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Exercise 21: Green ’s Function of the Dirac Equation (presence)

In the lecture we have introduced the Green’s function K(x−x′) for solving of the inhomogeneous
Dirac equation:

(iγµ∂µ −m)ψ = −eγµAµψ . (1)

where K(x− x′) has the property:

(iγµ∂µ −m)K(x− x′) = δ4(x− x′) (2)

and δ4(x− x′) is the four dimensional delta distribution. Proof that even without knowing the
exact form of K(x− x′), just due to the property of Equation (2) we know that

ψ(x) = −e
∫
K(x− x′)γµAµ(x′)ψ(x′)d4x′ (3)

is a solution of Equation (1) in the point x if ψ(x′) is known in point x′. Note that Equation (3) is
not the solution of Equation (1). But it turns the differential equation into an integral equation.

Exercise 22: Fourier Transform of the Green ’s Function (presence)

Find the concrete form of the Fourier transform

K(x− x′) = (2π)−4
∫
K̃(p)e−ip(x−x

′)d4p

of the Green’s function. Make use of the fact that

δ4(x− x′) ≡ (2π)−4
∫

I4e−ip(x−x
′)d4p

K(x− x′) and K̃(p) are space and momentum space representations of the fermion propagator.
The fermion propagator is a 4 × 4 matrix that acts in the spinor space. It is only defined for
virtual fermions.

Exercise 23: Concrete Solution of the Inhomogeneous Dirac Equation (pre-
sence)

In the lecture we have derived the Green’s function for a forward propagating field with positive
energy (for p0 = E > 0 and t > t′):

K(x− x′) = −i(2π)−3
∫

d3~p
+γ0E − ~γ~p+m

2E
· e−iE(t−t′)+i~p(~x−~x′) (4)

We have implemented this boundary condition for the solution of Equation (1) by our choice of
the integration path. Show explicitly that the solution φ(t, ~x) of Equation (1) does indeed have
the desired time evolution behavior:
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φ(t, ~x) =

{
i
∫

d3~x′K(x− x′)γ0φ(t′, ~x′) for t > t′

0 for t < t′

For this make the ansatz φ(t′, ~x′) = u(k)e−ik0t
′+i~k~x′ for an undisturbed plane wave at (t′, ~x′) and

evolve it from (t′, ~x′) to (t, ~x).
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Exercise 21: Green ’s Function of the Dirac Equation (solution)

We set Equation (3) into the right hand side of Equation (1):

(iγµ∂µ −m)ψ(x) = −e
∫

(iγµ∂µ −m)K(x− x′)︸ ︷︷ ︸ γµAµ(x′)ψ(x′)d4x′

δ4(x− x′)

Integration over x′ leads to

(iγµ∂µ −m)ψ(x) = −eγµAµ(x)ψ(x)

which corresponds ot the right hand side of Equation (3).

Exercise 22: Fourier Transform of the Green ’s Function (solution)

We know the following relations:

(iγµ∂µ −m)K(x− x′) = δ4(x− x′) (Equation (2))

(iγµ∂µ −m)K(x− x′) = (2π)−4
∫

(γµpµ −m) K̃(p)e−ip(x−x
′)d4p

Further-on we can make use of the knowledge of the Fourier transform of the delta distribution

δ4(x− x′) ≡ (2π)−4
∫

I4e−ip(x−x
′)d4p

From the uniqueness of the Fourier transformation we can conclude that

(γµpµ −m) K̃(p) = I4

Keep in mind that also the left hand side of this equation is a 4× 4 matrix in the spinor space.
The inverted matrix can be obtained in an elegant way by multiplication with (γµpµ +m) from
the right:

(γµpµ +m) · (γµpµ −m) K̃(p) = (γµpµ +m) · I4
From this we obtain a form which is close to the final form that we know for the fermion
propagator:

K̃(p) =
(γµpµ +m)

p2 −m2
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Exercise 23: Fourier Transform of the Green ’s Function (solution)

We make use of the explicit form of the Green’s function that has been derived in the lecture:

K(x− x′) = −i(2π)−3
∫

d3~p
+γ0E − ~γ~p+m

2E
· e−iE(t−t′)+i~p(~x−~x′) (Equation (4))

