

Electroweak Sector of the SM

Roger Wolf 23. April 2015

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) - PHYSICS FACULTY

Schedule for Today

Sketch of the Electroweak Sector of the SM:

- Left (Right)-handed States
- Local $SU(2) \times U(1)$ Symmetry
- Weinberg Rotation

Phenomenology of Weak Interaction

(1)

Review of Lie-Groups:

- U(1) & SU(2)
- (Non-) Abelian Gauge theories

Quiz of the Day

- Are normal normal rotation in \mathbb{R}^3 Abelian or non-Abelian?
- The W boson only couples to left-handed particles! Does the Z boson also couple only to left-handed particles?
- Are the following gauge boson self-couplings allowed: ZWW, WWWW

Recap from Last Time

Gauge Field Theories:

$$\psi(\vec{x},t) \to \psi'(\vec{x},t) = e^{i\vartheta}\psi(\vec{x},t)$$
$$\overline{\psi}(\vec{x},t) \to \overline{\psi}'(\vec{x},t) = \overline{\psi}(\vec{x},t)e^{-i\vartheta}$$

$$\frac{\partial_{\mu}}{\partial_{\mu}} \to D_{\mu} = \frac{\partial_{\mu}}{\partial_{\mu}} - \frac{ieA_{\mu}}{ieA_{\mu}}$$

$$D_{\mu} \to D'_{\mu} = D_{\mu} - i\partial_{\mu}\vartheta$$

$$A_{\mu} \to A'_{\mu} = A_{\mu} + \frac{1}{e}\partial_{\mu}\vartheta$$

$$\begin{aligned} F_{\mu\nu} &\equiv [D_{\mu}, D_{\nu}] = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \\ F_{\mu\nu} &\to F'_{\mu\nu} = F_{\mu\nu} \end{aligned}$$

$$\mathcal{L} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

→ (Covariant Derivative)

→ (Field Strength Tensor)

Review of Lie-Groups

Marius Sophus Lie (*17. December 1842, † 18. February 1899)

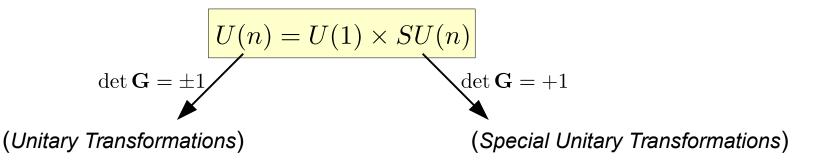
Unitary Transformations

$$U(1)$$
 phase transformation
$$\psi(\vec{x},t) o \psi'(\vec{x},t) = e^{i\vartheta}\psi(\vec{x},t)$$

• U(1) is a group of unitary transformations in \mathbb{R}^n with the following properties:

$$\mathbf{G} \in U(n)$$
 $\mathbf{G}^{\dagger}\mathbf{G} = \mathbb{I}_n$ $\det \mathbf{G} = \pm 1$

• Splitting an additional phase from ${\bf G}$ one can reach that ${
m det}{\bf G}=1$:



Infinitesimal \rightarrow **Finite Transformations**

• The SU(n) can be composed from infinitesimal transformations with a continuous parameter $\vartheta \in \mathbb{R}$:

- The set of G forms a *Lie-Group*.
- The set of t forms the tangential-space or *Lie-Algebra*.

Properties of t

Hermitian:

$$\mathbf{G}^{\dagger}\mathbf{G} = \mathbb{I}_{n}$$

$$= (\mathbb{I}_{n} - i\vartheta \mathbf{t}^{\dagger}) (\mathbb{I}_{n} + i\vartheta \mathbf{t}) = \mathbb{I}_{n} + i\vartheta (\mathbf{t} - \mathbf{t}^{\dagger}) + O(\vartheta^{2})$$

$$\mathbf{t} = \mathbf{t}^{\dagger}$$

• Traceless (example SU(n)):

$$\det \mathbf{G} = \det (\mathbb{I}_n + i\vartheta \mathbf{t})$$
$$= 1 + i\vartheta \operatorname{Tr}(\mathbf{t}) + O(\vartheta^2) \stackrel{!}{=} 1$$

$$Tr(\mathbf{t}) = 0$$

Dimension of tangential space:

- ullet n real entries in diagonal.
- $1/2 \cdot n(n-1)$ complex entries in off-diagonal.
- -1 for SU(n) for det req.

- U(n) has n^2 generators.
- SU(n) has $(n^2 1)$ generators.

Examples that appear in the SM (U(1))

- U(1) Transformations (equivalent to O(2)):
 - Number of generators: $1^2 = 1$ **NB:** what is the Generator?

Examples that appear in the SM (U(1))

- U(1) Transformations (equivalent to O(2)):
 - Number of generators: $1^2 = 1$ **NB:** what is the Generator? The generator is 1.

