

Searches for the Higgs Boson Before the Advent of the LHC

Roger Wolf

10. June 2014

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Recap from Last Time

- Up to now...
 - Learned about the power of local gauge theories...

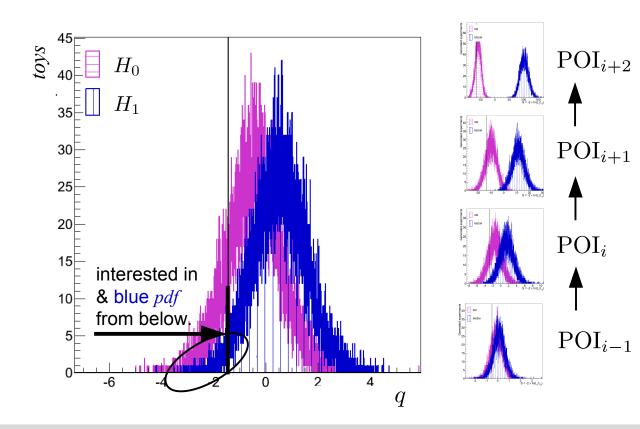
- Up to now...
 - Learned about the power of local gauge theories... and their weaknesses.

- Up to now...
 - Learned about the power of local gauge theories... and their weaknesses.
 - Learned about a way out → keep the symmetries in theory but not in praxis (spontaneous symmetry breaking).

Recap from Last Time

- Up to now...
 - Learned about the power of local gauge theories... and their weaknesses.
 - Learned about a way out → keep the symmetries in theory but not in praxis (spontaneous symmetry breaking).
 - Made a walk through the SM all inclusive.

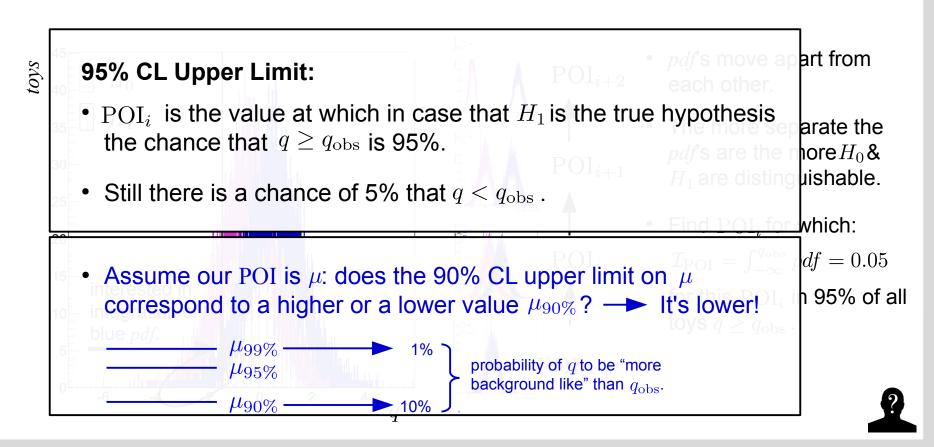
Recap from Last Time


- Up to now...
 - Learned about the power of local gauge theories... and their weaknesses.
 - Learned about a way out → keep the symmetries in theory but not in praxis (spontaneous symmetry breaking).
 - Made a walk through the SM all inclusive.
 - Learned how to get from \mathcal{L} to real measurements and how higher order in perturbation theory affect real measurements.
 - Reviewed what needs to be done to actually do these experimental measurements.
 - Reviewed the statistical methods/tools needed to search for the Higgs boson.

Institute of Experimental Particle Physics (IEKP)

Recap from Last Time (Limits on POIs)

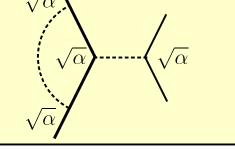
- Our *pdf*'s usually depend on another parameter, which is the actual *POI* (μ in SM, $\tan\beta$ in MSSM case).
- Traditionally we set 95% CL upper limits on this POI.


- *pdf*'s move apart from each other.
- The more separate the *pdf*'s are the more H_0 & H_1 are distinguishable.

 $\mathcal{I}_{\rm POI} = \int_{-\infty}^{q_{\rm obs}} p df = 0.05$ for this POI_i in 95% of all toys $q \ge q_{\rm obs}$.

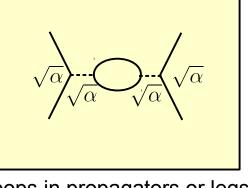
Recap from Last Time (Limits on POIs)

- Our *pdf*'s usually depend on another parameter, which is the actual *POI* (μ in SM, $\tan \beta$ in MSSM case).
- Traditionally we set 95% CL upper limits on this POI.


Recap from Last Time (Effects of loop corrections)

- We have only discussed contribution to S_{fi}, which are of order α¹ in QED.
 (e.g. LO ee → ee scattering).
- Diagrams which contribute to order α^2 would look like this:

Additional legs:


- LO term for a $2 \rightarrow 4$ process.
- NLO contrib. for the $2 \rightarrow 2$ process.
- Open phase spaces

Loops:

(loops in vertexes)

 Modify (effective) couplings of particles ("running couplings").

(loops in propagators or legs)Modify (effective)

masses of particles ("running masses").

Quiz of the Day

• No quizzing around any more... this is real life!

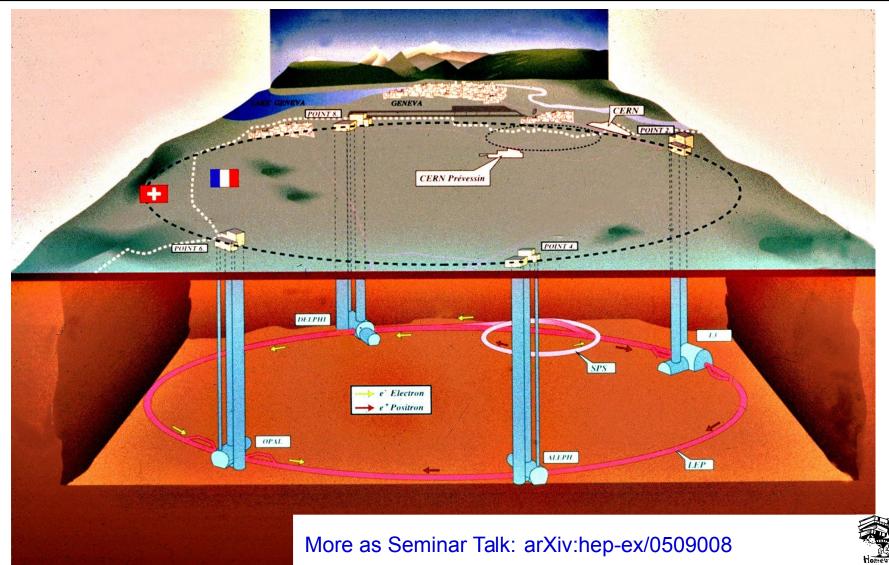
Quiz of the Day

• No quizzing around any more... this is real life!

