

Searches for the Higgs Boson Before the Advent of the LHC

Roger Wolf 18. June 2015

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) - PHYSICS FACULTY

- Up to now...
 - Learned about the power of local gauge theories...

- Up to now...
 - Learned about the power of local gauge theories... and their weaknesses.

- Up to now...
 - Learned about the power of local gauge theories... and their weaknesses.
 - Learned about a way out → keep the symmetries in theory but not in praxis (spontaneous symmetry breaking).

- Up to now...
 - Learned about the power of local gauge theories... and their weaknesses.
 - Learned about a way out → keep the symmetries in theory but not in praxis (spontaneous symmetry breaking).
 - Made a walk through the SM all inclusive.

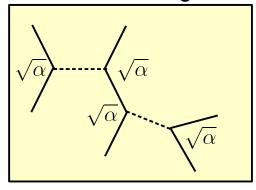
- Up to now...
 - Learned about the power of local gauge theories... and their weaknesses.
 - Learned about a way out → keep the symmetries in theory but not in praxis (spontaneous symmetry breaking).
 - Made a walk through the SM all inclusive.
 - Learned how to get from \mathcal{L} to real measurements and how higher orders in perturbation theory affect real measurements.
 - Reviewed what needs to be done to actually do these experimental measurements.
 - Reviewed the statistical methods/tools needed to search for the Higgs boson.

Schedule for Today

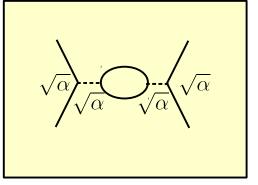
2

Direct Higgs Boson searches at LEP and Tevatron.

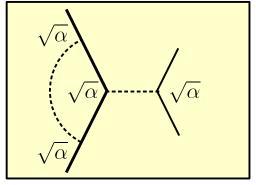
(1)


Indirect constraints on m_H from high precision measurements.

Recap from Lecture 04 (Effects of loop corrections)


- We have only discussed contributions to S_{fi} , which are of order α^1 in QED. (e.g. LO $ee \rightarrow ee$ scattering).
- Diagrams which contribute to order α^2 would look like this:

Additional legs:


- LO term for a 2 → 4 process.
- NLO contrib. for the $2 \rightarrow 2$ process.
- Open phase spaces.

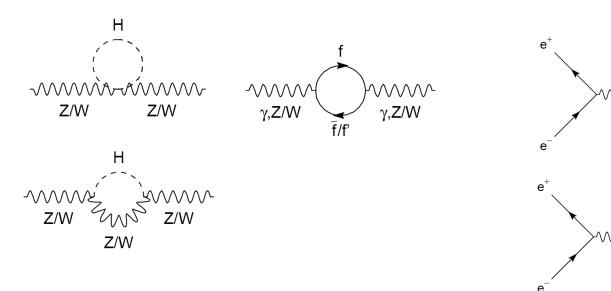
Loops:

(loops in propagators or legs)

Modify (effective)
masses of particles
("running masses").

(loops in vertices)

 Modify (effective) couplings of particles ("running couplings").


Higher Orders on Precision Observables

 Particles, which cannot be directly observed at lower energy scales, still have influence on observables, due to higher order corrections in loops.

The Higgs/top in propagator loops:

The *top* in vertex loops:

• Introduce direct dependencies of effective (measurable) vector boson masses and couplings on m_H & m_t .

Higher Order Corrections to m_W

• Higher order corrections to m_W :

$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - 4\frac{\alpha \pi}{\sqrt{2}G_F m_Z^2}} \cdot \frac{1}{1 - \Delta r} \right) \quad \Delta r = \Delta \alpha + \Delta r_W$$

$$\Delta \alpha = \Delta \alpha_{\text{lep}} + \Delta \alpha_{\text{top}} + \Delta \alpha_{\text{had}}^{(5)}$$

$$\Delta r_W(m_t, m_H) \simeq \frac{\alpha}{\pi \sin^2 \theta_W} \left(-\frac{3 \cos^2 \theta_W}{16 \sin^2 \theta_W} \frac{m_t^2}{m_W^2} + \frac{11}{24} \log \left(\frac{m_H}{m_Z} \right) \right)$$

$$\propto m_t^2$$

$$\propto \log (m_H)$$

• Effects set in at $\mathcal{O}(\alpha^2) \approx \mathcal{O}(10^{-4})$ \to high precision needed on observables and theoretical prediction!

Higher Order Corrections to m_W

• Higher order corrections to m_W :

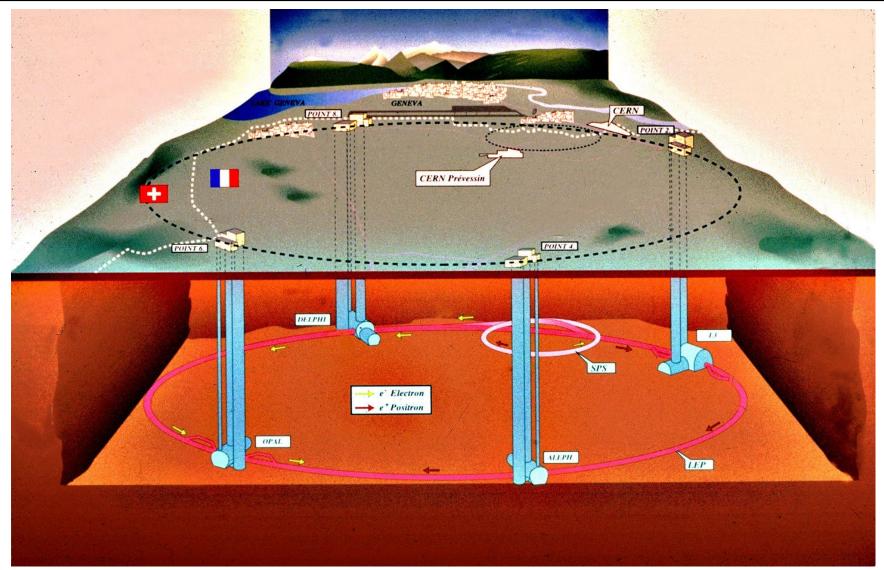
$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - 4 \frac{\alpha \pi}{\sqrt{2} G_F m_Z^2}} \cdot \frac{1}{1 - \Delta r} \right) \quad \Delta r = \Delta \alpha + \Delta r_W$$

$$\Delta \alpha = \Delta \alpha_{\rm lep} + \Delta \alpha_{\rm top} + \Delta \alpha_{\rm had}^{(5)}$$

$$\Delta r_W(m_t, m_H) \simeq \frac{\alpha}{\pi \sin^2 \theta_W} \left(\frac{3 \cos^2 \theta_W}{16 \sin^2 \theta_W} \frac{m_t^2}{m_W^2} + \frac{11}{24} \log \left(\frac{m_H}{m_Z} \right) \right)$$