Examples that appear in the SM (SU(2))

- SU(2) Transformations (equivalent to O(3)):
 - Number of generators: $(2^2 1) = 3$ i.e. there are 3 matrices $\{\mathbf{t}_j\}$, which form a basis of traceless hermitian matrices, for which the following relation holds:

$$\mathbf{G} = e^{i\sum_{j=1}^{3} \vartheta_{j} \mathbf{t}_{j}}$$

Explicit representation:

$$\mathbf{t}_j = \frac{1}{2}\sigma_j \qquad (j = 1\dots 3)$$

(3 Pauli Matrices)

$$[\mathbf{t}_i, \mathbf{t}_j] = i\epsilon_{ijk}\mathbf{t}_k$$

Examples that appear in the SM (SU(2))

- SU(2) Transformations (equivalent to O(3)):
 - Number of generators: $(2^2 1) = 3$ i.e. there are 3 matrices $\{\mathbf{t}_j\}$, which form a basis of traceless hermitian matrices, for which the following relation holds:

$$\mathbf{G} = e^{i\sum_{j=1}^{3} \vartheta_{j} \mathbf{t}_{j}}$$

• Explicit representation:

$$\mathbf{t}_j = \frac{1}{2}\sigma_j \qquad (j = 1\dots 3)$$
 (3 Pauli Matrices)

$$[\mathbf{t}_i, \mathbf{t}_j] = i\epsilon_{ijk}\mathbf{t}_k$$
 • algebra closes.

Examples that appear in the SM (SU(2))

- SU(2) Transformations (equivalent to O(3)):
 - Number of generators: $(2^2 1) = 3$ i.e. there are 3 matrices $\{\mathbf{t}_j\}$, which form a basis of traceless hermitian matrices, for which the following relation holds:

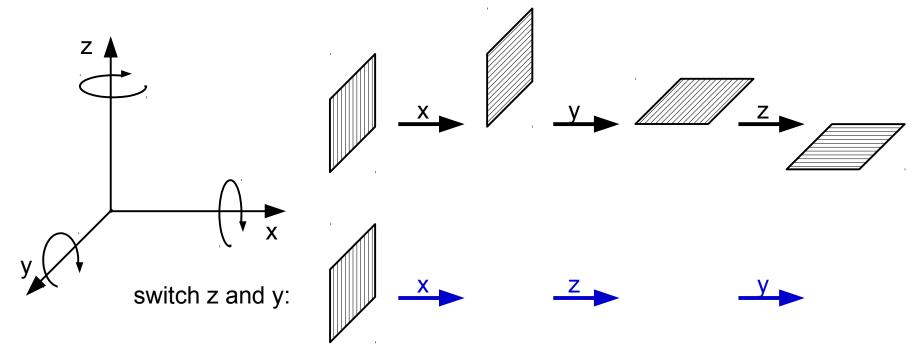
$$\mathbf{G} = e^{i\sum_{j=1}^{3} \vartheta_{j} \mathbf{t}_{j}}$$

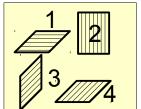
• Explicit representation:

$$\mathbf{t}_j = \frac{1}{2}\sigma_j \qquad (j=1\dots 3)$$
 (3 Pauli Matrices)

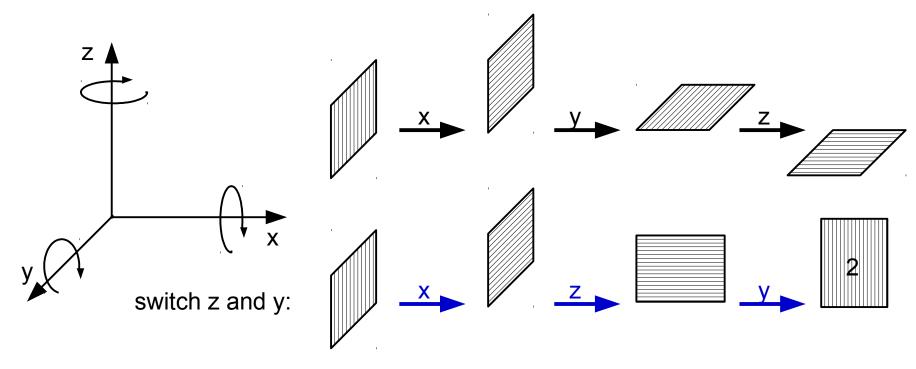
$$[\mathbf{t}_i, \mathbf{t}_j] = i\epsilon_{ijk}\mathbf{t}_k$$
 • algebra closes.
• structure constants of $SU(2)$.