Bud Spencer = Carlo Pedersoli

Schedule for Today

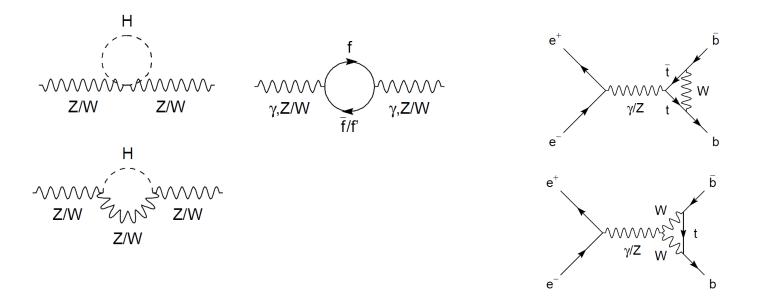
Distribution of Seminar Topics at the end of this lecture!


Direct Higgs Boson searches at LEP and Tevatron.

2

Indirect constraints on m_H from high precision measurements.

High Precision Measurements @ LEP & SLAC


Higher Orders on Precision Observables

• Particles, which cannot be directly observed at lower energy scales, still have influence on observables, due to higher order corrections in loops.

The Higgs/*top* in propagator loops:

The *top* in vertex loops:

• Introduce direct dependencies of effective (measurable) vector boson masses and couplings on $m_H \& m_t$.

• Higher order corrections to m_W :

$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - 4 \frac{\alpha \pi}{\sqrt{2} G_F m_Z^2}} \cdot \frac{1}{1 - \Delta r} \right) \quad \Delta r = \Delta \alpha + \Delta r_W$$

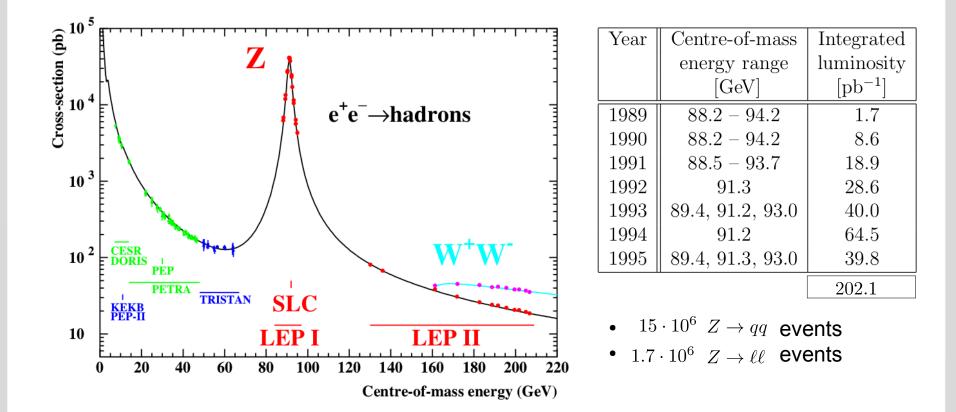
$$\Delta \alpha = \Delta \alpha_{\text{lep}} + \Delta \alpha_{\text{top}} + \Delta \alpha_{\text{had}}^{(5)}$$

$$\Delta r_W(m_t, m_H) \simeq \frac{\alpha}{\pi \sin^2 \theta_W} \left(-\frac{3 \cos^2 \theta_W}{16 \sin^2 \theta_W} \frac{m_t^2}{m_W^2} + \frac{11}{24} \log \left(\frac{m_H}{m_Z} \right) \right)$$

$$\propto m_t^2$$

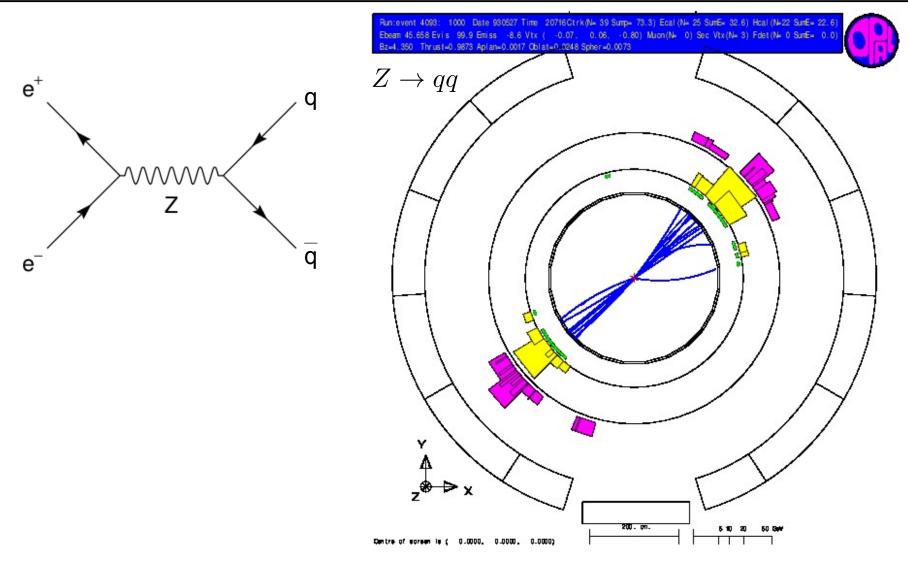
$$\propto \log (m_H)$$

• Effects set in at $\mathcal{O}(\alpha^2) \approx \mathcal{O}(10^{-4}) \rightarrow \text{high precision needed on observables}$ and theoretical prediction!


• Higher order corrections to m_W :

$$\begin{split} m_W^2 &= \frac{m_Z^2}{2} \left(1 + \sqrt{1 - 4 \frac{\alpha \pi}{\sqrt{2} G_F m_Z^2}} \cdot \frac{1}{1 - \Delta r} \right) \quad \Delta r = \Delta \alpha + \Delta r_W \\ \Delta \alpha &= \Delta \alpha_{\rm lep} + \Delta \alpha_{\rm top} + \Delta \alpha_{\rm had}^{(5)} \\ \Delta r_W(m_t, m_H) &\simeq \frac{\alpha}{\pi \sin^2 \theta_W} \left(\frac{3 \cos^2 \theta_W}{16 \sin^2 \theta_W} \frac{m_t^2}{m_W^2} + \frac{11}{24} \log \left(\frac{m_H}{m_Z} \right) \right) \\ &\propto m_t^2 \\ &\propto \log \left(m_H \right) \end{split}$$

• Effects set in at $\mathcal{O}(\alpha^2) \approx \mathcal{O}(10^{-4}) \rightarrow \text{high precision needed on observables}$ and theoretical prediction!