$$\propto m_t^2$$

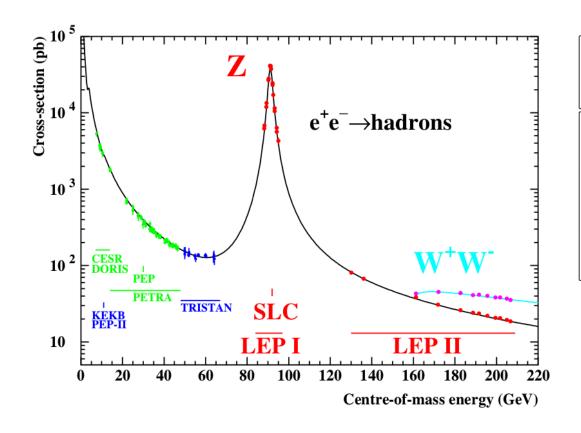
$$\propto m_t^2$$


$$\Delta \log (m_H)$$

$$\Delta \log (m_H)$$

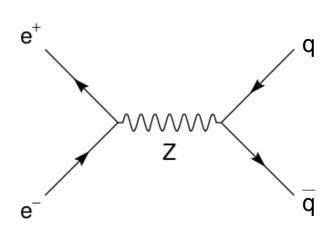
• Effects set in at $\mathcal{O}(\alpha^2) \approx \mathcal{O}(10^{-4}) \to \text{high precision needed}$ on observables and theoretical prediction!

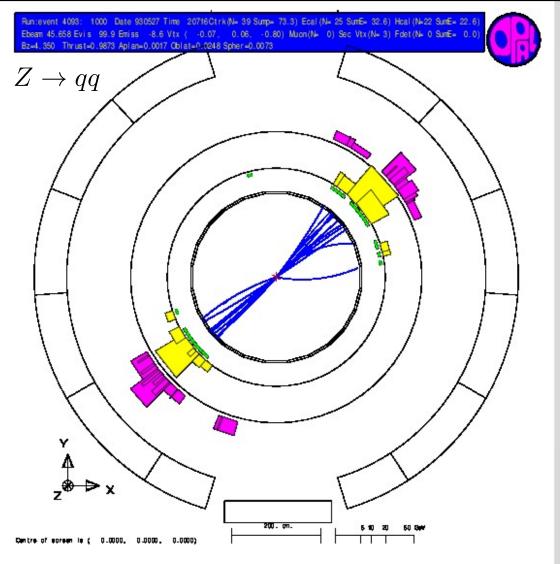
High Precision Measurements @ LEP & SLAC



High Precision Observables @ LEP

• High precision measurements made at $\sqrt{s}=m_Z$ during LEP-I run period:




Year	Centre-of-mass	Integrated
	energy range	luminosity
	[GeV]	$[\mathrm{pb}^{-1}]$
1989	88.2 - 94.2	1.7
1990	88.2 - 94.2	8.6
1991	88.5 - 93.7	18.9
1992	91.3	28.6
1993	89.4, 91.2, 93.0	40.0
1994	91.2	64.5
1995	89.4, 91.3, 93.0	39.8
		202.1

- $15 \cdot 10^6 \ Z \rightarrow qq$ events
- $1.7 \cdot 10^6$ $Z \rightarrow \ell\ell$ events

Typical $Z \rightarrow qq$ **Event @ LEP**

Z-pole Electroweak Precision Observables

Pseudo-Observable	Measured Value		
$\Delta \alpha_{ m had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z [{ m GeV}]$	91.1875	±	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	\pm	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{0,\overline{c}}$	0.0707	\pm	0.0035
$\sin^2 heta_{ ext{eff}}^{ ext{Fep}}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_ au)$	0.1465	\pm	0.0033
$ \mathcal{A}_b $	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	±	0.0021

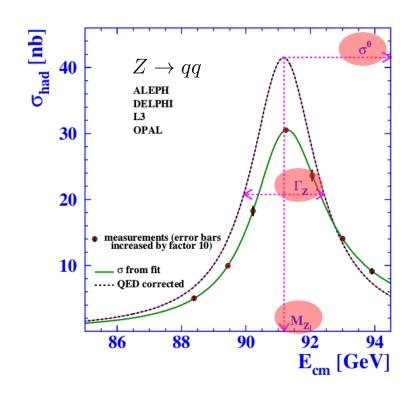
(as of hep-ex/0509008)

- 14(+1) observables.
- Precision between $\mathcal{O}(10^{-5})$ for m_Z & $\mathcal{O}(10^{-2})$ for $\mathcal{A}_l(\mathrm{SLD})$ (incl. theoretical uncertainties).
- Exploit dependencies $\propto m_t^2$ and $\propto \log{(m_H)}$ of higher orders via relations in m_W and $\sin{\theta_{\rm eff}}$.

NB: Using similar relations with the same dependencies as shown on slide 15f for m_W .

Shift $\Delta \alpha_{ m had}^5(m_Z)$

Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	士	0.00034
$m_Z [{ m GeV}]$	91.1875	±	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	\pm	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{0,c}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_ au)$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	±	0.0021

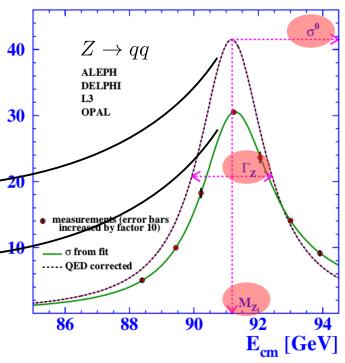

(as of hep-ex/0509008)

• $\Delta \alpha_{
m had}^5(m_Z)$ as obtained from independent measurements at lower energies.

Z-pole Observables

Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z [{ m GeV}]$	91.1875	±	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	±	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	U . UU3U
$A_{FB}^{0,l}$	0.0171	\pm	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{0,c}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_ au)$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	±	0.0021

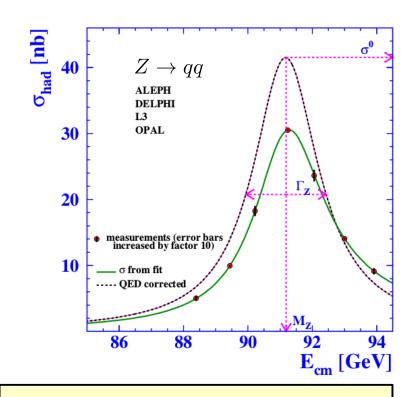
Z-pole Observables



Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	土	0.00034
$m_Z [{ m GeV}]$	91.1875	±	0.0021
$\Gamma_Z \; [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 \; [m nb]$	41.540	\pm	0.037
D_0	20.767		0.005

Actual measurement.

