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Mass      Mass 

Newton's law of gravitation:
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heavy mass
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Newton's law of gravitation:
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mass of inertia

heavy mass

Mass      Mass 

Newton's law of gravitation:
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Mass      Mass 

Proton

Sun

So, what's the importance then of     ?!?
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Without       ...

● … no Newtonian Laws.
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Sun

● … no Lecture on Higgs Physics.

● … no Newtonian Laws.

● … everybody would move at the speed of light.

● … no weak force as we know it.

● … no Standard Model.

Without       ...
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Vorlesung Teilchenphysik II – Higgsphysik

● Vorlesung: 2 SWS, Übungen 1 SWS.

● Wahlfach im Masterstudium Physik, als Teilmodul eines Vertiefungs- bzw 
Ergänzungsfaches (6 LP) mit mündlicher Modulprüfung

● Lehrveranstalltung: 4022181.

● Einordnung in Studiengang: Master Physik, Bereich Teilchenphysik.

● Leistungspunkte: 6.

● Semesterwochenstunden: 2+1=3.

● Literatur: siehe Modulhandbuch. Weitere interessante Literatur wird in 
den jeweiligen Vorlesungen bekannt gegeben. 

● Details entnehmen Sie bitte aus dem vorliegenden Modulhandbuch
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Lecture Program

● Recall of prerequisites: Dirac-Eq, Klein-Gordon Eq, local gauge 
invariance (1 lecture, today) 

● Review of what all this is about: SM of particle physics (1 lecture).

● Spontaneous symmetry breaking, Higgs mechanism (1 lecture).

● Lagrangian → observable (1 lectures).

● Accelerator/experiment → measurement (3 lectures).

● What we knew before the advent of the LHC (1 lecture).

● Higgs discovery & properties known by today (1 lectures).

● Higgs future and spinning around... (1 lectures).

A
pril

M
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Nota Bene

Theoretical 
Particle Physics II

Experimental 
Particle Physics I

Statistical Data 
Analysis

● Nobody left behind.
● Don't be boring at the same time.

● Try to be complete but specific.
● Try to give an interesting clue 

with each topic that we address. 
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Nota Bene

Theoretical 
Particle Physics II

Experimental 
Particle Physics I

● Nobody left behind.
● Don't be boring at the same time.

● Try to be complete but specific.
● Try to give an interesting clue 

with each topic that we address. 

Statistical Data 
Analysis

●
Atmosphere of o

pen discussion (a
sk 

questions)!

●
Fun lecture →

 fu
n of p

artic
le physics!

This is an 
interactive lecture:



KIT – University of the State of Baden-Wuerttemberg and 
National Research Center of the Helmholtz Association 

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

www.kit.edu

Reprise of Relativistic Quantum Mechanics, 
Lagrange Formalism & Gauge Theories

Roger Wolf
16. April 2015
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Schedule for Today

● Klein-Gordon Eq
● Dirac Eq

● Global / Local Gauge 
Transformations 

● (Free) Gauge Fields

Review of Relativistic QM:

Bosons & Fermions

Lagrange Formalism & 
Gauge Transformations:

1

2

3
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Quiz of the Day

● What is the difference between a scalar, a Lorentz vector and a spinor?

● What is the meaning of local gauge invariance?

● How do I know that a gauge boson is a boson?
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Review of Relativistic QM
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Scales: Between Cosmos & Particle Physics

Space

E
ne

rg
y
[ x ]= parsec=1016m [E ]=m⊙=10

30 kg

[ x ]=m [E ]=kcal

[ x ]=nm=10−9m [E ]=eV

[ x ]= fm=10−12cm [E ]=TeV=1012 eV
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Relativistic Quantum Mechanics

(→ Relativistic Dispersion  

  Relation                         )

Natural units (→                         ): 

Smallest scales 

(                    ).

Largest energies 

(                    ).+
(→ Quantum Mechanics)

(→ Uncertainty Relation)

[ x ]= fm=10−12cm [E ]=TeV=1012 eV

● Most important Eq's to describe particle dynamics: Klein-Gordon, Dirac Eq. 

?

?

?
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Relativistic Quantum Mechanics

(→ Relativistic Dispersion  

  Relation                         )

Natural units (→                         ): 

Smallest scales 

(                    ).