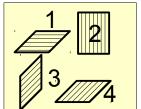
Non-Abelian Symmetry Transformations





Non-Abelian Symmetry Transformations

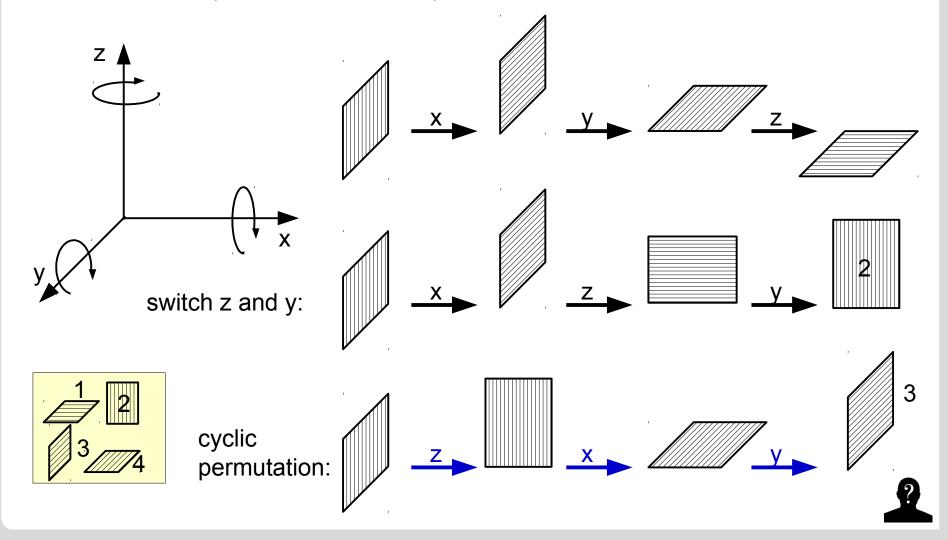




Non-Abelian Symmetries Transformations



Non-Abelian Symmetries Transformations



Examples that appear in the SM (SU(3))

- SU(3)Transformations (equivalent to O(4)):
 - Number of generators: $(3^2 1) = 8 \quad (\rightarrow 8 \text{ Gell-Mann Matrices})$

Abelian vs. Non-Abelian Gauge Theories

Abelian:

$$\psi(\vec{x},t) \to \psi'(\vec{x},t) = e^{i\vartheta}\psi(\vec{x},t)$$
$$\overline{\psi}(\vec{x},t) \to \overline{\psi}'(\vec{x},t) = \overline{\psi}(\vec{x},t)e^{-i\vartheta}$$

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} - ieA_{\mu}$$

$$D_{\mu} \to D'_{\mu} = D_{\mu} - i\partial_{\mu}\vartheta$$

$$A_{\mu} \to A'_{\mu} = A_{\mu} + \frac{1}{e}\partial_{\mu}\vartheta$$

$$F_{\mu\nu} \equiv [D_{\mu}, D_{\nu}] = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

$$F_{\mu\nu} \to F'_{\mu\nu} = F_{\mu\nu}$$

$$\mathcal{L} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Non-Abelian:

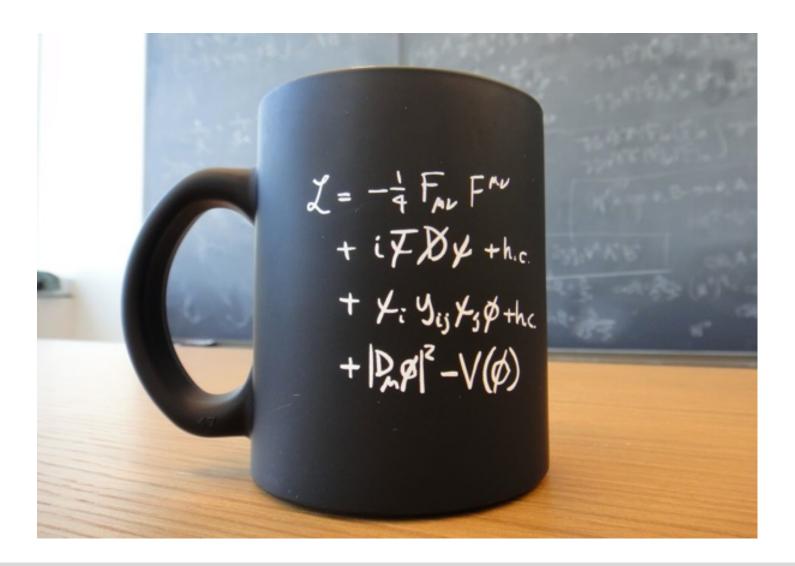
$$\psi(\vec{x},t) \to \psi'(\vec{x},t) = e^{i\vartheta_{\mathbf{a}}\mathbf{t}_{\mathbf{a}}}\psi(\vec{x},t)$$
$$\overline{\psi}(\vec{x},t) \to \overline{\psi}'(\vec{x},t) = \overline{\psi}(\vec{x},t)e^{-i\vartheta_{\mathbf{a}}\mathbf{t}_{\mathbf{a}}}$$

$$\begin{split} \partial_{\mu} &\rightarrow D_{\mu} = \partial_{\mu} - igW_{\mu,a}\mathbf{t}_{a} \\ D_{\mu} &\rightarrow D'_{\mu} = D_{\mu} - i\left[\vartheta_{a}\mathbf{t}_{a}, D_{\mu}\right] \\ W_{\mu} &\rightarrow W'_{\mu} = W_{\mu} + i\left[\vartheta_{a}\mathbf{t}_{a}, W_{\mu,a}\mathbf{t}_{a}\right] \\ &+ \frac{1}{g}\partial_{\mu}\left(\vartheta_{a}\mathbf{t}_{a}\right) \\ W_{\mu\nu} &\equiv \left[D_{\mu}, D_{\nu}\right] &= \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu} \\ &- ig\left[W_{\mu}, W_{\nu}\right] \end{split}$$

$$W_{\mu\nu} \to W'_{\mu\nu} = W_{\mu\nu} - i \left[\vartheta_{\mathbf{a}} \mathbf{t}_{\mathbf{a}}, W_{\mu\nu} \right]$$