• High precision measurements made at $\sqrt{s} = m_Z$ during LEP-I run period:

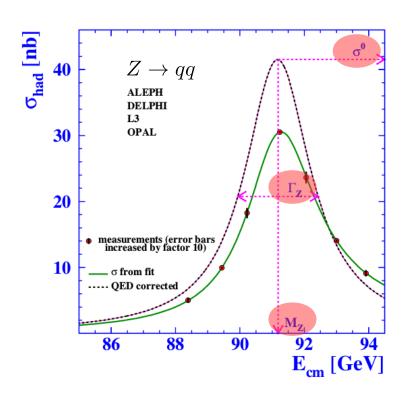
Typical $Z \rightarrow qq$ Event @ LEP

Pseudo-Observable	Measured Value			
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	\pm	0.00034	
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021	
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023	
$\sigma_{\rm had}^0 [{\rm nb}]$	41.540	\pm	0.037	
R_l^0	20.767	\pm	0.025	
R_b^{0}	0.21629	\pm	0.00066	
R_c^{0}	0.1721	\pm	0.0030	
$A_{FB}^{0,l}$	0.0171	\pm	0.0010	
$A^{0,b}_{FB}$	0.0992	\pm	0.0016	
$A_{FB}^{ar{0},ar{c}}$	0.0707	\pm	0.0035	
$\sin^2 heta_{ ext{eff}}^{I ext{bp}}$	0.2324	\pm	0.0012	
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033	
\mathcal{A}_b	0.923	\pm	0.020	
\mathcal{A}_{c}	0.670	\pm	0.027	
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021	

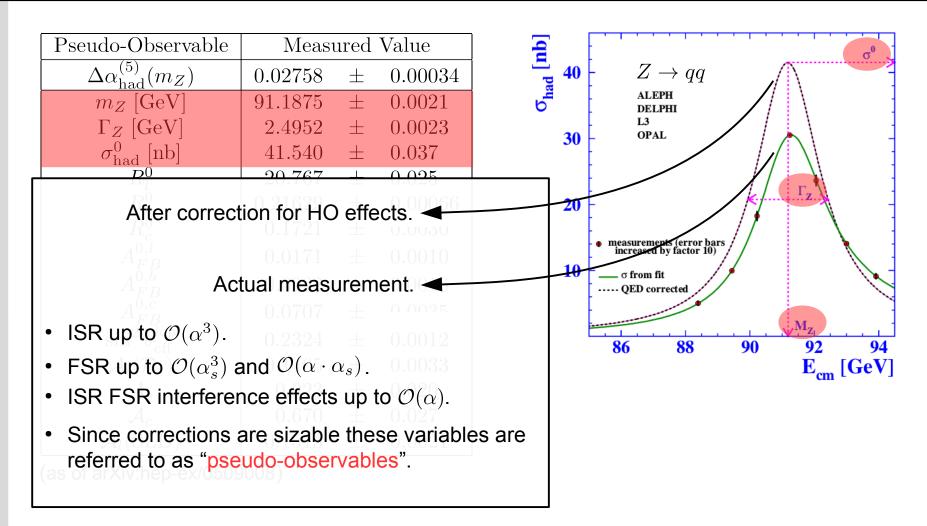
- 15 observables.
- Precision between $\mathcal{O}(10^{-5})$ for m_Z & $\mathcal{O}(10^{-2})$ for $\mathcal{A}_l(\mathrm{SLD})$ (incl. theoretical uncertainties).
- Exploit dependencies $\propto m_t^2$ and $\propto \log(m_H)$ of higher orders via relations in m_W and $\sin \theta_{\rm eff}$.

NB: Using similar relations with the same dependencies as shown on slide 15f for m_W .

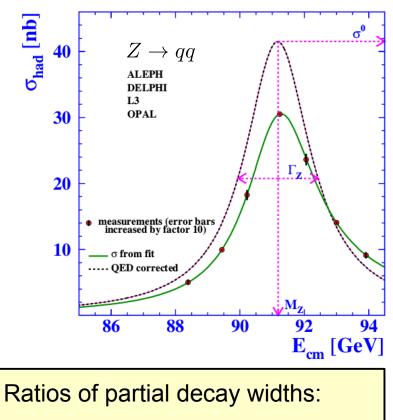
Shift $\Delta \alpha_{\rm had}^5(m_Z)$


Pseudo-Observable	Measured Value		
$\Delta \alpha_{ m had}^{(5)}(m_Z)$	0.02758	\pm	0.00034
$m_Z [\text{GeV}]$	91.1875	±	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{\rm had}^0 [{\rm nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{0,c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021

(as of arXiv:hep-ex/0509008)


• $\Delta \alpha_{had}^5(m_Z)$ as obtained from independent measurements at lower energies.

Pseudo-Observable	Measured Value		
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 \; [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0000
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{0,\overline{c}}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021



Pseudo-Observable	Measu	ured	Value
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z [\text{GeV}]$	91.1875	±	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{\rm had}^0 \; [{\rm nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{ar 0,ar c}_{FB}$	0.0707	\pm	0 0032
$\sin^2 heta_{ ext{eff}}^{ ext{P} ext{Bep}}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021

$$\begin{aligned} R^{0}_{\ell} = & \frac{\Gamma^{0}_{\text{had}}}{\Gamma_{\ell\ell}} \quad R^{0}_{c} = & \frac{\Gamma_{cc}}{\Gamma^{0}_{\text{had}}} \quad R^{0}_{b} = & \frac{\Gamma_{bb}}{\Gamma^{0}_{\text{had}}} \\ \Gamma^{0}_{\text{had}} = & \frac{\sigma^{0}_{\text{had}} m_{Z}^{2}}{12\pi} \cdot \frac{\Gamma^{2}_{Z}}{\Gamma_{ee}} \end{aligned}$$

	.		T T 1
Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	\pm	0.00034
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{\rm had}^0 \; [{\rm nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^{0}	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{0,c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_{c}	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021

- Z boson has different coupling to left- and right-handed fermions.
- Leads to:
 - net polarization in final states.
 - different rates on polarized beams.

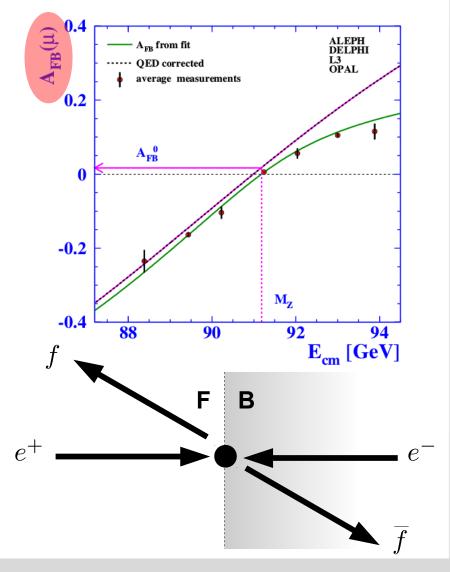
$$\begin{aligned} \mathcal{A}_f &= \frac{g_L^2 - g_R^2}{g_L^2 + g_R^2} \Big|_f = \frac{2g_V g_A}{g_V^2 + g_A^2} \Big|_f \\ \frac{g_V}{g_A} \Big|_f &= 1 - 4|Q_f| \sin^2 \theta_{\text{eff}} \\ \mathcal{A}_{FB}^{0, f} &= \frac{3}{4} \mathcal{A}_e \mathcal{A}_f \\ \langle \mathcal{P}_\tau^0 \rangle &= -\mathcal{A}_\tau \end{aligned}$$