Largest energies 

(                    ).+
(→ Quantum Mechanics)

(→ Uncertainty Relation)

[ x ]= fm=10−12cm [E ]=TeV=1012 eV

● Most important Eq's to describe particle dynamics: Klein-Gordon, Dirac Eq. 
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Klein-Gordon Equation

● Motivation:

● Solutions:

● Peculiarity:

(Free Wave)

(Non-Local)

(Klein-Gordon Eq)

Canonical Operator 
Replacement

Application to Wave 
Function

non-local operator.
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Klein-Gordon Equation

● Motivation:
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● Peculiarity:

(Free Wave)

(Non-Local)

(Klein-Gordon Eq)

Canonical Operator 
Replacement

Application to Wave 
Function

non-local operator.
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Dirac Equation: Motivation

● Historical approach by Paul Dirac 1927:

Require Klein-Gordon Eq to be fulfilled for a free Dirac particle:

Anti-Commutator 
Relations.

Find representation of relativistic dispersion relation, which is linear in space time derivatives: 

● Cannot be pure numbers. Algebraic operators.
● Need four independent operators.

!
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Must be hermitian since      should have real eigenvalues.   

Dirac Equation: General Properties of     and 

● Operators     and    can be expressed by matrices:
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Must be hermitian since      should have real eigenvalues.   

Dirac Equation: General Properties of     and 
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permutation
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Must be hermitian since      should have real eigenvalues.   

Dirac Equation: General Properties of     and 

●    + Pauli matrices             form a basis of the space of             matrices. But     is not 
traceless (→ no chance to obtain four independent(!) traceless matrices).

● Dimension must be even to obtain 0 trace.

●                 → has only eigenvectors ±1.

●                 → has only eigenvectors ±1.

● Simplest representation must at least have dim=4 (can be higher dimensional though).

cyclic 
permutation

anti-commutator 
relation

● Operators     and    can be expressed by matrices:

Must be traceless: 

Must have at least dim=4: 
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Dirac Equation: Concrete Representations 

1 matrix

4 matrices

6 matrices

4 matrices

1 matrix

● Basis of          matrices.
● Orthonormal (with product                             ).
● Traceless (apart from     ).

●      and    matrices (in Dirac representation):

●       matrices:

(Compact Notation of Algebra)

(                           are the Pauli Matrices)
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Dirac Equation: Solutions

● Final formulation: (Dirac Eq)

● Solutions:

(Free Wave)

at rest:

solution

solution

These are spinors! 
What makes a 
spinor a spinor?
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Dirac Equation: Solutions

● Final formulation: (Dirac Eq)

● Solutions:

(Free Wave)

at rest: in motion:

(Lorentz Transformation)
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Classification of Physical Objects

● In physics we classify objects according to their transformation behavior.

● (Lorentz-)Scalar:

● (Lorentz-)Vector:

● (Lorentz-)Sinor:

● Let     be a Lorentz transformation. We distinguish:

● (Lorentz-)Tensor (2. order):
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Classification of Physical Objects

● In physics we classify objects according to their transformation behavior.

● (Lorentz-)Scalar:

● (Lorentz-)Vector:

● (Lorentz-)Sinor:

● Let     be a Lorentz transformation. We distinguish:

● (Lorentz-)Tensor (2. order):

●            is a non-observable object.

● Rotation of      around spacial quantization 
axis turns                                .
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Composing Other Objects from Spinors

● You can compose other (Lorentz-)objects from Spinors:

?

?

?

?

?

(Adjoint Spinor)
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Composing Other Objects from Spinors

● You can compose other (Lorentz-)objects from Spinors:

Scalar

Pseudo Scalar

Vector

Axial Vector

Tensor (2. order)

(Adjoint Spinor)

These can be observables
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Bosons & Fermions

Satyenda Nath Bose 
(*1. January 1894, † 4. February 1974)

Enrico Fermi 
(*29. September 1901, † 28. November 1954)
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               Bosons                                  Fermions

● Commutator relations [ . , . ]. ● Anti-commutator relations { . , . }.

(1) This holds for elementary particle as well as for pseudo-particles.

● Integer spin 0, 1, ...(1) ● Half-integer spin ½, ...(1)



Institute of Experimental Particle Physics (IEKP)42  

               Bosons                                  Fermions

● Commutator relations [ . , . ]. ● Anti-commutator relations { . , . }.

● Symmetric wave functions. ● Anti-symmetric wave functions.

● More than one particle can be 
described by single wave function 
(e.g. …?!?).

● Each particle occupies unique place in 
phasespace (Pauli Principle).

● Bose-Einsten statistics. ● Fermi statistics.

(1) This holds for elementary particle as well as for pseudo-particles.