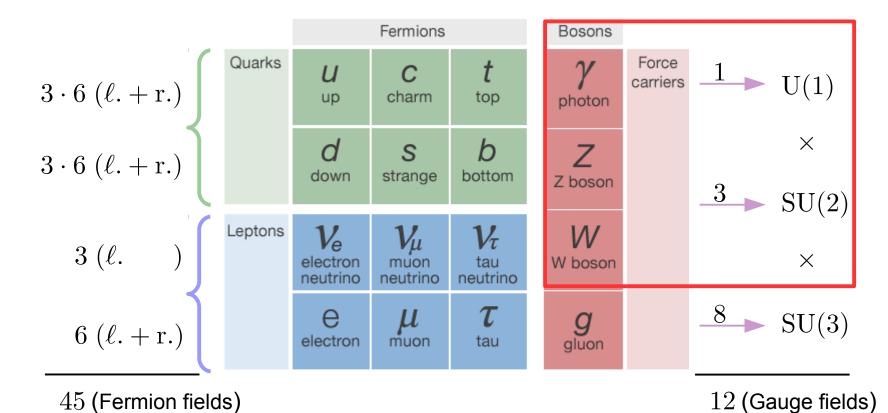
$$\mathcal{L} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} W_{\mathbf{a}\mu\nu} W^{\mathbf{a}\mu\nu}$$

The SM of Particle Physics



Constituents and Interactions of the SM

18 free parameters

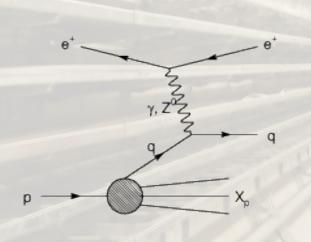


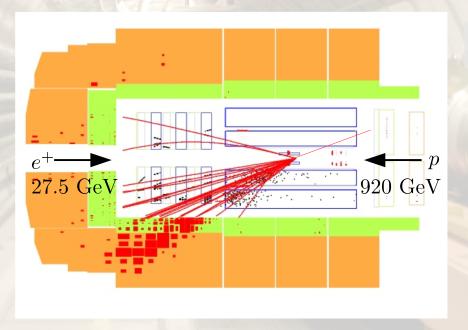
Constituents and Interactions of the SM

			Fermions		Bosons		
$3 \cdot 6 (\ell. + r.)$	Quarks	<i>U</i> up	C charm	t top	y photon	Force carriers	$1 \longrightarrow U(1)$
$3 \cdot 6 (\ell. + r.)$		d down	S strange	b bottom	Z Z boson		\times $3 \longrightarrow SU(2)$
$3 (\ell.)$	Leptons	Ve electron neutrino	1 μ muon neutrino	V _τ tau neutrino	W boson		×
$6 (\ell. + r.)$		electron	μ muon	T tau	g gluon		8 SU(3)
45 (Fermion field	ds)						12 (Gauge fields)

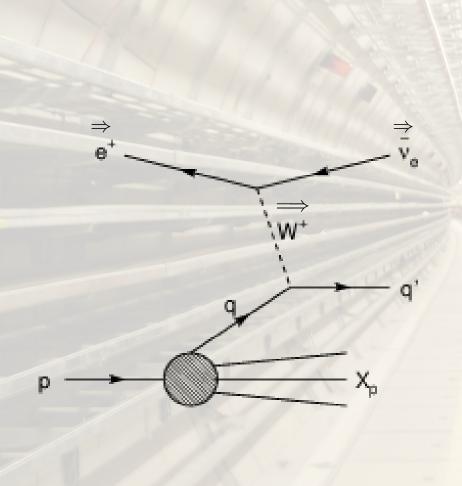
Phenomenology of Weak Interaction

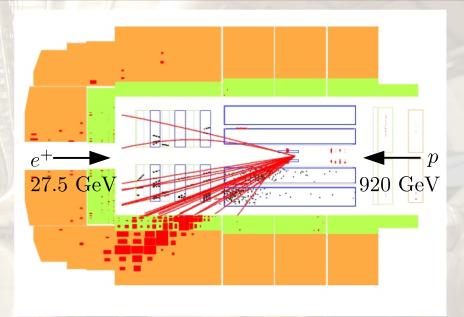
• From the view of a high energy physics scattering experiment:

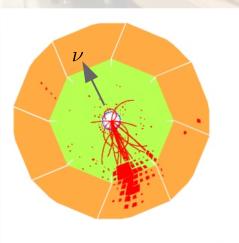




Change of Flavor & Charge

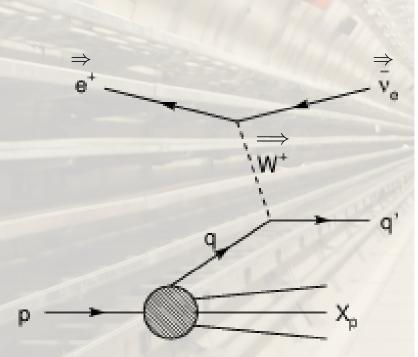




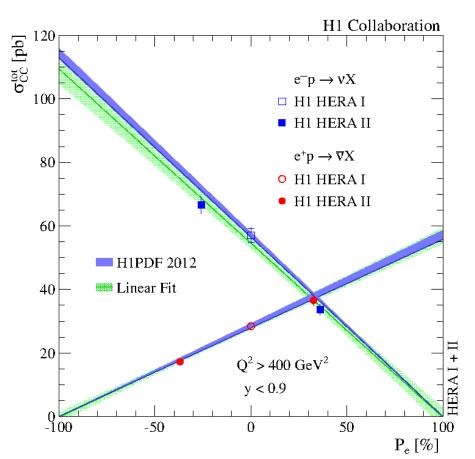


Parity Violation

ullet W bosons couple only to left-handed particles (right-handed anti-particles):

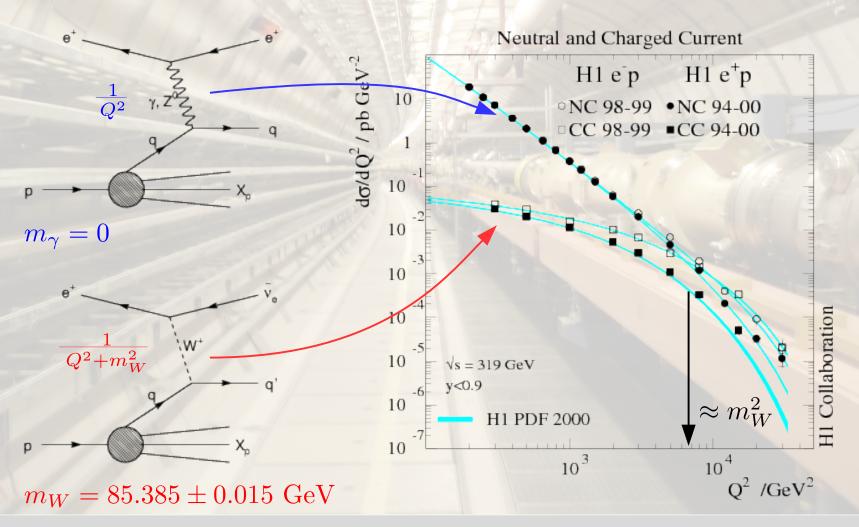


- Maximally parity violating!
- Intrinsically violating CP as well!



Heavy Mediators

Mediation by heavy gauge bosons:



The Model of Weak Interactions

Sheldon Glashow (*5. December 1932)



Steven Weinberg (*3. Mai 1933)

SU(2) Space of Weak Isospin

• Example:

Transforms like a spin ½ object in space of weak isospin.

• Left- & right-handed components of fermions can be projected conveniently:

• right-handed e_R forms isospin singlet.

$$e = e_L + e_R \begin{cases} e_L = \left(\frac{1-\gamma^5}{2}\right)e \\ e_R = \left(\frac{1+\gamma^5}{2}\right)e \end{cases} \overline{e}\gamma^{\mu} \left(\frac{1-\gamma^5}{2}\right)\nu = \overline{e}_L\gamma^{\mu}\nu_L$$

• Lagrangian w/o mass terms can be written in form:

$$\frac{\mathcal{L}_0 = \overline{\psi}_L \gamma^\mu \partial_\mu \psi_L + \overline{e}_R \gamma^\mu \partial_\mu e_R}{= \overline{e}_L \gamma^\mu \partial_\mu e_L + \overline{\nu} \gamma^\mu \partial_\mu \nu + \overline{e}_R \gamma^\mu \partial_\mu e_R}$$

Covariant derivative corresponding to SU(2) acts on *isospin doublet* only.¹⁾

$$\mathcal{L}_{IA}^{SU(2) imes U(1)} = \overline{\psi}_L \gamma^\mu \left[\left(\partial_\mu + igW_\mu^\mathrm{a} \mathbf{t}^\mathrm{a} \right) \psi_L \cdots \right]$$

