

Master-Kurs

L05: From Observable to Measurement

Günter Quast, Roger Wolf

Institut für Experimentelle Kernphysik

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Recap last lecture

Matrix element S_{fi} from Feynman Diagram:

$$i \cdot e^2 \int \frac{\mathrm{d}^4 q}{(2\pi)^4} (2\pi)^4 \overline{u}(p_3) \gamma_\mu u(p_1) \delta^4(p_3 - p_1 - q) \frac{-g^{\mu\nu}}{q^2 + i\epsilon} \delta^4(p_4 - p_2 + q) (2\pi)^4 \overline{u}(p_4) \gamma_\nu u(p_2) \delta^4(p_3 - p_1 - q) \frac{-g^{\mu\nu}}{q^2 + i\epsilon} \delta^4(p_4 - p_2 + q) (2\pi)^4 \overline{u}(p_4) \gamma_\nu u(p_2) \delta^4(p_3 - p_1 - q) \frac{-g^{\mu\nu}}{q^2 + i\epsilon} \delta^4(p_4 - p_2 + q) \delta^4(p_4 - p_4 - q) \delta^4(p_4 - p_4 - q) \delta^4(p_4 - p_4 - q) \delta^4(p_4 - q) \delta^4(p_4$$

will come back to other topics of last lecture (higher orders) later

Lecture 5

The simulation chain

from S_{fi} to a representation of real data

Overview: Components of Analysis Chain

Components of Analysis Chain

The Observable:

the differential cross section

Reprise: Cross section

cross section:

transition rate initial \rightarrow final state

want to understand

$$\mathcal{L}_{int} \longrightarrow \text{final states}$$

and predict measurable quantities

O_i: type,

. . .

direction of flight (e.g. azimuthal angle and rapidity) energy or momentum, invariant mass of (groups of)

final state particles

Rapidity and invariant cross section

In particle reactions, use rapidity, **y**, w.r.t the line of collision of the incident particles: (instead of polar angle θ):

$$y = \tanh^{-1} \beta_z = \frac{1}{2} \ln \left(\frac{1 + \beta_z}{1 - \beta_z} \right) = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$
$$\beta_z = \frac{v_z}{c} \quad \text{is the component parallel to z axis}$$

relation $y \leftrightarrow \beta$ is similar as

 α (the angel between a straight line and the x axis) \leftrightarrow s (the slope, with $\alpha = \tan^{-1}(s)$):

- angles or rapidities are additive, slopes or (relativistic) velocities are not (two subsequent rotations or Lorentz boosts)
- upon a global rotation or Lorentz boost of the coordinate system, difference in angles or rapidities remain constant

At hadron colliders, where the centre-of-mass system of a collision is not at rest, y is the proper variable pseudo-rapidity for massless particles: $\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$ note: η is easy to measure, y is not !

Rapidity and invariant cross section (2)

As a consequence of the above (dy being Lorentz-invariant w.r.t. boosts in z),

 $\frac{d\sigma}{dy}, \frac{d\sigma}{d\phi} \text{ and hence the double-differential cross section } \frac{d^2\sigma}{dy\,d\phi}$ are Lorentz-invariant w.r.t. boosts in z $\frac{d\sigma}{d\eta} \text{ is invariant for high-energetic particles with negligible rest mass}$

Source: Wikipedia

Monte-Carlo Generators

Reprise: the Proton

in fact, the proton is complicated:

composed of

- valence quarks
- sea quarks
- gluons (carry 50% of momentum)

Precision study of proton composition in electron-proton scattering HERA at DESY in Hamburg

Reprise: Structure Functions

Parton Densitiy Functions (PDFs) have to be taken into account when calculating cross sections at hadron colliders.

see, e.g., Courses Particle Physics II – Jet Physics

$pp \rightarrow final state is a multi-step process$

Calculation of Cross sections

Complicated process – use MC techniques to calculate cross sections, phenomenological modes to describe hadronization process (quarks \rightarrow jets)

Example: simulated Higgs Decay in CMS

Can you see the Higgs?