Pseudo-Observable	Measu	ured	Value
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	\pm	0.00034
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 \; [{ m nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$\begin{array}{c} A^{0,l}_{FB} \\ A^{0,b}_{FB} \end{array}$	Forward		kwad
$A_{FB}^{0,l}\ A_{FB}^{0,b}\ A_{FB}^{0,c}\ A_{FB}^{0,c}$	Forward Asymme		kwad
$A_{FB}^{0,l} \ A_{FB}^{0,b} \ A_{FB}^{0,c} \ \sin^2 heta_{ ext{eff}}^{ ext{lep}}$			kwad 0.0035 0.0012
$egin{aligned} & A_{FB}^{0,l} \ & A_{FB}^{0,b} \ & A_{FB}^{0,c} \ & A_{FB}^{0,c} \ & \sin^2 heta_{ ext{eff}}^{ ext{lep}} \ & \sin^2 heta_{ ext{eff}}^{ ext{lep}} \ & \mathcal{A}_l(\mathcal{P}_{ au}) \end{aligned}$			0.0016 0.0035 0.0012
011	Asymme	etry	0.0016 0.0035 0.0012 0.0033
$\mathcal{A}_l(\mathcal{P}_{ au})$	Asymme 0.1465	etry ±	0.0016 0.0035 0.0012 0.0033 0.020
$\mathcal{A}_l(\mathcal{P}_{ au}) \ \mathcal{A}_b$	Asymme 0.1465 0.923	etry ±	0.0016 0.0035 0.0012 0.0033 0.020

- Z boson has different coupling to left- and right-handed fermions.
- Leads to:
 - net polarization in final states.
 - different rates on polarized beams.

$$\mathcal{A}_{f} = \frac{g_{L}^{2} - g_{R}^{2}}{g_{L}^{2} + g_{R}^{2}} \Big|_{f} = \frac{2g_{V}g_{A}}{g_{V}^{2} + g_{A}^{2}} \Big|_{f}$$
$$\frac{g_{V}}{g_{A}} \Big|_{f} = 1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}$$
$$A_{FB}^{0,f} = \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{f}$$
$$\langle \mathcal{P}_{\tau}^{0} \rangle = -\mathcal{A}_{\tau}$$

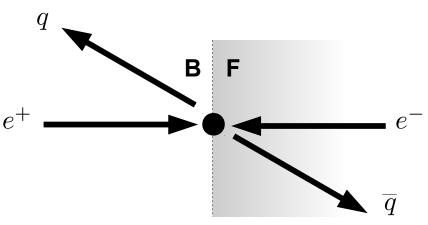
Pseudo-Observable	Measured Value		
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	\pm	0.00034
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 \; [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^{0}	0.21629	\pm	0.00066
R_c^{0}	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{ar 0,ar c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 ilde{ heta}_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$egin{array}{c} \mathcal{A}_l(\mathcal{P}_{ au}) \ \mathcal{A}_b \ \mathcal{A}_c \end{array}$	Left-Right Asymmetry		0.0033 0.020 0.027
$\mathcal{A}_l(ext{SLD})$	0.1513	±	0.0021


- Z boson has different coupling to left- and right-handed fermions.
- Leads to:
 - net polarization in final states.
 - different rates on polarized beams.

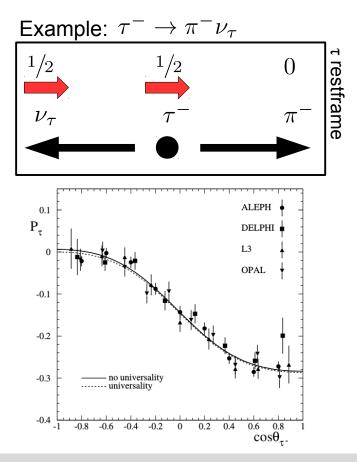
$$\mathcal{A}_{f} = \frac{g_{L}^{2} - g_{R}^{2}}{g_{L}^{2} + g_{R}^{2}} \Big|_{f} = \frac{2g_{V}g_{A}}{g_{V}^{2} + g_{A}^{2}} \Big|_{f}$$
$$\frac{g_{V}}{g_{A}} \Big|_{f} = 1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}$$
$$A_{FB}^{0,f} = \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{f}$$
$$\langle \mathcal{P}_{\tau}^{0} \rangle = -\mathcal{A}_{\tau}$$

Asymmetries (forward backward, exclusive)

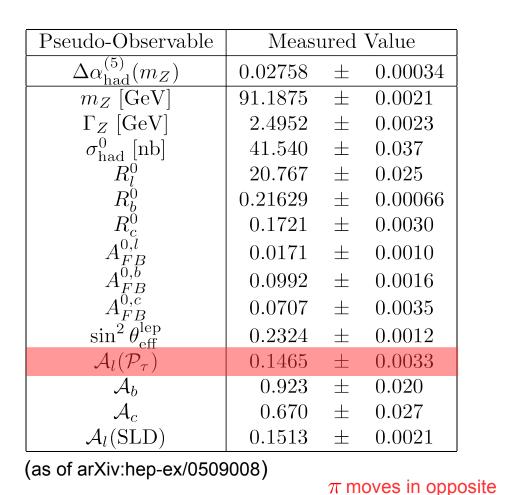
D = 1 O = 11	٦Æ	1	X 7 1	
Pseudo-Observable	Meast	Measured Value		
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	\pm	0.00034	
$m_Z [{\rm GeV}]$	91.1875	\pm	0.0021	
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023	
$\sigma_{\rm had}^0 \; [{\rm nb}]$	41.540	\pm	0.037	
R_l^0	20.767	\pm	0.025	
R_b^0	0.21629	\pm	0.00066	
R_c^0	0.1721	\pm	0.0030	
$A^{0,l}_{FB}$	0.0171	\pm	0.0010	
$A^{0,b}_{FB}$	0.0992	\pm	0.0016	
$A_{FB}^{0,\overline{c}}$	0.0707	\pm	0.0035	
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012	
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033	
\mathcal{A}_b	0.923	\pm	0.020	
\mathcal{A}_c	0.670	\pm	0.027	
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021	



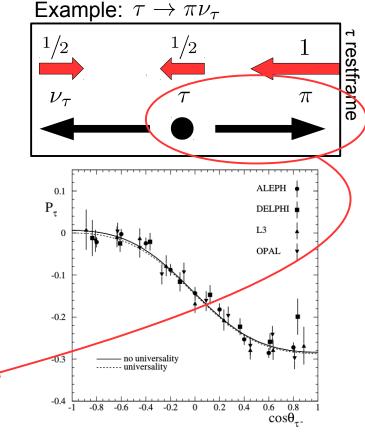
	1		
Pseudo-Observable	Measured Value		
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	\pm	
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{\rm had}^0 \; [{\rm nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{ar 0,ar c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021


- Determined from inclusive hadronic forward-backward charge asymmetry measurements at LEP.
- Usually directly expressed in terms of $\sin^2 \theta_{\rm eff}^{\rm lep}$.

