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Exercise 3: Dirac Equation from Lagrangian Density (presence)

The Lagrangian density is defined via the action integral as

L : S =

∫
Ω
L({∂µφi}, {φi})dtd3x .

What is the dimension of the Lagrangian density in natural units?

Exercise 4: Gauge Transformation of Aµ (presence)

As discussed in the lecture the covariant derivate is defined by the replacement:

∂µ → Dµ = ∂µ + ieAµ

with the additional gauge field Aµ and the coupling constant e. The transformation behavior of
the covariant derivative is given by:

Dµ → D′µ = Dµ − i∂µϑ

where ϑ = ϑ(x) is a local phase change of the external fields. What is the transformation behavior
of the gauge field Aµ?

Exercise 5: Dirac Equation from Lagrangian Density (presence)

In the lecture we have derived the Klein-Gordon equation from the corresponding Lagrangian
density for free bosons

L = ∂µφ∂
µφ∗ −m2φφ∗

using the Euler-Lagrange equations applied to the field φ∗. Do the same exercise to obtain the
Dirac equation by applying the Euler-Lagrange equations to the field ψ for the Lagrangian
density for free fermions:

L = iψγµ∂µψ − ψmψ .

Exercise 6: Gauge Invariance of Fµν (presence)

In the lecture we have made the ansatz

Lkin =
1

4
FµνFµν with Fµν = ∂µAν − ∂νAµ

for the kinetic term of the gauge field in the full Lagrangian density. Using the translation
behavior of the gauge field as obtained in Exercise 4. Proof that F ′µν = Fµν . As a consequence
the term Lkin is not only manifest Lorentz invariant, but also gauge invariant (i.e. it fulfills the
required transformation behavior of the Lagrangian density).
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Exercise 7: Local Gauge Invariance for Bosons (homework)

In the lecture we have sketched the exercise to enforce local gauge invariance starting from
the Lagrangian density for free propagating fermions. We have seen how this leads to the full
Lagrangian density of Quantum Electrodynamics (QED). In nature we also have charged bosons,
for which the same procedure should work. How do you know that this is true?

a) Proof that the same covariant derivative with the same gauge transformation laws works
equally well for bosons as for fermions. Translate the transformation behavior for fermions to
bosons

φ(~x, t) → φ′(~x, t) = eiθφ(~x, t)

φ∗(~x, t) → φ′∗(~x, t) = φ∗(~x, t)e−iθ

Dµ → D′µ = Dµ − i∂µθ

apply it to the Lagrangian density term for bosons and proof the relation

L′ = D′µφ
′ (D′µφ′)∗ −m2φ′φ′∗ = Dµφ (Dµφ)∗ −m2φφ∗ = L .

b) Write out the full Lagrangian density term for bosons in analogy to the Lagrangian density
term LQED that has been given for fermions in the lecture. (You can add the term for the free
gauge field for completeness, if you like, but this is not important for the point that we want
to make here.) Derive the equations of motion starting from this Lagrangian density term and
compare it with the fermion case that you have seen in the lecture.

Exercise 8: Variation of the Free Gauge Field Aµ (homework)

In the lecture we have shown how from the variation of the free gauge field term

Lkin =
1

4
FµνFµν

the Klein-Gordon equation for a free massless boson follows, which can be shown in the physical
Lorentz gauge of electrodynamics. Try to follow the line of arguments step by step starting from
the Euler-Lagrange equations:

∂µ
∂Lkin
∂(∂µAν)

− ∂Lkin
∂Aν

= 0 .

Especially proof the (non-trivial) missing piece that we have not shown in the lecture:

∂µ
∂L

∂(∂µAν)
= ∂µF

µν .
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