Covariant derivative corresponding to SU(2) acts on isospin doublet only.¹⁾

$$\mathcal{L}_{IA}^{SU(2)\times U(1)} = \overline{\psi}_L \gamma^{\mu} \left(\partial_{\mu} + igW_{\mu}^{a} \mathbf{t}^{a} \right) \psi_L \cdots$$

$$\mathbf{t}^+ = \mathbf{t}_1 + i\,\mathbf{t}_2 = egin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 (ascending operator)

$$\mathbf{t}^- = \mathbf{t}_1 - i\,\mathbf{t}_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 (descending operator)

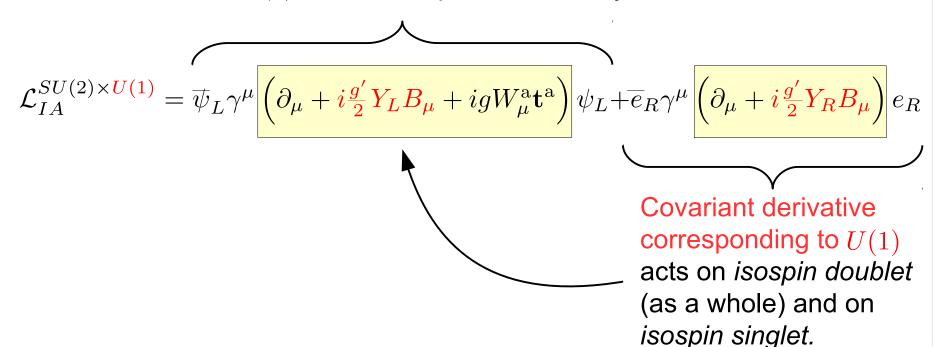
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{(descending operator)} \qquad \qquad \mathbf{t}^3 = 1/2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$W_{\mu}^{a} \mathbf{t}^{a} = \frac{1}{\sqrt{2}} \left(W_{\mu}^{+} \mathbf{t}^{+} + W_{\mu}^{-} \mathbf{t}^{-} \right) + W_{\mu}^{3} \mathbf{t}^{3}$$

Covariant derivative corresponding to SU(2) acts on *isospin doublet* only.¹⁾

$$\mathcal{L}_{IA}^{SU(2) \times U(1)} = \overline{\psi}_L \gamma^\mu \left(\partial_\mu + igW_\mu^{\mathrm{a}} \mathbf{t}^{\mathrm{a}} \right) \psi_L \cdots$$

Covariant derivative corresponding to SU(2) acts on *isospin doublet* only.¹⁾



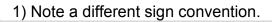
Covariant derivative corresponding to SU(2) acts on *isospin doublet* only.¹⁾

$$\mathcal{L}_{IA}^{SU(2)\times U(1)} = \overline{\psi}_L \gamma^\mu \left[\left(\partial_\mu + i \frac{g'}{2} Y_L B_\mu + i g W_\mu^{\rm a} \mathbf{t}^{\rm a} \right) \psi_L + \overline{e}_R \gamma^\mu \left[\left(\partial_\mu + i \frac{g'}{2} Y_R B_\mu \right) e_R \right] \right]$$

$SU(2) \times U(1)$ Hypercharges							
Particle	$Y_{R/L}$	I_3	Q				
ν	-1	+1/2					
$ e_L $	-1	-1/2					
e_R	_	0	-1				

$$Q=I_3+rac{Y}{2}$$
 (Gell-Mann Nischijama)

Covariant derivative corresponding to U(1) acts on isospin doublet (as a whole) and on isospin singlet.



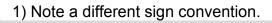
Covariant derivative corresponding to SU(2) acts on *isospin doublet* only.¹⁾

$$\mathcal{L}_{IA}^{SU(2)\times \mathbf{U}(1)} = \overline{\psi}_{L}\gamma^{\mu} \left[\left(\partial_{\mu} + i\frac{g'}{2} Y_{L} B_{\mu} + igW_{\mu}^{a} \mathbf{t}^{a} \right) \psi_{L} + \overline{e}_{R}\gamma^{\mu} \left[\left(\partial_{\mu} + i\frac{g'}{2} Y_{R} B_{\mu} \right) e_{R} \right] \right]$$

$SU(2) \times U(1)$ Hypercharges							
Particle	$ig Y_{R/L}$	I_3	Q				
ν	-1	+1/2	0				
$ e_L $	-1	-1/2	-1				
e_R	-2	0	-1				

$$Q = I_3 + rac{Y}{2}$$
 (Gell-Mann Nischijama)

Covariant derivative corresponding to U(1) acts on isospin doublet (as a whole) and on isospin singlet.



