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Schedule for today

Review of the QM 
model of scattering

Perturbative series

Introduction of the propagator

1

3

2

● What is a propagator?

● Is the following statement true: “the 
perturbative series is a Taylor expansion”?
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Lagrangian Density → Observable
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Scattering matrix    transforms initial state 
wave function     into scattering wave        
(                   ). 

QM model of particle scattering

● Consider incoming collimated beam of projectile particles on a target particle:

Initial particle: 
described by plain 
wave    .

Observation (in      ): 
projection of plain wave   
    out of spherical scat-
tering wave         .

Localized potential.

Spherical scat-
tering wave        .
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Scattering matrix    transforms initial state 
wave function     into scattering wave        
(                   ). 

QM model of particle scattering

● Consider incoming collimated beam of projectile particles on a target particle:

Initial particle: 
described by plain 
wave    .

Observation (in      ): 
projection of plain wave   
    out of spherical scat-
tering wave         .

Localized potential.

Spherical scat-
tering wave        .

Observation 
probability: 
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Solution for          

● In the case of fermion scattering the scattering wave         is obtained as a solution of 
the inhomogeneous Dirac equation for an interacting field:

● The inhomogeneous Dirac equation is analytically not solvable.

(+)
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● The inhomogeneous Dirac equation is analytically not solvable. A formal solution can 
be obtained by the Green's Function                :

Solution for          
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● In the case of fermion scattering the scattering wave         is obtained as a solution of 
the inhomogeneous Dirac equation for an interacting field:

(+)

● The inhomogeneous Dirac equation is analytically not solvable. A formal solution can 
be obtained by the Green's Function                :

● This is not a solution to (+), since         appears on the left- and on the right-
hand side of the equation. It turns the differential equation into an integral 
equation. It propagates the solution from the point     to   .

Solution for          
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Green's function in Fourier space

● The best way to find the Green's function is to go to the Fourier space:

(Fourier transform)

Applying the Dirac equation to the Fourier transform of                 turns the 
derivative into a product operator:
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Green's function in Fourier space

● The best way to find the Green's function is to go to the Fourier space:

Applying the Dirac equation to the Fourier transform of                 turns the 
derivative into a product operator:

From the uniqueness of the Fourier transformation the solution for          
follows:

(Fourier transform)
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Fermion propagator

● The Fourier transform of the Green's function is called fermion propagator:

(fermion propagator)

● The fermion propagator is a          matrix, which acts in the Spinor space. 

● It is only defined for virtual fermions since                                               .
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Fermion propagator ↔ Green's function

● The Green's function can be obtained from the propagator by inverse Fourier 
transformation:

● This integral can be solved with the methods of function theory.  
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Fermion propagator ↔ Green's function

● The Green's function can be obtained from the propagator by inverse Fourier 
transformation:

● This integral can be solved with the methods of function theory.  

●                 has two poles in the integration plane (at               ).
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Excursion into function theory

cf. Freitag/Busam Funktionentheorie

http://www.springer.com/de/book/9783540317647


Institute of Experimental Particle Physics (IEKP)18  

Residual theorem

● When integrating a “well behaved” function w/o poles in the complex plain the path 
integral along any closed path    is 0:

● When integrating a “well behaved” function w/ poles in the complex plain the solution 
is          the sum of “residuals” of the poles surrounded by the path:

No matter how    is chosen, as 
long as it includes                    .

Example:

Example:
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The Green's function (time integration for         )

● For            (                         for                    ):
→ close contour in lower plane & calculate       
     integral from residual of enclosed pole.  

pole at: residual:

● Choose path    in complex plain to circumvent 
poles:

Sign due to sense of 
integration.
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The Green's function (time integration for         )

● For            (                         for                    ):
→ close contour in lower plane & calculate       
     integral from residual of enclosed pole.  

● Choose path    in complex plain to circumvent 
poles:
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The Green's function (time integration for         )

● For            (                         for                    ):
→ close contour in upper plane & calculate       
     integral from residual of enclosed pole.  

● Choose path    in complex plain to circumvent 
poles:

pole at: residual:
Sign due to sense of 
integration.
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The Green's function (time integration for         )

● For            (                         for                    ):
→ close contour in upper plane & calculate       
     integral from residual of enclosed pole.  