- ISR up to $\mathcal{O}(\alpha^3)$.
- FSR up to $\mathcal{O}(\alpha_s^3)$ and $\mathcal{O}(\alpha \cdot \alpha_s)$.
- ISR FSR interference effects up to $\mathcal{O}(\alpha)$.
- Since corrections are sizable these variables are referred to as "pseudo-observables".



Partial Decay Widths

Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	土	0.00034
$m_Z [{ m GeV}]$	91.1875	土	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [{ m nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	土	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{0,c}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_ au)$	0.1465	\pm	0.0033
$oldsymbol{\mathcal{A}}_b$	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	±	0.0021

(as of hep-ex/0509008)

Ratios of partial decay widths:

$$R_{\ell}^{0} = \frac{\Gamma_{\text{had}}^{0}}{\Gamma_{\ell\ell}} \quad R_{c}^{0} = \frac{\Gamma_{cc}}{\Gamma_{\text{had}}^{0}} \quad R_{b}^{0} = \frac{\Gamma_{bb}}{\Gamma_{\text{had}}^{0}}$$
$$\Gamma_{\text{had}}^{0} = \frac{\sigma_{\text{had}}^{0} m_{Z}^{2}}{12\pi} \cdot \frac{\Gamma_{Z}^{2}}{\Gamma_{ee}}$$

Asymmetries (\rightarrow sensitive to $\sin \theta_{\rm eff}$)

Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z [{ m GeV}]$	91.1875	±	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	\pm	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{0,c}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_ au)$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021

- Z boson has different coupling to left- and right-handed fermions.
- · Leads to:
 - net polarization in final states.
 - different rates on polarized beams.

$$\mathcal{A}_f = \frac{g_L^2 - g_R^2}{g_L^2 + g_R^2} \Big|_f = \frac{2g_V g_A}{g_V^2 + g_A^2} \Big|_f$$

$$\frac{g_V}{g_A} \Big|_f = 1 - 4|Q_f| \sin^2 \theta_{\text{eff}}$$

$$A_{FB}^{0,f} = \frac{3}{4} \mathcal{A}_e \mathcal{A}_f$$

$$\langle \mathcal{P}_\tau^0 \rangle = -\mathcal{A}_\tau$$

Asymmetries (\rightarrow sensitive to $\sin \theta_{\rm eff}$)

Pseudo-Observable	Meası	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	±	0.00034	
$m_Z [{ m GeV}]$	91.1875	±	0.0021	
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023	
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037	
R_l^0	20.767	\pm	0.025	
R_b^0	0.21629	\pm	0.00066	
R_c^0	0.1721	\pm	0.0030	
$A_{FB}^{0,l} \ A_{FB}^{0,b}$	Forward-Backward Asymmetry			
$A_{FB}^{0,c}$	0.0707	\pm	0.0035	
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324		0.0012	
$ig \mathcal{A}_l(\mathcal{P}_ au)$	0.1465	\pm	0.0033	
\mathcal{A}_b	0.923	\pm	0.020	
\mathcal{A}_c	0.670	\pm	0.027	

- Z boson has different coupling to left- and right-handed fermions.
- · Leads to:
 - net polarization in final states.
 - different rates on polarized beams.

$$\mathcal{A}_f = \frac{g_L^2 - g_R^2}{g_L^2 + g_R^2} \Big|_f = \frac{2g_V g_A}{g_V^2 + g_A^2} \Big|_f$$

$$\frac{g_V}{g_A} \Big|_f = 1 - 4|Q_f| \sin^2 \theta_{\text{eff}}$$

$$A_{FB}^{0,f} = \frac{3}{4} \mathcal{A}_e \mathcal{A}_f$$

$$\langle \mathcal{P}_\tau^0 \rangle = -\mathcal{A}_\tau$$

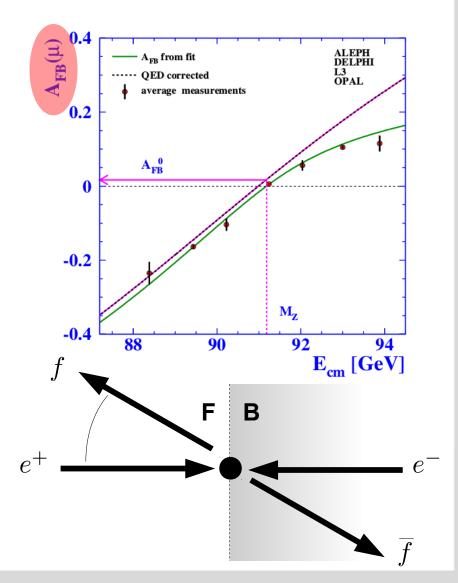
Asymmetries (\rightarrow sensitive to $\sin \theta_{\rm eff}$)

Pseudo-Observable	Measured Value		
$\Delta \alpha_{ m had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z [{ m GeV}]$	91.1875	±	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	\pm	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{0,c}$	0.0707	\pm	0.0035
$\sin^2 \overline{ heta_{ m eff}^{ m lep}}$	0.2324	±	0.0012
$egin{array}{c} \mathcal{A}_l(\mathcal{P}_ au) \ \mathcal{A}_b \ \mathcal{A}_c \end{array}$	Left-Right Asymmetry		0.0033 0.020 0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513		0.0021

- Z boson has different coupling to left- and right-handed fermions.
- Leads to:
 - net polarization in final states.
 - different rates on polarized beams.

$$\mathcal{A}_f = \frac{g_L^2 - g_R^2}{g_L^2 + g_R^2} \Big|_f = \frac{2g_V g_A}{g_V^2 + g_A^2} \Big|_f$$

$$\frac{g_V}{g_A} \Big|_f = 1 - 4|Q_f| \sin^2 \theta_{\text{eff}}$$

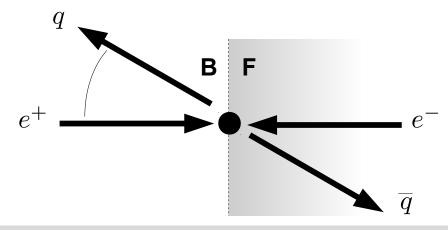

$$A_{FB}^{0,f} = \frac{3}{4} \mathcal{A}_e \mathcal{A}_f$$

$$\langle \mathcal{P}_\tau^0 \rangle = -\mathcal{A}_\tau$$

Asymmetries (forward backward, exclusive)

Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z [{ m GeV}]$	91.1875	±	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	\pm	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{0,c}$	0.0707	\pm	0.0035
$\sin^2 heta_{ ext{eff}}^{ ext{lep}}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	±	0.0021

Asymmetries (forward backward, inclusive)