$SU(2) \times U(1)$ Interactions

Charged current interaction:

$$\mathcal{L}_{IA}^{CC} = -\frac{g}{\sqrt{2}} \left[\overline{\nu} \left(W_{\mu}^{+} \gamma^{\mu} \right) e_{L} + \overline{e}_{L} \left(W_{\mu}^{-} \gamma^{\mu} \right) \nu \right]$$
 from to
$$e \rightarrow \nu$$

Neutral current interaction:

$$\mathcal{L}_{IA}^{NC} = -\left(\frac{g}{2}W_{\mu}^{3} - \frac{g'}{2}B_{\mu}\right)(\overline{\nu}\gamma^{\mu}\nu) + \left(\frac{g}{2}W_{\mu}^{3} + \frac{g'}{2}B_{\mu}\right)(\overline{e}_{L}\gamma^{\mu}e_{L}) + \frac{g'}{2}B_{\mu}(\overline{e}_{R}\gamma^{\mu}e_{R})$$
from t³ $\propto Z_{\mu}$

$SU(2) \times U(1)$ Interactions

Charged current interaction:

$$\mathcal{L}_{IA}^{CC} = -\frac{g}{\sqrt{2}} \left[\overline{\nu} \left(W_{\mu}^{+} \gamma^{\mu} \right) e_{L} + \overline{e}_{L} \left(W_{\mu}^{-} \gamma^{\mu} \right) \nu \right]$$
 from to
$$e \rightarrow \nu$$

Neutral current interaction:

$$\mathcal{L}_{IA}^{NC} = -\left(\frac{g}{2}W_{\mu}^{3} - \frac{g'}{2}B_{\mu}\right)(\overline{\nu}\gamma^{\mu}\nu) + \left(\frac{g}{2}W_{\mu}^{3} + \frac{g'}{2}B_{\mu}\right)(\overline{e}_{L}\gamma^{\mu}e_{L}) + \frac{g'}{2}B_{\mu}(\overline{e}_{R}\gamma^{\mu}e_{R})$$

$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{W} & -\sin\theta_{W} \\ \sin\theta_{W} & \cos\theta_{W} \end{pmatrix}\begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}$$

$$\sin\theta_{W} = \frac{g'}{\sqrt{g^{2} + g'^{2}}} \cos\theta_{W} = \frac{g}{\sqrt{g^{2} + g'^{2}}} \qquad \text{(Weinberg Rotation)}$$

$SU(2) \times U(1)$ Interactions

Charged current interaction:

$$\mathcal{L}_{IA}^{CC} = -\frac{g}{\sqrt{2}} \left[\overline{\nu} \left(W_{\mu}^{+} \gamma^{\mu} \right) e_{L} + \overline{e}_{L} \left(W_{\mu}^{-} \gamma^{\mu} \right) \nu \right]$$

$$e \to \nu \qquad \nu \to e$$

Desired behavior: A_{μ} couples to leftand right handed component of e in the same way!

Neutral current interaction:

$$\mathcal{L}_{IA}^{NC} = -\frac{\sqrt{g^2 + g'^2}}{2} Z_{\mu} (\overline{\nu} \gamma_{\mu} \nu)$$

$$+ \frac{\sqrt{g^2 + g'^2}}{2} \left[\left(\cos^2 \theta_W - \sin^2 \theta_W \right) Z_{\mu} + 2 \sin \theta_W \cos \theta_W A_{\mu} \right] (\overline{e}_L \gamma_{\mu} e_L)$$

$$+ \frac{\sqrt{g^2 + g'^2}}{2} \left[-2 \sin^2 \theta_W Z_{\mu} + 2 \sin \theta_W \cos \theta_W A_{\mu} \right] (\overline{e}_R \gamma_{\mu} e_R)$$

What is the expression for e ?

$SU(2) \times U(1)$ Interactions

Charged current interaction:

$$\mathcal{L}_{IA}^{CC} = -\frac{g}{\sqrt{2}} \left[\overline{\nu} \left(W_{\mu}^{+} \gamma^{\mu} \right) e_{L} + \overline{e}_{L} \left(W_{\mu}^{-} \gamma^{\mu} \right) \nu \right]$$

$$e \to \nu \qquad \nu \to e$$

Desired behavior: A_{μ} couples to leftand right handed component of e in the same way!

Neutral current interaction:

$$\mathcal{L}_{IA}^{NC} = -\frac{\sqrt{g^2 + g'^2}}{2} Z_{\mu} (\overline{\nu} \gamma_{\mu} \nu)$$

$$+ \frac{\sqrt{g^2 + g'^2}}{2} \left[\left(\cos^2 \theta_W - \sin^2 \theta_W \right) Z_{\mu} + 2 \sin \theta_W \cos \theta_W A_{\mu} \right] (\overline{e}_L \gamma_{\mu} e_L)$$

$$+ \frac{\sqrt{g^2 + g'^2}}{2} \left[-2 \sin^2 \theta_W Z_{\mu} + 2 \sin \theta_W \cos \theta_W A_{\mu} \right] (\overline{e}_R \gamma_{\mu} e_R)$$

NB: Skewness of the $SU(2) \times U(1)$

 Gauge boson eigenstates of the symmetry do not correspond to the eigenstates of the IA:

$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_W & -\sin \theta_W \\ \sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} W_{\mu}^3 \\ B_{\mu} \end{pmatrix}$$