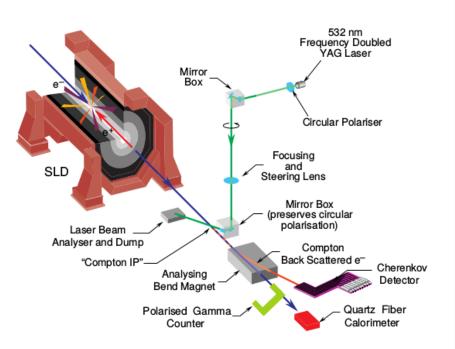
e.g. determined by jet charge

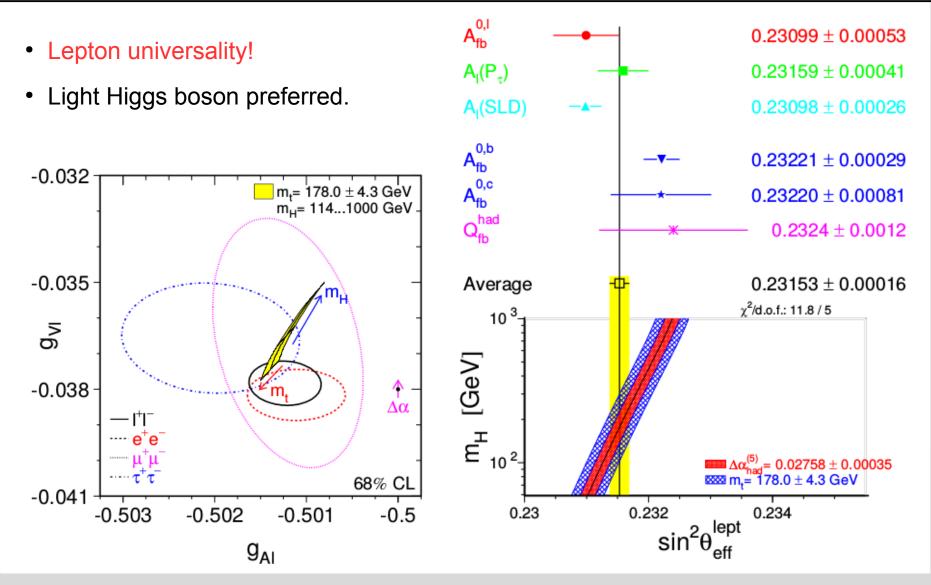


D 1 01 11	ъл	1	T 7 1
Pseudo-Observable	Measured Value		
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	\pm	0.00034
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{\rm had}^0 [{\rm nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
$R_c^{ m 0}$	0.1721	\pm	0.0030
$A_{FB}^{0,\overline{l}}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{0,c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_{c}	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021

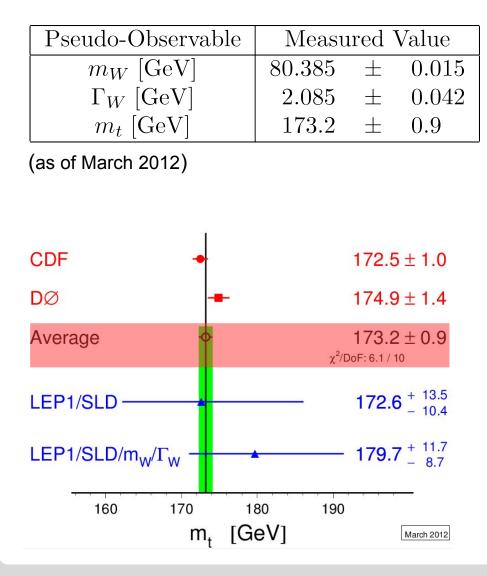

 τ is the only fermion at LEP where polarization information can be derived from.

direction of τ spin!

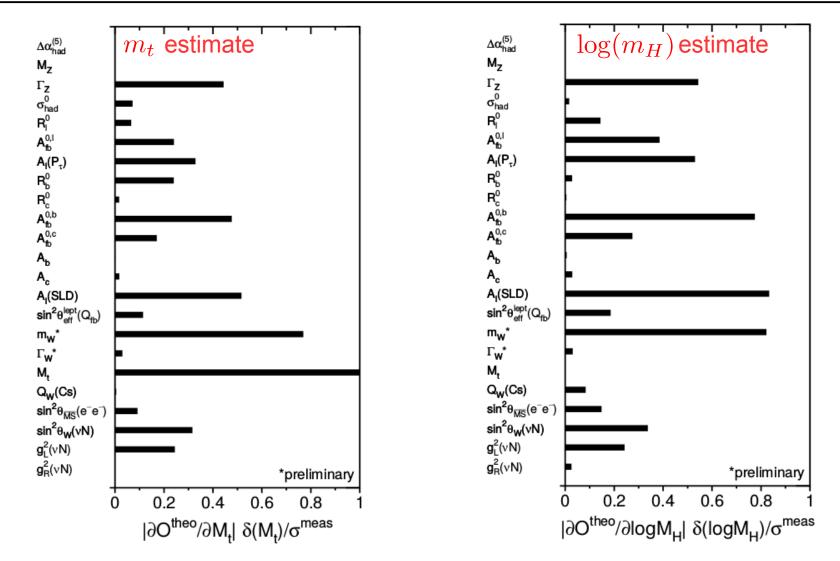

 τ is the only fermion at LEP where polarization information can be derived from.

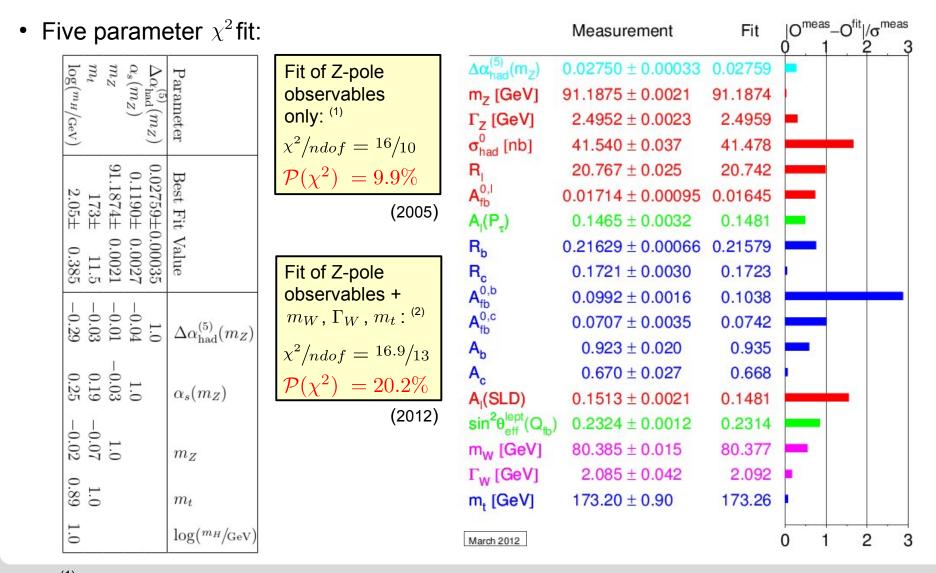

Pseudo-Observable	Meası	ıred	Value
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	\pm	
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 \; [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{ar 0,ar c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_{c}	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021

 Measured with polarized e⁺beam with the SLD experiment at SLAC.