Monte Carlo Generators: School

nice lecture, much more detailed than what can be shown here:

Monte Carlo School 2012, Helmholtz Alliance "Physcis at the Terascale" lecture by Stefan Giesecke, KIT

Technique in particle physics:

- Generate artificial events reflecting all processes in the Lagrangian using the Monte Carlo Technique
- obtain arbitrary distributions from simulated final state particles
- and compare with measurements

Steps of MC simulation

1

Stefan Gieseke · DESY MC school 2012

Stefan Gieseke · DESY MC school 2012

matrix element of hard process

Stefan Gieseke · DESY MC school 2012

parton shower

parton shower

Stefan Gieseke · DESY MC school 2012

hadronization

phenomenological: Lund string model (Pythia) or cluster hadronisation (Herwid(++))

Stefan Gieseke · DESY MC school 2012

hadron decays

tedious relies on measurements

relies on models & measurements → needs "tunig"

Stefan Gieseke · DESY MC school 2012

Multi-parton interactions and underlying event

Summary: pp collision

last step:

- process stable particles through detector simulation to obtain "hits" in detector cells;
- run reconstruction software to obtain "reconstructed objects"
- run selection procedures ("Analysis") to obtain "identified reconstructed objects"

in total:

true properties of objects from hard process at parton level are folded with

- parton distribution functions,
- hadronization effects,
- detector acceptance and efficiency,
- reconstruction efficiency and resolution,
- identification efficiency and purity

to obtain reconstructed properties

all steps involve multi-dimensional integrations; Monte Carlo is the only choice !

Detector Simulation

Stable Particles in a Detector

Detector registers only "stable particles", i.e. with life times long enough to traverse the detector 7 stable particles: $\gamma,\,e,\,\mu$, p, n, $\pi^{\pm},\,K^{\pm}$

Basics: Detector simulation

Tracking of individual interactions of particles

Starting point: ONE interaction of a SINGLE particle in a volume element dV = A dL

Interaction probatility *w* depends on

- cross section σ of a process and
- number N of particles in volume element $dN = A dL \rho N_A / m_{Mol} = \rho_n A dL$

 $\rightarrow dw = \rho_n \sigma dL$

Probability, to pass fraction of length L/n without interaction:

 $1 - dw = 1 - \rho_n \sigma L / n$

Probatility to pass length L without interaction:

 $\mathsf{P}_{\text{o-ww}} = (1 - \rho_n \sigma L / n)^n \rightarrow \exp(-\rho_n \sigma L)$

dL = L/n

Α

P_{o-ww}(L) describes the free path length in material

Basics: detector simulation (2)

By differentiation one obtains from P_{o-ww} the probability density of the path in matter to the first interaction:

$$w(L) = \rho_n \sigma \exp\left(-\rho_n \sigma L\right) = \frac{1}{\lambda} \exp\left(-L/\lambda\right)$$

 $λ = (ρ_n σ)^{-1}$: interaction length

The **interaction length** in materials with multiple components is given by the inverse sum over the individual densities and interaction lengths

$$\lambda = \left(\sum_{j} [\rho_{nj}\sigma(Z_j, E)]\right)^{-1} = \left(\sum_{j} \frac{1}{\lambda_j}\right)^{-1}$$

 $\boldsymbol{\lambda}$ is an important property of materials

Clearly, λ depends on the kind of processes considered !

Basics: detector simulation (3)

a simple algorithm for tracking of particle reactions:

- 1. choose particle from list of particles
- 2. set initial parameres of particle (type, position, four-moment)
- 3. calculate λ from ρ_n and σ for given material
- 4. generate random paht lenth L according to density w(L)
- propagate particle by length L or to the next material boundary, taking into account deflections from multiple scattering and electrical or magnetic fields
- 6. if still inside the same material: let process take place at calculated position and
 - add newly generated particles to list
 - if original particle still exists is its energy > given "cut off"
 - ? yes: go to 2
 - ? no: done with this object; add energy as energy deposit to material element and remove particle from list

eventually, additional random numbers are needed:

- energy loss of particle along path,
- new parameters of particle at the end of the step
- initial parameters of new particles

Basics: detectors imulation (4)

What if there are **many Processes** 1, ..., *p* ?

1., 2. as above

- 3.' determine all interaction lengths $\lambda_1, \ldots, \lambda_p$
- 4.' draw *p* random numbers and caclulate L_p , determine $L_i = \min(L_p)$, $1 \le i \le p$
- 5.' propageta particle by length L_i
- 6.' let process i take place

fre	ie Weglängen L _i
	kleinstes L _i gewinnt

Detector simulation – wrap up

what's needed:

- a list of relevant processes for each particle type (for short-lived particles, their lifetime and decay topologies also is such a "process")
- properties of materials
- cross section for each process depending on parameters of particle and material properties
- propagation rules for particles in materials and fields

A visualization

of the CMS detector (Courtesy of I. Osborne, CMS Collaboration)

