a bin-
ned histogram:

Product of pdfs for 
each bin (Poisson).

background signal

model parameters.

measured number of events (e.g. in bins i).
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Parameter Estimates
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Parameter Estimates

● Problem: find most probable parameter(s)      of a given model. 

● Usually minimization of negative ln likelihood function (NLL):
● ln is a monotonic function and very often numerically easier to handle.
● e.g. products of probability distributions turn into sums.

● e.g. if probability distributions are Gaussians NLL turns into     minimization:
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Parameter Estimates

● Problem: find most probable parameter(s)      of a given model. 

● Usually minimization of negative ln likelihood function (NLL):
● ln is a monotonic function and very often numerically easier to handle.
● e.g. products of probability distributions turn into sums.

● e.g. if probability distributions are Gaussians NLL turns into     minimization:

Clear to everybody?
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Parameter Estimates

● Problem: find most probable parameter(s)      of a given model. 

● Usually minimization of negative ln likelihood function (NLL):
● ln is a monotonic function and very often numerically easier to handle.
● e.g. products of probability distributions turn into sums.

● e.g. if probability distributions are Gaussians NLL turns into     minimization:

Clear to everybody?

Number of      'i  determines 
dimension of the Gaussian 
distribution.
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Parameter Estimates

● Problem: find most probable parameter(s)      of a given model. 

● Usually minimization of negative ln likelihood function (NLL):
● ln is a monotonic function and very often numerically easier to handle.
● e.g. products of probability distributions turn into sums.

● e.g. if probability distributions are Gaussians NLL turns into     minimization:

● The minimization usually performed:

● analytically (like in an optimization exercise in school).

● numerically (usually the more general solution).

● by scan of the NLL (for sure the most robust method).

Clear to everybody?

Number of      'i  determines 
dimension of the Gaussian 
distribution.
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Parameter(s) of Interest (POI)

● Each case/problem defines its own parameter(s) of interest (POI's):

● POI could be the mass     .

● Example:
signal on top of known background in a bin-
ned histogram:

Product of pdfs for 
each bin (Poisson).

background signal
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Parameter(s) of Interest (POI)

● Each case/problem defines its own parameter(s) of interest (POI's):

● POI could be the mass     .

● Example:
signal on top of known background in a bin-
ned histogram:

Product of pdfs for 
each bin (Poisson).

● In our case POI usually is the signal strength     for a fixed value for     . 

background signal
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Systematic Uncertainties

● Systematic uncertainties are usually incorporated as nuisance parameters:

● Example:
signal on top of known background in a bin-
ned histogram:

Product of pdfs for 
each bin (Poisson).

● Example: assume background normalization     is not absolutely known, but 
with an uncertainty          :

background signal

uncertainty

expected value

possible values in single measurements



Institute of Experimental Particle Physics (IEKP)37  

Hypothesis Tests



Institute of Experimental Particle Physics (IEKP)38  

Hypothesis Separation

● Start with two alternative hypotheses      &      .

● Define a test statistic                    that can distinguish these two hypotheses.

● The test statistic with the best separation power is the likelihood ratio (LR):

●    can be calculated for the observation 
(obs), for the expectation for      and for 
the expectation for      :

pdf from toys based 
on      (usually sig).

pdf from toys based 
on      (usually BG).

to
ys

obs

● Observed is a single value 
(outcome of measurement).

● Expectation is a mean value 
with uncertainties based on 
toy measurements.
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Hypothesis Separation

● Define a test statistic                    that can distinguish these two hypotheses.

● The test statistic with the best separation power is the likelihood ratio (LR).

●    can be calculated for the observation 
(obs), for the expectation for      and for 
the expectation for      :

pdf from toys based 
on      (usually sig).

pdf from toys based 
on      (usually BG).

to
ys

obs

● Observed is a single value 
(outcome of measurement).

● Expectation is a mean value 
with uncertainties based on 
toy measurements.

Sorry! No price...

Signal on top
of background!

● Start with two alternative hypotheses      &      .
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Test Statistics (LEP)

nuisance parameters      integrated out (by throwing toys → MC method) before evaluation of      
(→marginalization). 

● Start with two alternative hypotheses      &      .

● Define a test statistic                    that can distinguish these two hypotheses.