Further-on we make the ansatz

φ(t′, ~x′) = u(k)e−ik0t
′+i~k~x′

for an undisturbed plane wave at (t′, ~x′) that we evolve from (t′, ~x′) to (t, ~x). We set both into
the general solution of Equation (1) and obtain:

φ(t, x) = i

∫
d~x′K(x− x′)γ0φ(t′, ~x′)

= i

∫
d~x′−i(2π)−3

∫
d3~p

+γ0E − ~γ~p+m

2E
· e−iE(t−t′)+i~p(~x−~x′)︸ ︷︷ ︸ γ0 u(k)e−ik0t

′+i~k~x′︸ ︷︷ ︸
K(x− x′) (t > t′) φ(t′, ~x′)

= −i2
∫

d3~p (2π)−3
∫

d~x′ ei(
~k−~p)~x′︸ ︷︷ ︸

(
+γ0E − ~γ~p+m

)
γ0u(k)

2E
· e−iEt+i~p~x · e−i(k0−E)t′

δ3(~k − ~p)

=

(
γ0k0 − ~γ~k +m

)
γ0u(k)

2k0
· e−ik0t+i~k~x

=
γ0
(
γ0k0 + ~γ~k +m

)
u(k)

2k0
· e−ik0t+i~k~x

= u(k) · e−ik0t+i~k~x

which is, as desired the plane wave at (t, x). Note the replacement of E → k0 due to the
evaluation of δ3(~k − ~p) which in consequence also leads to e−i(k0−E)t′ ≡ 0 in line three of the
equation. In line five of the equation we have swapped γ0 with the term in braces (with the
consequence of a sign flip for ~γ~k in braces). In the last line of the equation we have made use of
the Dirac equation for the free particle solution in the initial state:

(
γ0k0 − ~γ~k −m

)
u(k) = 0(

~γ~k +m
)
u(k) = γ0k0u(k)

The calculation for t < t′ is only different in the use of the “backward propagator” instead of
the “forward propagator” of K(x− x′) to resolve the integral:
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K(x− x′) = −i(2π)−3
∫

d3~p
−γ0E − ~γ~p+m

2E
· e+iE(t−t′)+i~p(~x−~x′)

This has a few sign flips in the above equation as consequence:

φ(t, x) = i

∫
d~x′K(x− x′)γ0φ(t′, ~x′)

= i

∫
d~x′−i(2π)−3

∫
d3~p
−γ0E − ~γ~p+m

2E
· e+iE(t−t′)+i~p(~x−~x′)︸ ︷︷ ︸ γ0 u(k)e−ik0t

′+i~k~x′︸ ︷︷ ︸
K(x− x′) (t < t′) φ(t′, ~x′)

= −i2
∫

d3~p (2π)−3
∫

d~x′ ei(
~k−~p)~x′︸ ︷︷ ︸

(
−γ0E − ~γ~p+m

)
γ0u(k)

2E
· e+iEt+i~p~x · e−i(k0+E)t′

δ3(~k − ~p)

=

(
−γ0k0 − ~γ~k +m

)
γ0u(k)

2k0
· e−ik0t+i~k~x · e−2ik0(t′−t)

=
γ0
(
−γ0k0 + ~γ~k +m

)
u(k)

2k0
· e−ik0t+i~k~x · e−2ik0(t′−t)

= 0

With

(
~γ~k +m

)
u(k) = γ0k0u(k)

the term in braces in the fifth line always equals 0. By the choice of the integration paths we
selected a solution of Equation (1) that corresponds to a field with positive energy that travels
forward in time. In analogy the other solutions given in the lecture can be shown explicitly.
What we have shown by explicit calculation here can also be seen directly from what has been
discussed in the lecture (slides 19ff): Note that for positive energy the pole sits at p0 = +E.
Following the integration path as outlined in the lecture for the evolution forward in time (t > t′)
everything is clear: we close the contour in the lower half-plane (with Im(f)→ −∞) and include
the pole at p0 = +E in the contour. For the evolution backward in time we have to close the
integration contour in the upper half-plane (with Im(f) → +∞). We would include a pole at
p0 = −E if there were any. But we are in the case of positive energy. There is no pole within
the integration contour and the integration result is always 0, irrespective of how we integrate
in this case (as long as we remain above the real axis for p0 > 0).
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