- treatment of boundaries:
 - \rightarrow geometrie of detektor volumes and description of $\mbox{ complex detectors}$

- recording of energy deposited in volume elements and simulation of the amount of generated charge or light
- for short-lived particles:
 list of life times and branching fractions

This, and a lot more, is provided by the simulations framework GEANT

The simulation framework Geant

- a world-wide Collaboration

- open-source Tool-Kit from particle physics
- definition of gemometres and materials
- Tracking of particles in material taking into account a large number of physics processes
- visualisation
- Open interfaces for input/output, storage of geerated data ("persistence")

Began 1994 as a development project, first release 1998 predecessor: Geant 3 (FORTRAN package), applications in nuclear, particle and astro particle physics, medicine and many others

> see <u>http://geant4.cern.ch/</u> documention, tutorials, code ...

> > at EKP, we packed Geant4 in a virtual machine

Own applicatoins

Geant4 is a very powerful and hence complex tool \rightarrow familiarization takes much time

Geant4 is used by all experiments in particle physics for

- design of detectors prior to construction
- generation of "simulated data" for the development of reconstruction algorithms and analysis strategies
- determination of detector response to assumed scenarios of "new physcs"
- securing proper understanding of "known" physics when analysing experimental data

Simulated Data are an important component in any phase of an experiments.

Eigene Übungen

graphical interface with shower of an elektrons of 1 GeV energy

🕅 🖸	Geant4 Tutorial GUI	$\odot \odot \otimes$
Primary particle Type: [e^{-}	Momentum: .gj	1.0 GeV
_Detector view		
	Next Event	Quit

Simulation mit Geant4

Shower of an electron of E=10 GeV in a lead -scintillator sandwich calorimeter, simulated with geant4

Shower of a pions of E=10 GeV in a lead scintillator sandwich calorimeter, simulated with geant4

more on Geant, see Course Particle Physics II – Detectors

Detector Simulation – the last step

- In follow each particle through the material of each detector component
- simulate energy deposit in each sensor
- convert energy deposit to detectable signal
 - free charges
 - photons (=visible light) from excitations,
 - eventually light from other

processes

(Cherenkov-light, transition radiation ...)

final result of simulation:

signal (in mV) per detector cell

"The Event"

(here an example from the BaBar experimen@SLAC)

0x01e84c10: 0x01e8 0x8848 0x01e8 0x83d8 0x6c73 0x6f72 0x7400 0x0000 0x01e84c20: 0x0000 0x0019 0x0000 0x0000 0x01e8 0x4d08 0x01e8 0x5b7c 0x01e84c30: 0x01e8 0x87e8 0x01e8 0x8458 0x7061 0x636b 0x6167 0x6500 0x01e84c40: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e84c50: 0x01e8 0x8788 0x01e8 0x8498 0x7072 0x6f63 0x0000 0x0000 0x01e84c60: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x8824 0x01e8 0x84d8 0x7265 0x6765 0x7870 0x0000 0x01e84c70: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e84c80: 0x01e8 0x8838 0x01e8 0x8518 0x7265 0x6773 0x7562 0x0000 0x01e84c90: 0x01e84ca0: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e84cb0: 0x01e8 0x8818 0x01e8 0x8558 0x7265 0x6e61 0x6d65 0x0000 0x01e84cc0: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x8798 0x01e8 0x8598 0x7265 0x7475 0x726e 0x0000 0x01e84cd0: 0x01e84ce0: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e84cf0: 0x01e8 0x87ec 0x01e8 0x85d8 0x7363 0x616e 0x0000 0x0000 0x01e84d00: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x87e8 0x01e8 0x8618 0x7365 0x7400 0x0000 0x0000 0x01e84d10: 0x01e84d20: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e84d30: 0x01e8 0x87a8 0x01e8 0x8658 0x7370 0x6c69 0x7400 0x0000 0x01e84d40: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e84d50: 0x01e8 0x8854 0x01e8 0x8698 0x7374 0x7269 0x6e67 0x0000 0x01e84d60: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e84d70: 0x01e8 0x875c 0x01e8 0x86d8 0x7375 0x6273 0x7400 0x0000 0x01e84d80: 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x87c0 0x01e8 0x8718 0x7377 0x6974 0x6368 0x0000 0x01e84d90:

Last step: Event reconstruction

- apply thresholds to suppress "noise" (i.e. "fake" hits)
- convert signal (mV) in each detector cell to energy deposit (using "calibration constants" of each cell)
- apply pattern recognition to hits above threshold, search for
 - "track segments" (circular arc) in tracking detectors
 - "clusters" in calorimeters
- attempt "particle identification" by combining information from sub-detectors
- cluster particles into jets ("jet algorithms")
- store reconstructed objects and their properties, final result:

reconstructed

event

reconstructed objects only approximately correspond to true properties, **as in real life !**

CMS: simulated Higgs \rightarrow 2e4 μ decay with hits and reconstructed objects

Recap: what we have up to now

After

- precise (including next-to-leading order) cross sections of signal and background processes
- generation of a large number of representative single "events" in an "event generator"
- simulation of parton showers and hadronization
- simulation of detector response ("hits")
- reconstruction of physics objects from the hits application of (soft) selection criteria to roughly represent the acceptance (see later) of the detector

obtain samples of

simulated signal and background events

From these, obtain distributions of (reconstructable) variables to design an analysis and determine its selection and background rejection efficiencies *(see later)*

Example: Expected Distributions of Signal and Background

Hint: in the real experiment, only very small numbers are expected to be observed (see y-axis), and therefore statistical fluctuations will be large

- the question will be:

are they best described by the S+B or the B-only shape?

 \rightarrow need for sophisticated statistical treatment (see later)

The real experiment and data analysis

Particle reconstruction

Detector registers only "stable particles", i.e. those with with life times long enough to traverse the detector

- hardware Trigger and on-line selection identify "interesting" events with particles in the sensitive area of the detector (events not selected are lost)
 - → detector acceptance and online-selection efficiency
- physics objects are reconstructed off-line
 - \rightarrow reconstruction efficiency
- Analysis procedure identifies physics processes and rejects backgrounds
 - \rightarrow selection efficiency and purity
- statistical inference to determine confidence intervals of interesting parameters (production cross sections, particle properties, model parameters, ...)

All steps are affected by systematic errors !

Master formula:

Cross Section measurement: errors

by error propagation \rightarrow

$$\frac{\delta\sigma}{\sigma} = \sqrt{\frac{\delta N_{cand}^2 + \delta N_{bkg}^2}{(N_{cand} - N_{bkg})^2}} + \left(\frac{\delta\epsilon}{\epsilon}\right)^2 + \left(\frac{\delta\int L}{\int L}\right)^2$$

This is the error you want to <u>minimize</u>

- with signal as large as possible
- background as small as possible
- nonetheless, want large efficiency
- luminosity error small (typically beyond your control, also has a "theoretical" component)

(Integrated) Luminosity

Luminosity, \mathcal{L} , connects event rate, r, and cross section, σ :

$$r = \mathcal{L} \cdot \sigma$$
 , unit of [\mathcal{L}] = cm⁻²/s oder 1/nb /s

Integrated luminosity, $\int \mathcal{L} dt$, is a measure of the total number of events at given cross section, $N = \int \mathcal{L} dt \cdot \sigma$

$\ensuremath{\mathcal{L}}$ is a property of the accelerator:

$$\mathcal{L} = \frac{f_{\rm rev} n_b N_p^2}{4\pi A_{\rm bunch}} = \frac{f_{\rm rev} n_b N_p^2}{4\pi \epsilon \beta^*}$$

 $\begin{array}{l} f_{rev}: \mbox{ revolution frequency of beams } n_b: \mbox{ number of bunches } \\ N_p: \mbox{ number of particles in a bunch } \\ A_{bunch}: \mbox{ area of bunches } \\ \epsilon: \mbox{ emittance of beam } \\ \beta^*: \mbox{ beta-function at collision point } \end{array}$

LHC design Luminosity: 10⁻³⁴ /cm²/s

1.8 ·10¹⁵ pp collisions (assuming 60 mb inelastic pp cross section)

Determination of Luminosity

Luminosity is, however, not determined from machine parameters (precision only ~10%) but by simultaneous measurements of a **reference reaction** with well-known cross section: $\int_{-\infty}^{\infty}$

$$\int L = N_{ref} / \sigma_{ref}$$

absolute value from

- elastic proton-proton scattering at small angles
- production of W or Z bosons
- production of photon or muon pairs in $\gamma\gamma$ -reactions

- ...

measurement of luminous beam profile:

- van-der-Meer scans by transverse displacement

of beams, record \mathcal{L} vs. δx , δy

relative methods:

 particle counting or current measurements in detector components with high rates (need calibration against one of the absolute methods)

accuracy on ∫⊥ (CMS experiment): 2.2% (7 TeV, 2011) and 2.6% (8TeV, 2012)