● The test statistic with the best separation power is the likelihood ratio (LR):
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Test Statistics (Tevatron)

nominator maximized for given    before marginalization. Denominator for           . Better 
estimates on nuisance parameters. Reduces uncertainties on nuisance parameters. 

● Start with two alternative hypotheses      &      .

● Define a test statistic                    that can distinguish these two hypotheses.

● The test statistic with the best separation power is the likelihood ratio (LR):
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Test Statistics (LHC)

nominator maximized for given    before marginalization. For the denominator a global maximum 
is searched for at    . In addition allows use of asymptotic formulas (→ no need for toys). 

● Start with two alternative hypotheses      &      .

● Define a test statistic                    that can distinguish these two hypotheses.

● The test statistic with the best separation power is the likelihood ratio (LR):
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Classical Hypothesis Testing

● Classical hypothesis test 
interested in probability to 
observe        given that      
or      is true:

● We are usually interested in 
“upper limits”, which corresp. 
to “lower bounds” (→ how often 

signal ≤ observed deviation?).

to
ys

upper bound lower bound
defines defines
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95% CL Upper Limits

● Our pdf's usually depend on another parameter, which is the actual POI (    in SM, 
         in MSSM case).

● Traditionally we set 95% CL upper limits on this POI.

to
ys

● pdf's move apart from 
each other.

● The more separate the 
pdf's are the more     &      
     are distinguishable.

● Find          for which:

for this          in 95% of all 
toys              .

interested in 
& blue pdf 
from below.
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95% CL Upper Limits

● Our pdf's usually depend on another parameter, which is the actual POI (    in SM, 
         in MSSM case).

● Traditionally we set 95% CL upper limits on this POI.

to
ys

● pdf's move apart from 
each other.

● The more separate the 
pdf's are the more     &      
     are distinguishable.

● Find          for which:

for this          in 95% of all 
toys              .

●          is the value at which in case that      is the true hypothesis 
the chance that               is 95%. 

● Still there is a chance of 5% that              .

95% CL Upper Limit:

interested in 
& blue pdf 
from below.
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95% CL Upper Limits

● Our pdf's usually depend on another parameter, which is the actual POI (    in SM, 
         in MSSM case).

● Traditionally we set 95% CL upper limits on this POI.

to
ys

interested in 
integration of 
blue pdf.

● pdf's move apart from 
each other.

● The more separate the 
pdf's are the more     &      
     are distinguishable.

● Find          for which:

for this          in 95% of all 
toys              .

●          is the value at which in case that      is the true hypothesis 
the chance that               is 95%. 

● Still there is a chance of 5% that              .

95% CL Upper Limit:

● Assume our POI is   : does the 90% CL upper limit on    
correspond to a higher or a lower value         ?
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95% CL Upper Limits

● Our pdf's usually depend on another parameter, which is the actual POI (    in SM, 
         in MSSM case).

● Traditionally we set 95% CL upper limits on this POI.

to
ys

interested in 
integration of 
blue pdf.

● pdf's move apart from 
each other.

● The more separate the 
pdf's are the more     &      
     are distinguishable.

● Find          for which:

for this          in 95% of all 
toys              .

●          is the value at which in case that      is the true hypothesis 
the chance that               is 95%. 

● Still there is a chance of 5% that              .

95% CL Upper Limit:

● Assume our POI is   : does the 90% CL upper limit on    
correspond to a higher or a lower value         ?          It's lower!

1%
probability of    to be “more 
background like” than        .

10%
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CLs Limits

● In particle physics we set more conservative limits than this, following the CLs 
method:

to
ys

● Find          for which:

● Assume      to be signal+background and       to be background only hypothesis.

interested in 
integration of 
magenta pdf 
& blue pdf 
from below.
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CLs Limits

● In particle physics we set more conservative limits than this, following the CLs 
method:

to
ys

● Find          for which:

● If      &      are clearly 
distinguishable                  
                 .

● Assume      to be signal+background and       to be background only hypothesis.

interested in 
integration of 
magenta pdf 
& blue pdf 
from below.
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CLs Limits

● In particle physics we set more conservative limits than this, following the CLs 
method:

to
ys

● Find          for which:

● If      &      are clearly 
distinguishable                  
                 .

● If they cannot be  
distinguished                     
                 .