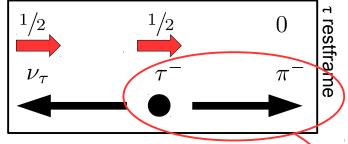
Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	土	0.00034
$m_Z [{ m GeV}]$	91.1875	±	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^{0}	0.21629	\pm	0.00066
R_c^{0}	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	土	0.0010
$A_{FB}^{ar{0},ar{b}}$	0.0992	\pm	0.0016
$A_{FB}^{0,c}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_ au)$	0.1465	土	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	<u>±</u>	0.0021

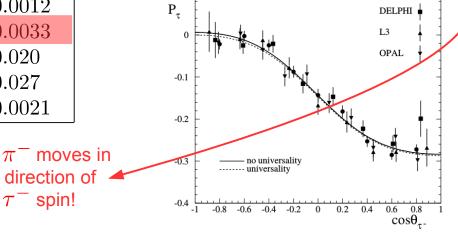
(as of hep-ex/0509008)

- Determined from inclusive hadronic forward-backward charge asymmetry measurements at LEP.
- Usually directly expressed in terms of $\sin^2\theta_{\rm eff}^{\rm lep}$.

e.g. determined by jet charge

Asymmetries (left-right couplings from τ polarization)




Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z [{ m GeV}]$	91.1875	±	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	\pm	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{0,\overline{c}}$	0.0707	\pm	0.0035
$\sin^2 heta_{ ext{eff}}^{ ext{lep}}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	±	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	±	0.0021

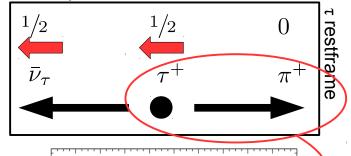
(as of hep-ex/0509008)

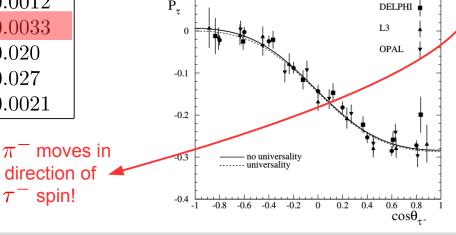
• τ is the only fermion at LEP where polarization information can be derived from.

Example: $\tau^- \to \pi^- \nu_{\tau}$

ALEPH

Asymmetries (left-right couplings from τ polarization)



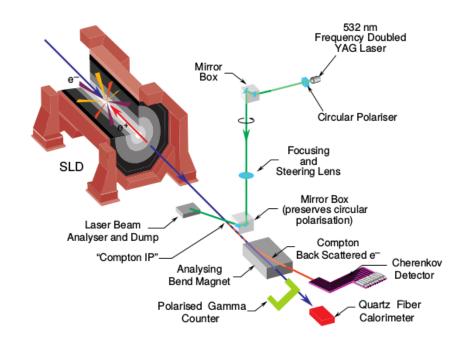

Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	土	0.00034
$m_Z [{ m GeV}]$	91.1875	士	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	\pm	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{0,c}$	0.0707	\pm	0.0035
$\sin^2 heta_{ ext{eff}}^{ ext{lep}}$	0.2324	土	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	土	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	土	0.0021

(as of hep-ex/0509008)

• τ is the only fermion at LEP where polarization information can be derived from.

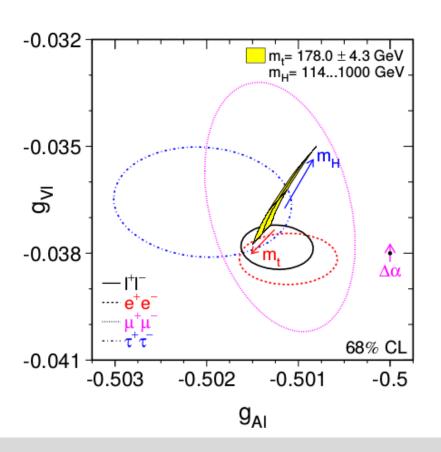
Example: $\tau^+ \to \pi^+ \bar{\nu}_{\tau}$

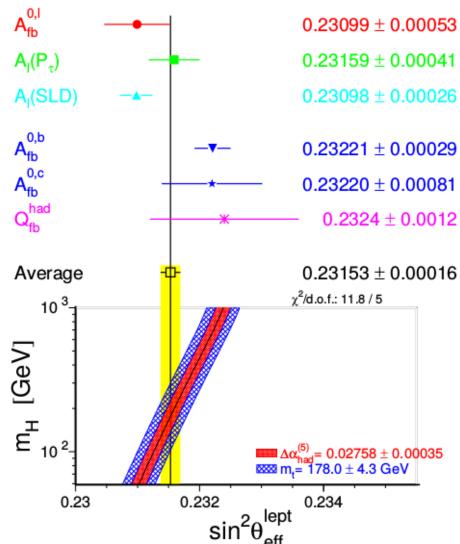
ALEPH


Asymmetries (left-right couplings @ SLD/SLAC)

Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z [{ m GeV}]$	91.1875	士	0.0021
$\Gamma_Z [{ m GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 [m nb]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A_{FB}^{0,l}$	0.0171	\pm	0.0010
$A_{FB}^{0,b}$	0.0992	\pm	0.0016
$A_{FB}^{ar{0},ar{c}}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	土	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	士	0.0021

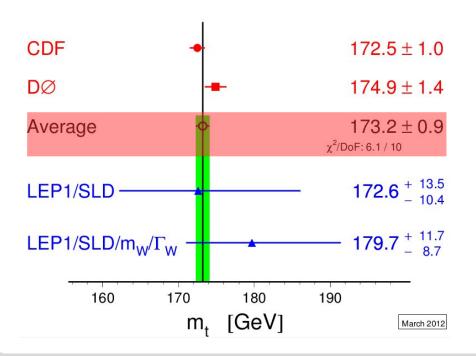
(as of hep-ex/0509008)

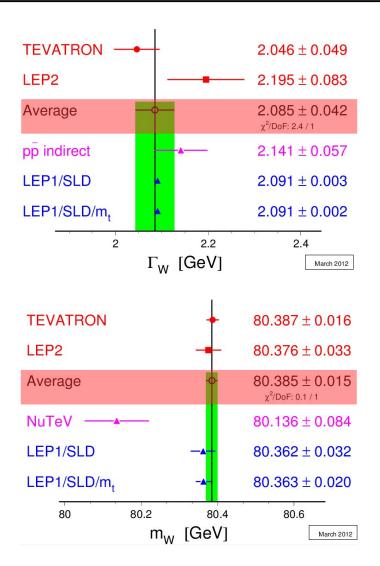

• Measured with polarized e^+ beam with the SLD experiment at SLAC.