● Integer spin 0, 1, ...(1) ● Half-integer spin ½, ...(1)

Multi-particle systems
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Lagrange Formalism & Gauge Transformations

Joseph-Louis Lagrange 
(*25. January 1736, † 10. April 1813)
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Lagrange Formalism (Classical Field Theories)

● All information of a physical system is contained in the Action integral:

● Equations of motion derived from the Euler-Lagrange Formalism:

Action:

Lagrange Density:

(Generalization of 
Canonical Coordinates)

Field: 

(                          )

(From Variation of Action)

● NB: What is the dimension of    ?
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Lagrange Formalism (Classical Field Theories)

● All information of a physical system is contained in the Action integral:

● Equations of motion derived from the Euler-Lagrange Formalism:

Action:

Lagrange Density:

(Generalization of 
Canonical Coordinates)

Field: 

(                          )

(From Variation of Action)

● NB: What is the dimension of    ?                  has the dimension          .
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Lagrange Density for Free Bosons & Fermions

● Proof by applying Euler-Lagrange Formalism (shown only for Bosons here):

For Bosons: For Fermions:

● There is a distinction between              and               .

● NB: 

● Most trivial is variation by    , least trivial is variation by   .
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Global Phase Transformations

● The Lagrange density is covariant under global phase transformations 
(shown here for the fermion case only):

(Global Phase Transformation)

● Here the phase    is fixed at each point in space    at any time   .

● What happens if we allow different phases at each point in         ?
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Global Phase Transformations

● The Lagrange density is covariant under global phase transformations 
(shown here for the fermion case only):

(Global Phase Transformation)

Breaks invariance due to     
in    .

Connects neighboring 
points in 

local

local

local
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Covariant Derivative

● The Lagrange density is covariant under global phase transformations        
                                    with an according transformation rule:

(Global Phase Transformation)local

local
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Covariant Derivative

● The Lagrange density is covariant under global phase transformations        
                                    with an according transformation rule:

(Global Phase Transformation)local

local

(Arbitrary Gauge Field)

● NB: What is the transformation behavior of the gauge field      ?
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Covariant Derivative

● The Lagrange density is covariant under global phase transformations        
                                    with an according transformation rule:

(Global Phase Transformation)local

local

(Arbitrary Gauge Field)

● NB: What is the transformation behavior of the gauge field      ?

known from electro-dynamics!
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Gauge Field

● Possible to allow arbitrary phase    of            at each individual point in 

● Requires introduction of a mediating field     , which transports this informa- 

tion from point to point. 

● The gauge field       couples to a quantity    of the spinor field            , which 
can be identified as the electric charge of the fermion.

● The gauge field       can be identified with the photon field.
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Interacting Fermion

● Introduction of covariant derivative leads to Lagrange density of interacting 
fermion with electric charge   :

● For completion the dynamics for a free gauge boson field (=photon) are 
missing. 

Free Fermion Field IA Term
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Free Gauge Field

● Ansatz:

(Free Photon Field)(Field-Strength Tensor)

● Variation of the action integral

● Can also be obtained from:

●               is Lorentz invariant.

●        appears quadratically → linear 
appearance in variation that leads to 
equations of motion (→ superposition 
of fields).

● Motivation:

in classical field theory, leads to

●         is gauge invariant.
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Complete Lagrange Density

● Application of          gauge symmetry leads to Largange density of QED:

Free Fermion Field IA Term Gauge

(Interacting Fermion)

● Variation of     :

● Derive equations of motion for an interacting boson.
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Complete Lagrange Density

● Application of          gauge symmetry leads to Largange density of QED:

Free Fermion Field IA Term Gauge

(Interacting Fermion)

● Variation of      :

(Lorentz Gauge)

(Klein-Gordon Equation for a massless particle)
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Concluding Remarks

● Principle of local gauge invariance leads to structure for particle interaction 
that corresponds to QED.

● Explicitly shown that the gauge field is a boson with zero mass.

● Gauge invariance is a geometrical phenomenon.
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Sneak Preview for Next Week

● Simple phase transformations       correspond to the         symmetry group.

● Discuss how local gauge invariance requirements corresponding to more 
complex symmetry groups will lead to the wealth of possible interactions in 
the SM.

● Short sketch of the SM (emphasize electroweak sector, still w/o masses).



Institute of Experimental Particle Physics (IEKP)59  

Further Reading

● Bjorken/Drell “Relativistic Quantum Mechanics”.

● Aichinson/Hey: “Gauge Theories and Particle Physics (Volume 1)”.

● Lifschitz/Landau: “Classical Field Theory (Volume 2 of lectures)”.
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