• Quark eigenstates of the SU(2) do not correspond to the quark eigenstates of the SU(3) (NB: which are the mass eigenstates):

$$\mathcal{M}_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$= \begin{pmatrix} c_1 & s_1 c_3 & s_1 s_3 \\ -s_1 c_2 & c_1 c_2 c_3 - s_2 s_3 e^{i\delta} & c_1 c_2 s_3 + s_2 c_3 e^{i\delta} \\ -s_1 s_2 & c_1 s_2 c_3 + c_2 s_3 e^{i\delta} & c_1 s_2 s_3 - c_2 c_3 e^{i\delta} \end{pmatrix}$$

$$c_i = \cos \vartheta_i \; ; \; s_i = \sin \vartheta_i \; (i = 1...3)$$

Non-Abelian Gauge Structure of SU(2)

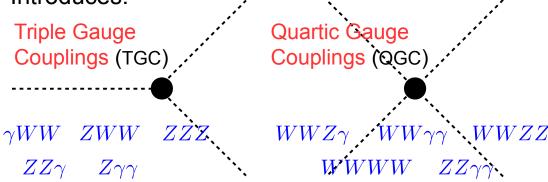
$$\mathcal{L}^{\text{gauge}} = -\frac{1}{2} \text{Tr} \left(W_{\mu\nu}^a W^{a\mu\nu} \right) - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \Big| B_{\mu} \to A_{\mu}$$

$$B_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}$$

$$W_{\mu\nu}^{3} \to Z_{\mu}$$

$$W_{\mu\nu} = \partial_{\mu} W_{\nu}^{a} - \partial_{\nu} W_{\mu}^{a} + ig \left[W_{\mu}^{a}, W_{\nu}^{a} \right]$$

Implies lepton universality of weak interaction.
 (→extensively tested @ LEP)



Which couplings are allowed (at tree level), which are not?

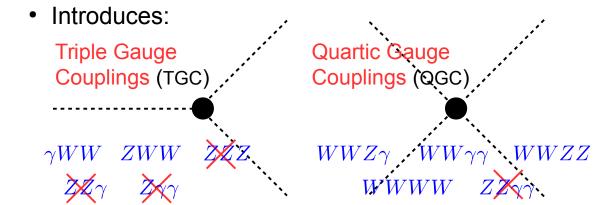
Non-Abelian Gauge Structure of SU(2)

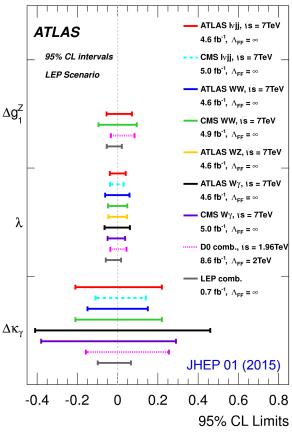
$$\mathcal{L}^{\text{gauge}} = -\frac{1}{2} \text{Tr} \left(W_{\mu\nu}^a W^{a\mu\nu} \right) - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \Big| B_{\mu\nu} \to A_{\mu}$$

$$B_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}$$

$$W_{\mu\nu}^a = \partial_{\mu} W_{\nu}^a - \partial_{\nu} W_{\mu}^a + ig \left[W_{\mu}^a, W_{\nu}^a \right]$$

Implies lepton universality of weak interaction.
 (→extensively tested @ LEP)





Which couplings are allowed (at tree level), which are not?

• $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (\rightarrow corresponding to Lie-transformations).

- $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (\rightarrow corresponding to Lie-transformations).
- Of those symmetries the "SU(2)-part" has the most peculiar behavior:

• $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (\rightarrow corresponding to Lie-transformations).

• Of those symmetries the "SU(2)-part" has the most peculiar behavior:

Fermions can change charge at IA vertex;

- $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (\rightarrow corresponding to Lie-transformations).
- Of those symmetries the "SU(2)-part" has the most peculiar behavior:

- Fermions can change charge at IA vertex;
- Fermions can *change flavor* at IA vertex;

- $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (\rightarrow corresponding to Lie-transformations).
- Of those symmetries the "SU(2)-part" has the most peculiar behavior:

- Fermions can change charge at IA vertex;
- Fermions can change flavor at IA vertex;
- No parity conservation;

- $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (\rightarrow corresponding to Lie-transformations).
- Of those symmetries the "SU(2)-part" has the most peculiar behavior:

- Fermions can change charge at IA vertex;
- Fermions can change flavor at IA vertex;
- No parity conservation;
- No CP conservation;

- $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (\rightarrow corresponding to Lie-transformations).
- Of those symmetries the "SU(2)-part" has the most peculiar behavior:

- Fermions can change charge at IA vertex;
- Fermions can change flavor at IA vertex;
- No parity conservation;
- No CP conservation;
- No "EWK symmetry conservation"!
- ...

Sneak Preview for Next Week

- Up to now the problem of mass has been completely ignored.
- Discuss how mass terms in the Lagrangian density will compromise local gauge symmetries.
- Discuss the dynamic generation of mass via spontaneous symmetry breaking.

Backup & Homework Solutions