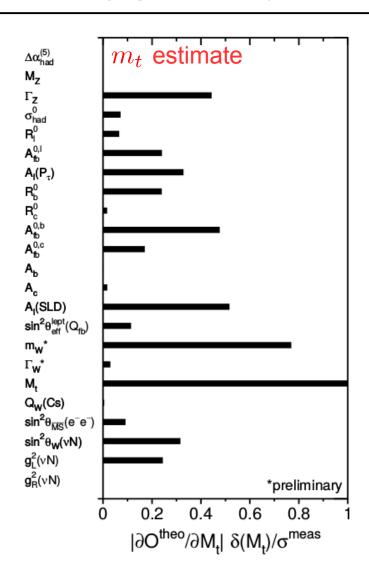
Asymmetries (sensitivity to m_t and m_H)

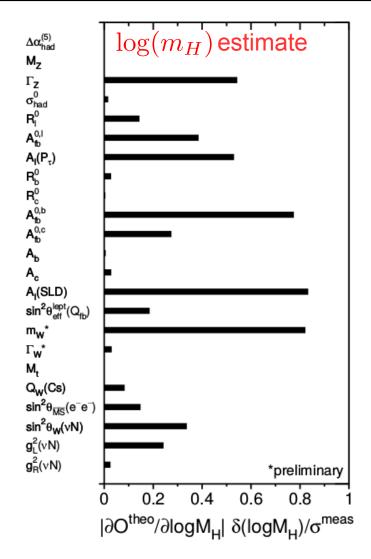
- Lepton universality!
- Light Higgs boson preferred.




Additional measurements for maximal sensitivity

Pseudo-Observable	Measu	red	Value
$m_W [{ m GeV}]$	80.385	\pm	0.015
$\Gamma_W [{ m GeV}]$	2.085	\pm	0.042
$m_t [{ m GeV}]$	173.2	土	0.9


(as of March 2012)



Sensitivity (sensitivity to m_t and m_H)

Parameter Estimate

Five parameter χ^2 fit:

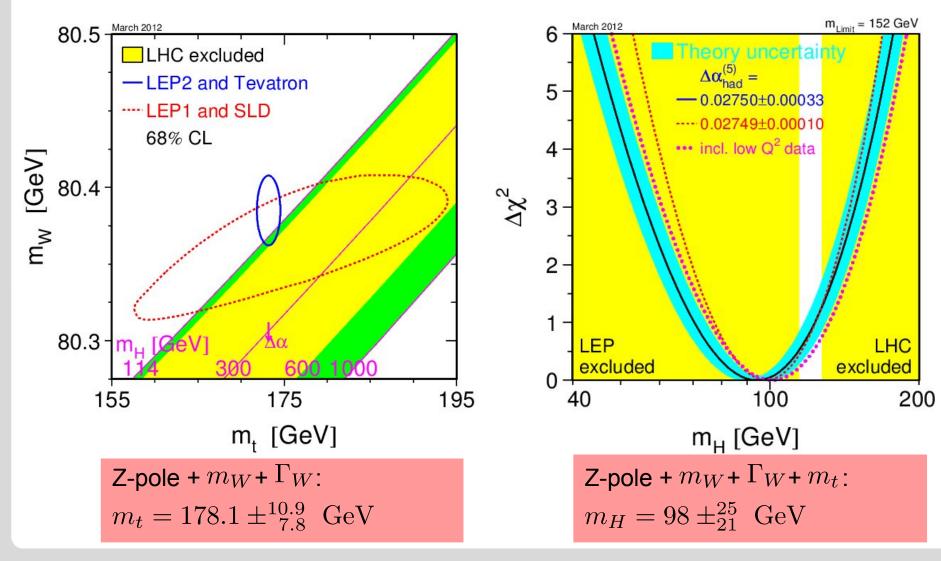
1				$\Delta lpha_{ m had}^{(5)}(m_Z)$	
2.05 ± 0.385	173 ± 11.5	91.1874 ± 0.0021	0.1190 ± 0.0027	0.02759 ± 0.00035	Best Fit Value
				1.0	
0.25	0.19	-0.03	1.0		$\alpha_s(m_Z)$
-0.02	-0.07	1.0			m_Z
0.89	1.0				m_t
9 1.0					$\log(m_H/\text{GeV})$

Fit of Z-pole observables only: (1)

(2005)

Fit of Z-pole observables + m_W , Γ_W , m_t : (2) $\chi^2/ndof = 16.9/13$

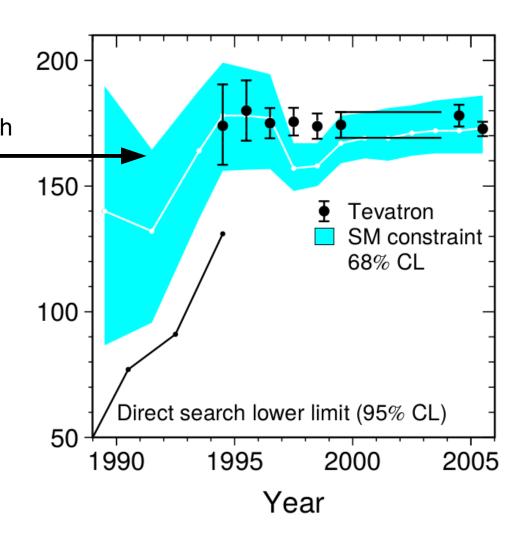
(2012)


	Measurement	Fit	O ^{meas} -O ^{fit} /σ ^{meas} 0 1 2 3
$\Delta\alpha_{had}^{(5)}(m_Z)$	0.02750 ± 0.00033	0.02759	
m _Z [GeV]	91.1875 ± 0.0021	91.1874	
Γ_{Z} [GeV]	2.4952 ± 0.0023	2.4959	_
σ_{had}^{0} [nb]	41.540 ± 0.037	41.478	
	20.767 ± 0.025		
$A_{fb}^{0,l}$	0.01714 ± 0.00095	0.01645	_
$A_{l}(P_{\tau})$	0.1465 ± 0.0032	0.1481	
R _b	0.21629 ± 0.00066	0.21579	
R _c	0.1721 ± 0.0030	0.1723	
A _{fb} ^{0,b} A _{fb} ^{0,c}	0.0992 ± 0.0016	0.1038	
A _{fb} ^{0,c}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
Ac	0.670 ± 0.027	0.668	•
A _I (SLD)	0.1513 ± 0.0021	0.1481	
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.385 ± 0.015	80.377	
Γ _w [GeV]	2.085 ± 0.042	2.092	
The second second	173.20 ± 0.90	173.26	
March 2012			0 1 2 3

^{(1) (}as of hep-ex/0509008)

Institute of Experimental Particle Physics (IEKP) (2) http://lepewwg.web.cern.ch/LEPEWWG/winter12_results

Main Result



Pre-Discovery Constraints on m_t & m_H

- Consistency checks of the SM turned out as great success:
- Constraints on m_t spot on with direct measurements before discovery!
- Constraints on m_H in good agreement with direct measurements before discovery!

Direct Searches

Higgs Boson...