● Choose path    in complex plain to circumvent 
poles:
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The Green's function (time integration for         )

● For            (                         for                    ):
→ close contour in upper plane & calculate       
     integral from residual of enclosed pole.  

● Choose path    in complex plain to circumvent 
poles:

Sign due to                in 
integral kernel.
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The Green's function (Nota Bene)

● The bending of the integration path can be 
avoided by shifting the poles by   .

● Choose path    in complex plain to circumvent 
poles:
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The Green's function (Nota Bene)

● The bending of the integration path can be 
avoided by shifting the poles by   .

● Choose path    in complex plain to circumvent 
poles:
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The Green's function (Nota Bene)

● The bending of the integration path can be 
avoided by shifting the poles by   .

● Choose path    in complex plain to circumvent 
poles:

(fermion propagator)
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Summary of time evolution

(Fermion propagator in momentum 
space)

● Green's function (for         , forward evolution):

● Green's function (for         , backward evolution):

● But why did I choose explicitly THIS integration path and not another one?
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Summary of time evolution

(Fermion propagator in momentum 
space)

● The chosen integration path defines the time 
evolution of the solution.

particle w/ pos. energy 
traveling forward in time.

particle w/ pos. energy 
traveling backward in time.

● General solution to (inhomogeneous) Dirac equation:

particle w/ neg. energy 
traveling forward in time.

particle w/ neg. energy 
traveling backward in time.
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The perturbative series
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The perturbative series

● The integral equation can be solved iteratively:

● 0th order perturbation theory:

(       = solution of 
the homogeneous 
Dirac equation)

● Just take        as 
solution (→ boring).
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The perturbative series

● The integral equation can be solved iteratively:

● 0th order perturbation theory:

● 1st order perturbation theory:

(       = solution of 
the homogeneous 
Dirac equation)

● Just take        as 
solution (→ boring).

● Assume that             is  
close enough to actual 
solution on RHS.
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The perturbative series

● The integral equation can be solved iteratively:

● 0th order perturbation theory:

● 1st order perturbation theory:

● 2nd order perturbation theory:

(       = solution of 
the homogeneous 
Dirac equation)

● Just take        as 
solution (→ boring).

● Assume that             is  
close enough to actual 
solution on RHS.

● Take             as better 
approximation at RHS 
to solve inhomogene-
ous equation.
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The perturbative series

● The integral equation can be solved iteratively:

● 0th order perturbation theory:

● 1st order perturbation theory:

● 2nd order perturbation theory:

(       = solution of 
the homogeneous 
Dirac equation)

● Just take        as 
solution (→ boring).

● Assume that             is  
close enough to actual 
solution on RHS.
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The perturbative series

● The integral equation can be solved iteratively:

● 0th order perturbation theory:

● 1st order perturbation theory:

● 2nd order perturbation theory:

(       = solution of 
the homogeneous 
Dirac equation)

This procedure is justified since   
                                             .

● Just take        as 
solution (→ boring).

● Assume that             is  
close enough to actual 
solution on RHS.



Institute of Experimental Particle Physics (IEKP)35  

The matrix element 

●      is obtained from the projection of the scattering wave         on                  :

● 1st order perturbation theory:

“LO” “NLO”

cf. slide 7

cf. slide 28

For           and            respectively.

NB: the time integration has already been carried out for the backward 
evolution from     to   to arrive at the equation of slide 28.
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The matrix element 

●      is obtained from the projection of the scattering wave         on                  :

● 1st order perturbation theory:

This corresponds exactly to the IA term in    , including 
the multiplication by   (cf. Lecture-05 slide 39).

“LO” “NLO”

(1st order matrix element)

http://www-ekp.physik.uni-karlsruhe.de/~quast/vorlesung/TP2HiggsSS16/Higgs-VL-05-HiggsMechanism.pdf
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Concluding Remarks

● Amplitude of scattering processes can be obtained from a QM model via 
perturbation theory.

● Introduced propagator as formal solution of the equation of motion for fermion 
case. 

(1st order matrix element)

● Derived 1st order matrix element.

We are not yet done: since projectile is back-
scattered            also evolves! This part will be 
discussed during the next lecture.

● In the next lecture we will complete the picture of Feynman rules for the simple 
example of electron scattering. 
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Backup
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