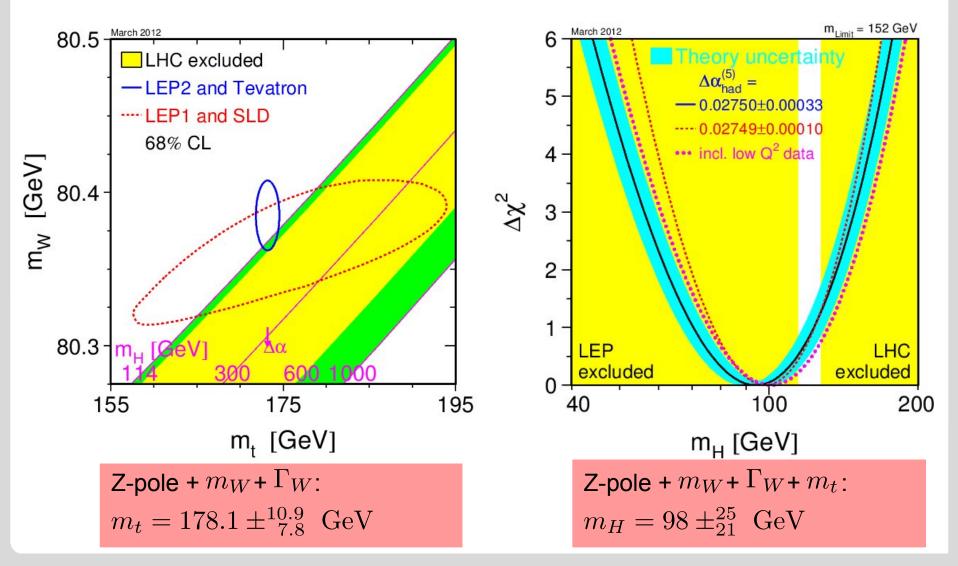


Asymmetries (sensitivity to m_t and m_H)



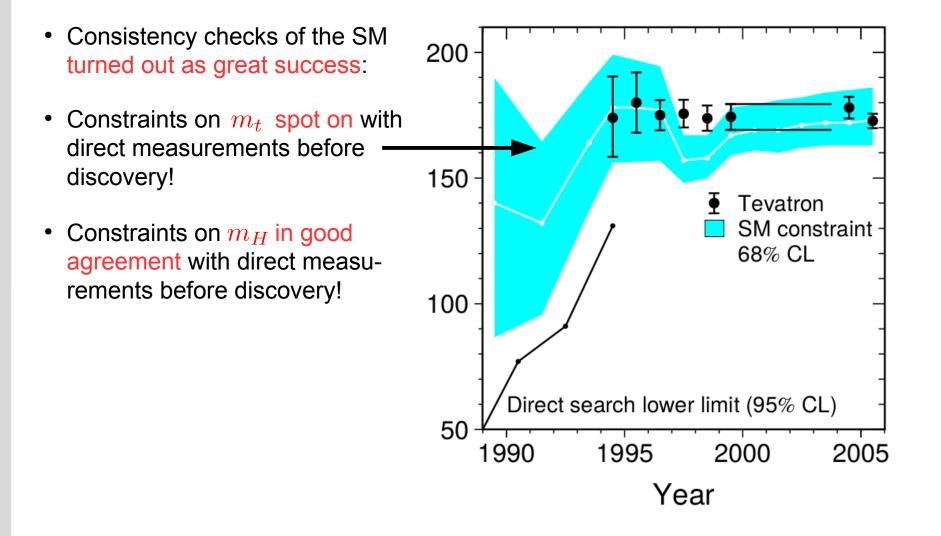


¹⁾ (as of arXiv:hep-ex/0509008)


35

⁽²⁾ http://lepewwg.web.cern.ch/LEPEWWG/winter12_results

Institute of Experimental Particle Physics (IEKP)


Main Result

Pre-Discovery Constraints on m_t & m_H

Higgs Boson...

Google-Suche

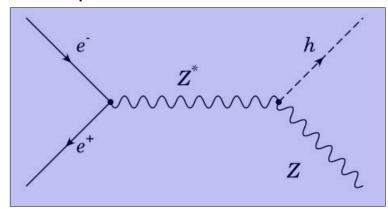
Auf gut Glück!

Google.de angeboten auf: English

More as Seminar Talk: arxiv:hep-ex/0306033

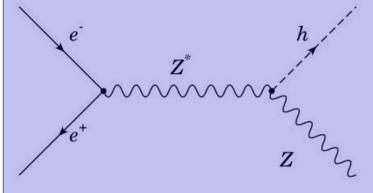
Direct Searches @ LEP

• Main production mode in e^+e^- :

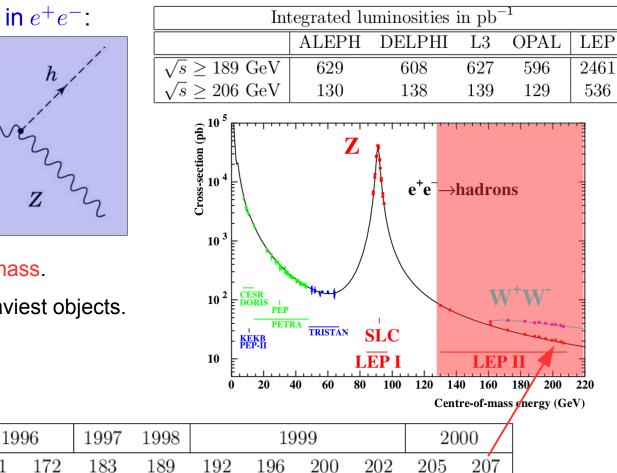

- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

Direct Searches @ LEP

• Main production mode in e^+e^- :

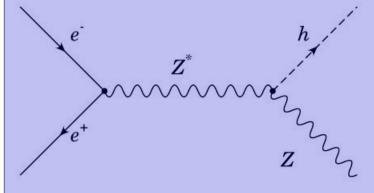

- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

Direct Searches @ LEP

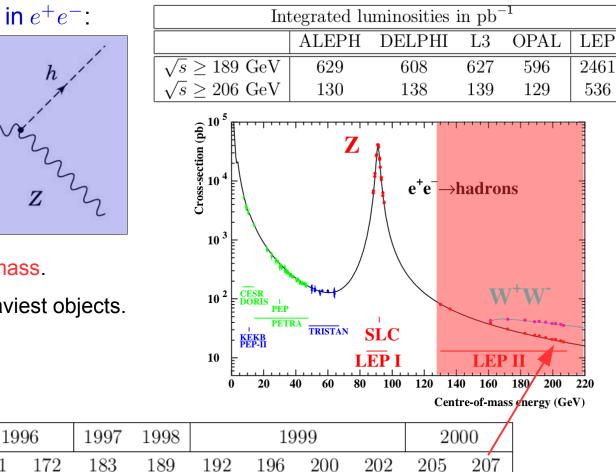


- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

161



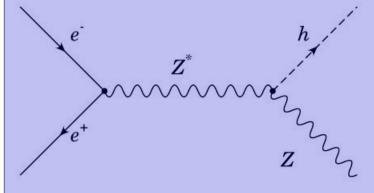
Year


 $E_{\rm CM}$ nominal [GeV]

- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

What was the maximal reach on m_H at LEP?