● Assume      to be signal+background and       to be background only hypothesis.

interested in 
integration of 
magenta pdf 
& blue pdf 
from below.
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CLs Limits (more schematic)
to

ys

P
O

I
interested in 
integration of 
magenta pdf 
& blue pdf 
from below.

● Assume      to be signal+background and       to be background only hypothesis.

● In particle physics we set more conservative limits than this, following the CLs 
method:
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Expected Limit (canonical approach)

● To obtain the expected limit mimic calculation of observed, but base it on toy 
experiments.

● Make use of the fact that the pdf's do not depend on toys (i.e. schematic plot on the 
left does not change).

P
O

I

● Throw number of toys under the BG 
only hypothesis (     ) determine 
distribution of 95% CL limits on POI.

POI

to
ys

0.
02

5

0.
16

0

0.
50

0

0.
84

0

0.
97

5

● Obtain quantiles for expected limit from 
this distribution.
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And if the signal shows up...



Institute of Experimental Particle Physics (IEKP)54  

p-Value

● How do we know whether what we see is not just a background fluctuation?

● The p-value is the probability                           to observe values of    larger than    
       under the assumption that the background only hypothesis      is the true 
hypothesis. 

● Think of... 

… the limit as a way to falsify the signal 
plus background hypothesis (     ).

… the p-value as a way to falsify the 
background only hypothesis (     ).
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Significance

● If the measurement is normal distributed    is distributed according to a     
distribution.

● The     probability can then be interpreted as a Gaussian confidence interval. 

p-values:



Institute of Experimental Particle Physics (IEKP)56  

Significance (in practice)

● If the measurement is normal distributed    is distributed according to a     
distribution.

● The     probability can then be interpreted as a Gaussian confidence interval. 

● Usual approximation in practice is to 
estimate significances by:
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Significance (in practice)

● If the measurement is normal distributed    is distributed according to a     
distribution.

● The     probability can then be interpreted as a Gaussian confidence interval. 

● Usual approximation in practice is to 
estimate significances by:

expected signal events 
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Significance (in practice)

● If the measurement is normal distributed    is distributed according to a     
distribution.

● The     probability can then be interpreted as a Gaussian confidence interval. 

● Usual approximation in practice is to 
estimate significances by:

Poisson uncertainty on 
expected background 
events.

expected signal events 
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Significance (in practice)

● If the measurement is normal distributed    is distributed according to a     
distribution.

● The     probability can then be interpreted as a Gaussian confidence interval. 

● Usual approximation in practice is to 
estimate significances by:

Poisson uncertainty on 
expected background 
events.

expected signal events 
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Concluding Remarks

● Reviewed all statistical tools necessary to search for the Higgs signal (→ as a 
small signal above a known background):

● In particle physics we call an observation with          an evidence.

● We call an observation with          a discovery.

● Probability distributions, likelihood functions, limits, p-values, ... 

● Limits are a usual way to 'exclude' the signal hypothesis (     ).

● p-values are a usual way to 'exclude' the background hypothesis (     ).

● Under the assumption that the test statistic    is      distributed p-values can be 
translated into Gaussian confidence intervals   .
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Concluding Remarks

● Reviewed all statistical tools necessary to search for the Higgs signal (→ as a 
small signal above a known background):

● In particle physics we call an observation with          an evidence.

● We call an observation with          a discovery.

● Probability distributions, likelihood functions, limits, p-values, ... 

● Limits are a usual way to 'exclude' the signal hypothesis (     ).

● p-values are a usual way to 'exclude' the background hypothesis (     ).

● Under the assumption that the test statistic    is      distributed p-values can be 
translated into Gaussian confidence intervals   .

● Once a measurement is established the search is over! Measurements of 
properties are new and different world!
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Sneak Preview for Next Week

● Review indirect estimates of the Higgs mass and searches for the Higgs boson 
that have been made before 2012:

● Estimates of       and       from high precision measurements at the Z-pole mass 
at LEP.

● Direct searches for the Higgs boson at LEP.

● Direct searches for the Higgs boson at the Tevatron.

● For the remaining lectures we then will turn towards the discovery of the Higgs 
boson at the LHC.

During the next lectures we will see 1:1 life examples of all methods that have 
been presented here.
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Backup & Homework Solutions
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