Google-Suche

Auf gut Glück!

Google.de angeboten auf: English

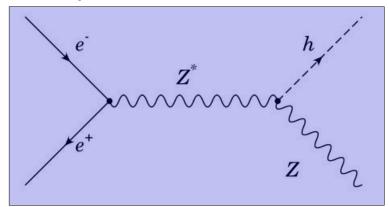
Direct Searches @ LEP

• Main production mode in e^+e^- :

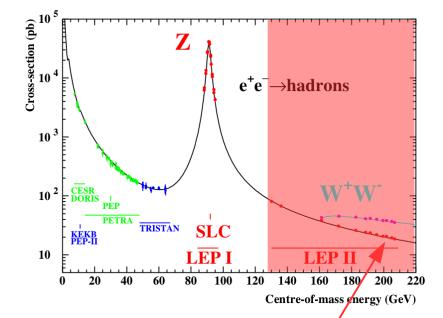

- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

Direct Searches @ LEP

• Main production mode in e^+e^- :


- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

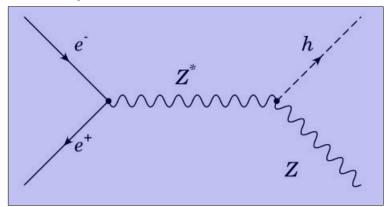
Direct Searches @ LEP



• Main production mode in e^+e^- :

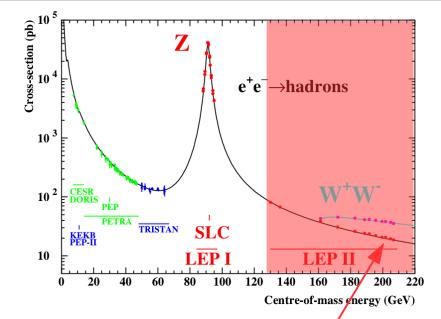
- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

Integrated luminosities in pb^{-1}									
ALEPH DELPHI L3 OPAL LE									
$\sqrt{s} \ge 189 \text{ GeV}$	629	608	627	596	2461				
$\sqrt{s} \ge 206 \text{ GeV}$	130	138	139	129	536				



Year	1996		1997	1998	1999			2000		
$E_{\rm CM}$ nominal [GeV]	161	172	183	189	192	196	200	202	205	207

Direct Searches @ LEP

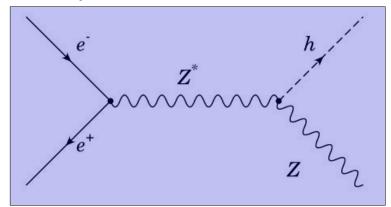


• Main production mode in e^+e^- :

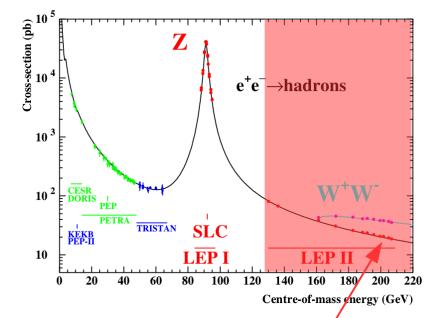
- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

Integrated luminosities in pb ⁻¹									
ALEPH DELPHI L3 OPAL LE									
$\sqrt{s} \ge 189 \text{ GeV}$	629	608	627	596	2461				
$\sqrt{s} \ge 206 \text{ GeV}$	130	138	139	129	536				

Year	1996		1997	1998	1999			2000		
$E_{\rm CM}$ nominal [GeV]	161	172	183	189	192	196	200	202	205	207


What was the maximal reach on m_H at LEP?

Direct Searches @ LEP



• Main production mode in e^+e^- :

- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

Integrated luminosities in pb ⁻¹									
ALEPH DELPHI L3 OPAL LE									
$\sqrt{s} \ge 189 \text{ GeV}$	629	608	627	596	2461				
$\sqrt{s} \ge 206 \text{ GeV}$	130	138	139	129	536				

 $\longrightarrow m_H \approx 117 \text{ GeV}$

Year	1996		1997	1998	1999			2000		
$E_{\rm CM}$ nominal [GeV]	161	172	183	189	192	196	200	202	205	207

What was the maximal reach on m_H at LEP? —

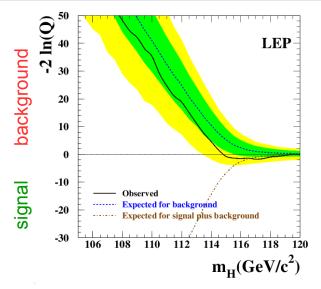
$$\mathcal{L}_{s+b} = \prod_{k=1}^{N} \left(\frac{(s_k + b_k)^{n_k}}{n_k!} e^{-(s_k + b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right)$$

$$\mathcal{L}_b = \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right)$$

$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right)$$

$$q = -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right)$$

What values of *Q* (and *q*) correspond to more signal/background like?

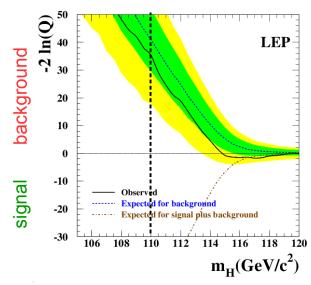


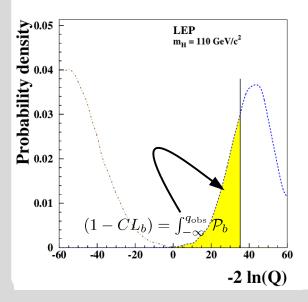
$$\mathcal{L}_{s+b} = \prod_{k=1}^{N} \left(\frac{(s_k + b_k)^{n_k}}{n_k!} e^{-(s_k + b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right)$$

$$\mathcal{L}_b = \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right)$$

$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right)$$

$$q = -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right)$$

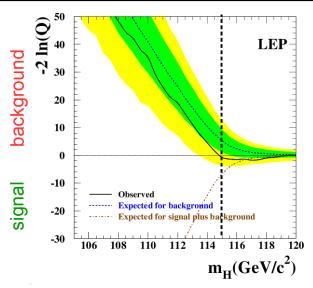


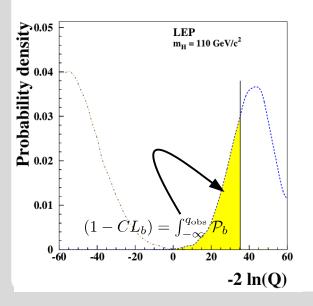

$$\mathcal{L}_{s+b} = \prod_{k=1}^{N} \left(\frac{(s_k + b_k)^{n_k}}{n_k!} e^{-(s_k + b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right)$$