161



Year

 $E_{\rm CM}$ nominal [GeV]

- Higgs boson couples to mass.
- · Strongest coupling to heaviest objects.

e in e^+e^-	-:		Integrated luminosities in pb^{-1}								
	;				ALEPH	I DE	LPHI	L3	OPAL	LEP	
h ,	1	\sqrt{s}	≥ 189	GeV	629	6	608	627	596	2461	
1	2	\sqrt{s}	≥ 206	GeV	130	1	.38	139	129	536	
ví z z			$\begin{bmatrix} 10 & 5 \\ 0 & 10 & 5 \\ 0 & 10 & 4 \\ 0 & 10 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$								
mass. aviest objects.			10 ²	PEP PETH	TRISTAN			M	/ ⁺ W ⁻		
			10 F	КЕКВ РЕР-Ш		LEP I	_	LEP			
E I I I I I I I I I I I I I I									180 200	220	
Centre-of-mass energy (GeV)											
1996	1998	1999 2000					00	1			
61 172	183	189	192	196	200	202	205	207			

What was the maximal reach on m_H at LEP? —

161

 $\blacktriangleright m_H \approx 117 \text{ GeV}$

Year

 $E_{\rm CM}$ nominal [GeV]

$$\mathcal{L}_{s+b} = \prod_{k=1}^{N} \left(\frac{(s_k + b_k)^{n_k}}{n_k!} e^{-(s_k + b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right)$$

$$\mathcal{L}_b = \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right)$$

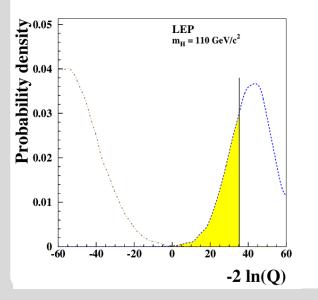
$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right)$$

$$q = -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right)$$

What values of *Q* and *q* correspond to more signal/background like?

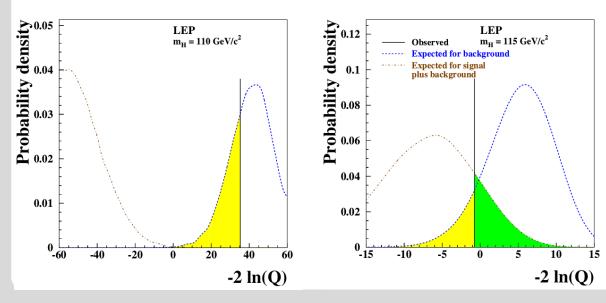
$$\mathcal{L}_{s+b} = \prod_{k=1}^{N} \left(\frac{(s_k+b_k)^{n_k}}{n_k!} e^{-(s_k+b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right)$$

$$\mathcal{L}_b = \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right)$$


$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right)$$

$$q = -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right)$$

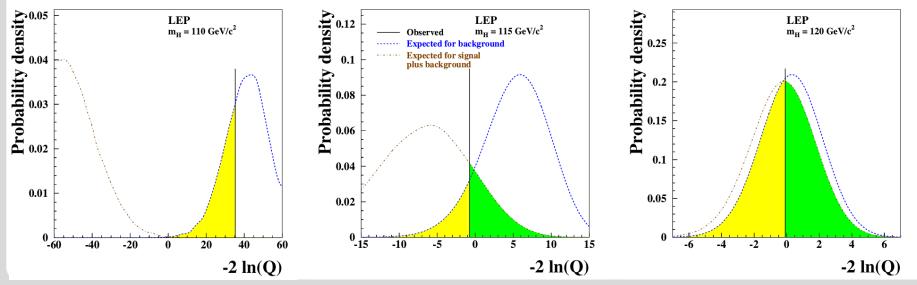
$$\begin{aligned} \mathcal{L}_{s+b} &= \prod_{k=1}^{N} \left(\frac{(s_k + b_k)^{n_k}}{n_k!} e^{-(s_k + b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right) \\ \mathcal{L}_b &= \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right) \\ Q &= \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right) \\ q &= -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right) \end{aligned}$$


$$\mathcal{L}_{s+b} = \prod_{k=1}^{N} \left(\frac{(s_k + b_k)^{n_k}}{n_k!} e^{-(s_k + b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right)$$

$$\mathcal{L}_b = \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right)$$

$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right)$$

$$q = -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right)$$



$$\mathcal{L}_{s+b} = \prod_{k=1}^{N} \left(\frac{(s_k + b_k)^{n_k}}{n_k!} e^{-(s_k + b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right)$$

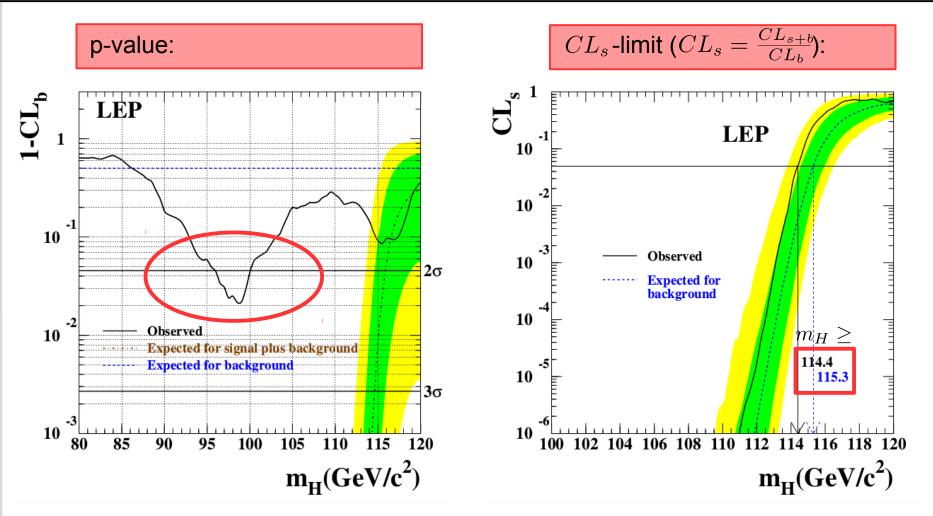
$$\mathcal{L}_b = \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right)$$

$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right)$$


$$q = -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right)$$

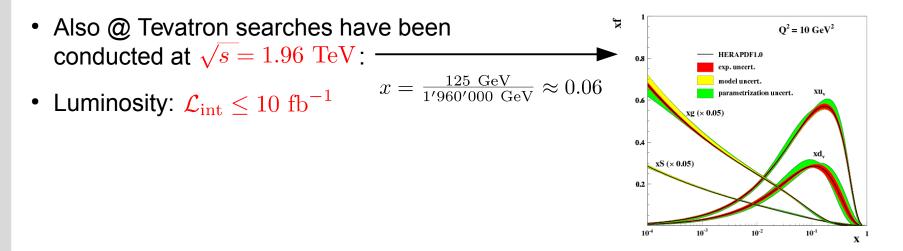
Institute of Experimental Particle Physics (IEKP)

Result (Final Word from LEP)

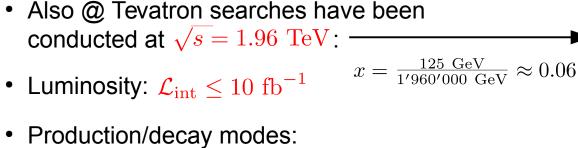


No signal observed!