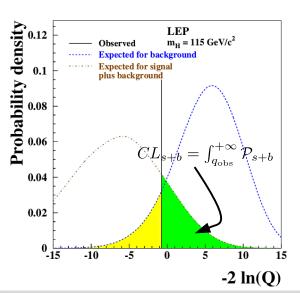
$$\mathcal{L}_b = \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right)$$

$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right)$$

$$q = -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right)$$

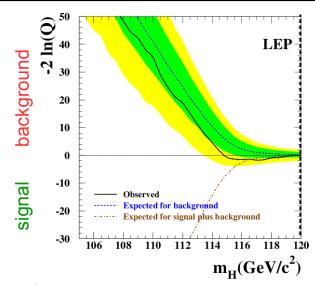


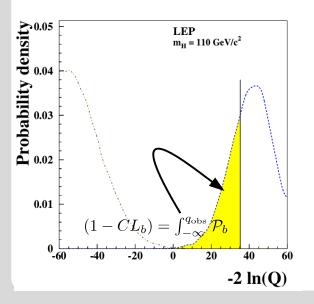

$$\mathcal{L}_{s+b} = \prod_{k=1}^{N} \left(\frac{(s_k + b_k)^{n_k}}{n_k!} e^{-(s_k + b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right)$$

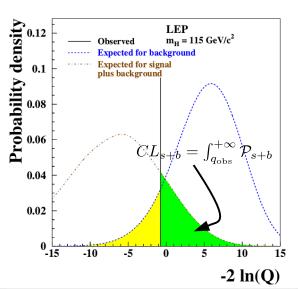

$$\mathcal{L}_b = \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right)$$

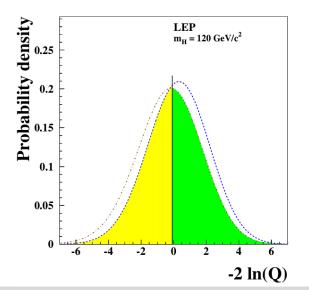
$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right)$$

$$q = -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right)$$

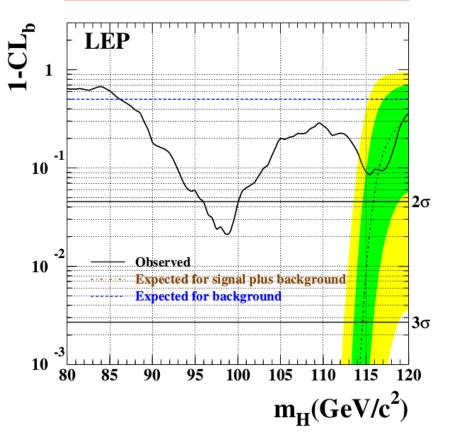


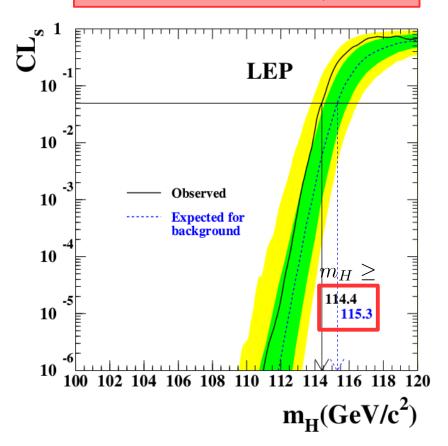

$$\mathcal{L}_{s+b} = \prod_{k=1}^{N} \left(\frac{(s_k + b_k)^{n_k}}{n_k!} e^{-(s_k + b_k)} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{s_k + b_k} \right)$$


$$\mathcal{L}_b = \prod_{k=1}^{N} \left(\frac{b_k^{n_k}}{n_k!} e^{-b_k} \cdot \prod_{j=1}^{n_k} \frac{b_k B_k}{b_k} \right)$$

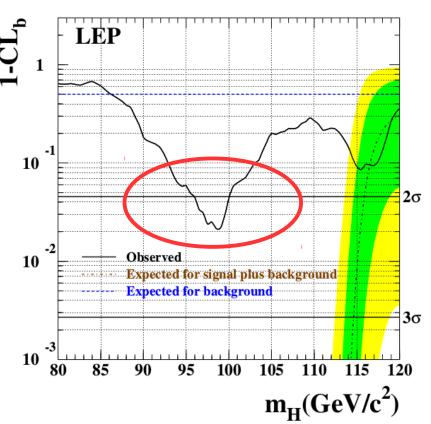

$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = \prod_{k=1}^{N} \left(e^{-s_k} \cdot \prod_{j=1}^{n_k} \frac{s_k S_k + b_k B_k}{b_k B_k} \right)$$

$$q = -2 \ln Q = 2 \sum_{k=1}^{N} \left(s_k - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k S_k}{b_k B_k} \right) \right)$$

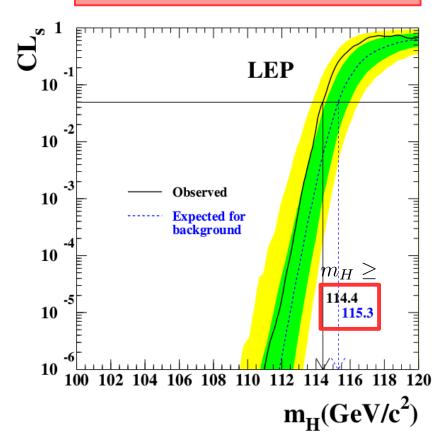



Result (Final Word from LEP)

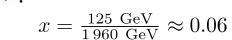
$$CL_s$$
 -limit ($CL_s = \frac{CL_{s+b}}{CL_b}$):

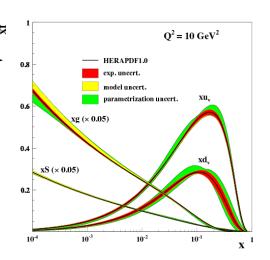


No signal observed!


Result (Final Word from LEP)

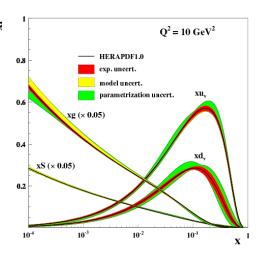
$$CL_s$$
 -limit ($CL_s = \frac{CL_{s+b}}{CL_b}$):

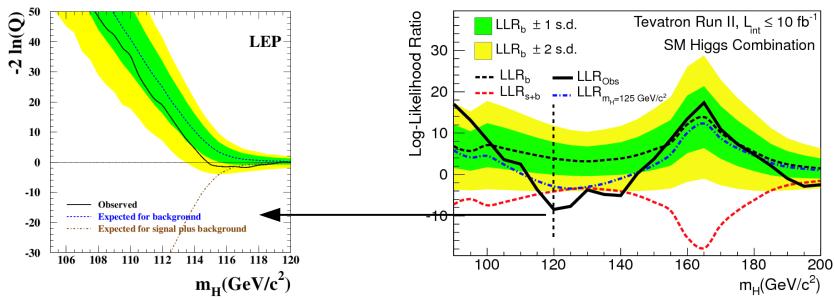

• No signal observed! There is a 2σ effect, but this is not compatible with the SM.



- Also @ Tevatron searches have been conducted at $\sqrt{s} = 1.96 \text{ TeV}$:
- Luminosity: $\mathcal{L}_{int} \leq 10 \text{ fb}^{-1}$

- Also @ Tevatron searches have been conducted at $\sqrt{s} = 1.96$ TeV:
- Luminosity: $\mathcal{L}_{\mathrm{int}} \leq 10~\mathrm{fb}^{-1}$

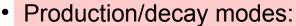


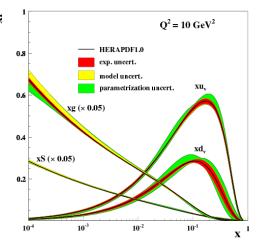


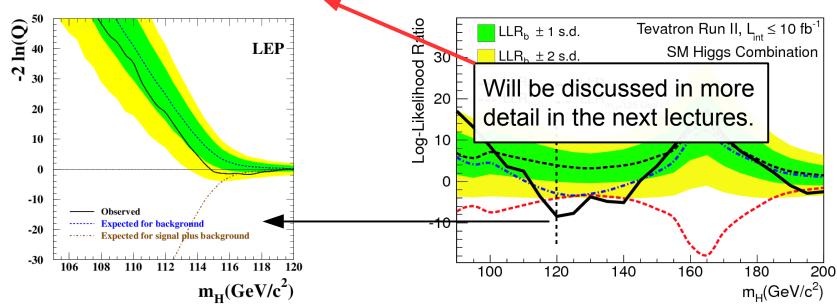
- Also @ Tevatron searches have been conducted at $\sqrt{s} = 1.96 \text{ TeV}$:
- Luminosity: $\mathcal{L}_{\rm int} \leq 10~{\rm fb}^{-1}$
- $x = \frac{125 \text{ GeV}}{1960 \text{ GeV}} \approx 0.06$
- Production/decay modes:

$$gg o H, \ qar q o H, \ qar q o VH, \ qar q o tar tH$$

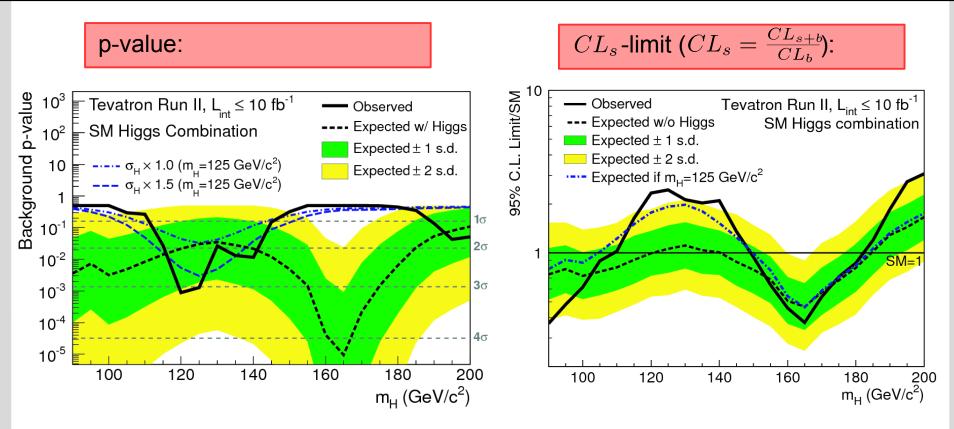
 $H \to b\bar{b}$, $H \to \tau\tau$, $H \to WW$, $H \to ZZ$, $H \to \gamma\gamma$



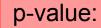

- Also @ Tevatron searches have been conducted at $\sqrt{s} = 1.96 \text{ TeV}$:
- Luminosity: $\mathcal{L}_{\mathrm{int}} \leq 10~\mathrm{fb}^{-1}$

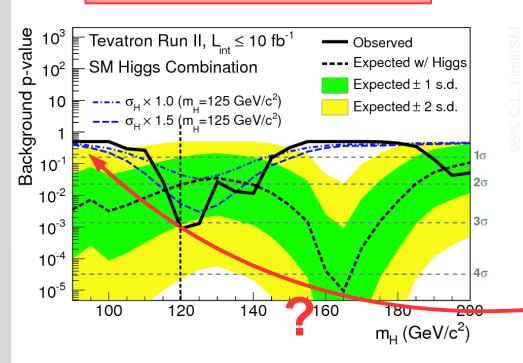

 $x = \frac{125 \text{ GeV}}{1960 \text{ GeV}} \approx 0.06$

$$gg \to H, \ q\bar{q} \to H, \ q\bar{q} \to VH, \ q\bar{q} \to t\bar{t}H$$


$$H \to b\bar{b}, \ H \to \tau\tau, \ H \to WW, \ H \to ZZ, \ H \to \gamma\gamma$$

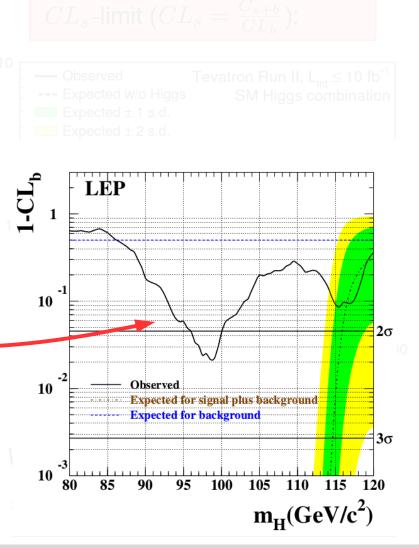
Result (Final Word from Tevatron)





- Sensitivity of Tevatron results driven by $q ar q o V H, \; H o ar b b$.
- $\gtrsim 3\sigma$ evidence for a Higgs boson around $m_H \approx 120 \text{ GeV}, \approx 1.5\sigma_{\text{SM}}$.

Result (Final Word from Tevatron)



• $\gtrsim 3\sigma$ evidence for a Higgs boson around n_{H}

Concluding Remarks

- The hunt for the Higgs boson had begun in the LEP-II era already.
- We had already good hints where to expect the Higgs (according to the SM) from high precision Z-pole measurements.
- Direct searches @ LEP and @ Tevatron remained inconclusive, since the Higgs boson was out of reach.
- 2010 the dishes were set for the final round...

Sneak Preview for Next Week

• From the next lecture on we will discuss the Higgs discovery at the LHC, the first determination of its properties and perspectives for further surprises in the Higgs sector.

Backup & Homework Solutions