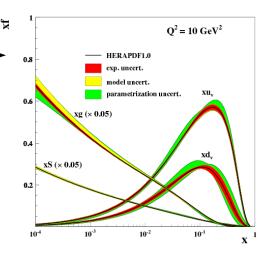
Result (Final Word from LEP)

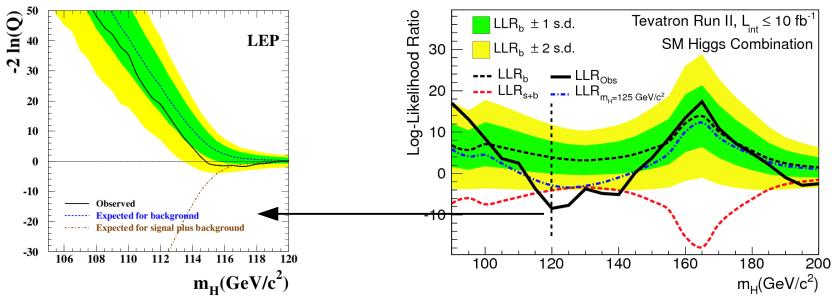


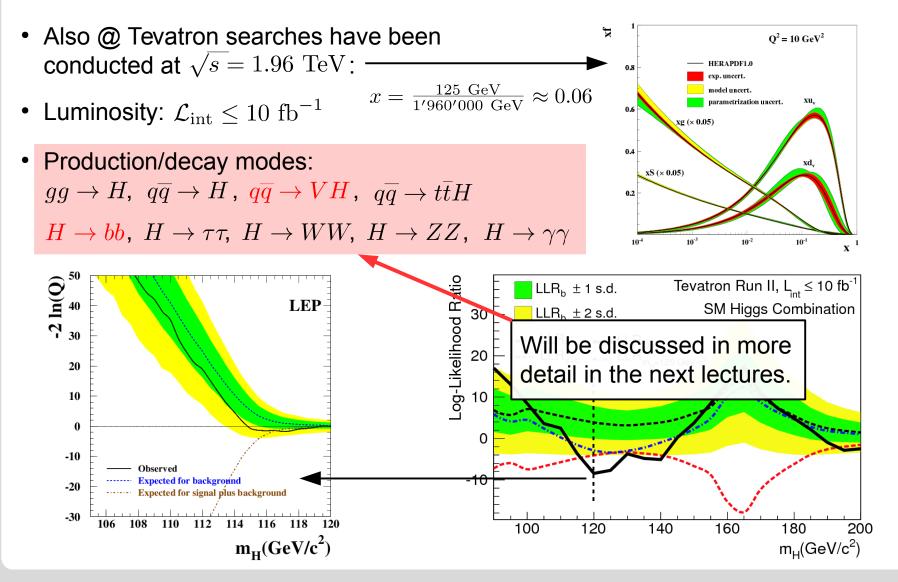
• No signal observed! There is a 2σ effect, but this is not compatible with the SM.



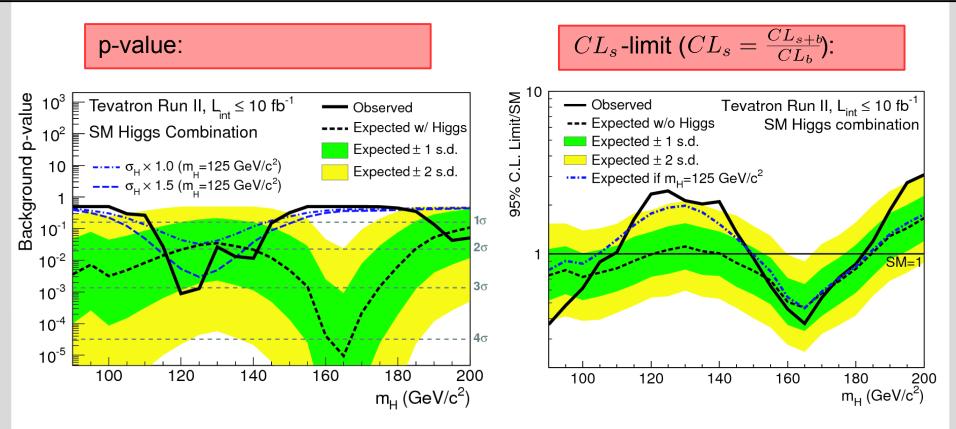
- Also @ Tevatron searches have been conducted at $\sqrt{s} = 1.96$ TeV:
- Luminosity: $\mathcal{L}_{int} \leq 10 \text{ fb}^{-1}$







• Production/decay modes: $gg \to H, \ q\overline{q} \to H, \ q\overline{q} \to VH, \ q\overline{q} \to t\overline{t}H$ $H \to bb, \ H \to \tau\tau, \ H \to WW, \ H \to ZZ, \ H \to \gamma\gamma$



Result (Final Word from Tevatron)

- Sensitivity of Tevatron results driven by $q\overline{q} \rightarrow VH, \ H \rightarrow b\overline{b}$.
- $\gtrsim 3\sigma$ evidence for a Higgs boson around $m_H \approx 120$ GeV, $\approx 1.5\sigma_{\rm SM}$.

Result (Final Word from Tevatron)

p-value: **Background p-value** 10^{3} Tevatron Run II, $L_{int} \leq 10 \text{ fb}^{-1}$ Observed Expected w/ Higgs 10² SM Higgs Combination Expected ± 1 s.d. ----- $\sigma_{H} \times 1.0 \ (m_{H} = 125 \ GeV/c^{2})$ ---- $\sigma_{H} \times 1.5 \ (m_{H} = 125 \ GeV/c^{2})$ 10 Expected ± 2 s.d. 1 1-CL_b LÉP 1σ 0-1 **2**σ 10⁻² 10⁻³ **3**σ 10-4 10 4σ 10⁻⁵ 2σ 100 120 140 160 -180 m_{μ} (GeV/c²) Observed 10 Expected for signal plus background Expected for background 3σ Sensitivity of Tevatron results driven by $q\overline{q}$. 10 85 90 95 100 105 110 115 120 80 • $\gtrsim 3\sigma$ evidence for a Higgs boson around m_{H} $m_{\rm H}({\rm GeV/c}^2)$

Concluding Remarks

- The hunt for the Higgs boson had begun in the LEP-II era already.
- We had already good hints where to expect the Higgs (according to the SM) from high precision Z-pole measurements.
- Direct searches @ LEP and @ Tevatron remained inconclusive, since the Higgs boson was out of reach.
- 2010 the dishes were set for the final round...

- From the next lecture on we will discuss the Higgs discovery at the LHC, the first determination of its properties and perspectives for further surprises in the Higgs sector.
- During the last time slots of the lecture series you will have the chance to study first hand literature on the discovery, with our help.
- Presentations should be in electronic form and of ~20 minutes duration, including discussion. Take it serious. You can discuss your oeuvre with us well in advance of your presentation. Send your slides well in advance to roger.wolf@cern.ch.

- Precision Electroweak Measurements at the Z Resonance.
- Search for the SM Higgs boson at LEP.
- Search for the SM Higgs boson in the di-photon final sate.
- Search for the SM Higgs boson in the ZZ final state.
- Search for the SM Higgs boson in the WW final state.
- Search for the SM Higgs boson in the di-tau final state.
- Search for the SM Higgs boson in the final state with two b-quarks.
- Search for the SM Higgs boson in the di-muon final state.
- Search for the SM Higgs boson produced in association with top quarks.
- Search for a Higgs boson decaying into invisible particles.

- Search for neutral MSSM Higgs bosons in the di-tau final state.
- Search for the decay $H \rightarrow hh$, $A \rightarrow Zh$ in multilepton and photon final states.

Seminar Dates: Thursday 03.07.; Tuesday 08.07.; Thursday 10.07.

