From Lagrangian Density to Observable

Roger Wolf

19. Mai 2016

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) - PHYSICS FACULTY

KIT - University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Schedule for today

-What is a propagator?

- Is the following statement true: "the perturbative series is a Taylor expansion"?

3 Perturbative series
(2) Introduction of the propagator

1 Review of the QM model of scattering

Lagrangian Density \rightarrow Observable

QM model of particle scattering

- Consider incoming collimated beam of projectile particles on a target particle:

Scattering matrix \mathcal{S} transforms initial state wave function ϕ_{i} into scattering wave $\psi_{\text {scat }}$ $\left(\psi_{\text {scat }}=\mathcal{S} \cdot \phi_{i}\right)$.

Observation (in $\Delta \Omega$):
projection of plain wave
ϕ_{f} out of spherical scat-
tering wave $\psi_{\text {scat }}$.

Initial particle: described by plain wave ϕ_{i}.

QM model of particle scattering

- Consider incoming collimated beam of projectile particles on a target particle:

Scattering matrix \mathcal{S} transforms initial state wave function ϕ_{i} into scattering wave $\psi_{\text {scat }}$ $\left(\psi_{\text {scat }}=\mathcal{S} \cdot \phi_{i}\right)$.

Observation (in $\Delta \Omega$): projection of plain wave ϕ_{f} out of spherical scattering wave $\psi_{\text {scat }}$.

Observation probability:
$\mathcal{S}_{f i}=\phi_{f}^{\dagger} \cdot \psi_{\text {scat }}$
$=\phi_{f}^{\dagger} \cdot \mathcal{S} \cdot \phi_{i}$

Spherical scattering wave $\psi_{\text {scat }}$.

Initial particle: described by plain wave ϕ_{i}.

Solution for $\psi_{\text {scat }}$

- In the case of fermion scattering the scattering wave $\psi_{\text {scat }}$ is obtained as a solution of the inhomogeneous Dirac equation for an interacting field:

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi_{\text {scat }}=-e \gamma^{\mu} A_{\mu} \psi_{\text {scat }} \tag{+}
\end{equation*}
$$

- The inhomogeneous Dirac equation is analytically not solvable.
- In the case of fermion scattering the scattering wave $\psi_{\text {scat }}$ is obtained as a solution of the inhomogeneous Dirac equation for an interacting field:

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi_{\text {scat }}=-e \gamma^{\mu} A_{\mu} \psi_{\text {scat }} \tag{+}
\end{equation*}
$$

- The inhomogeneous Dirac equation is analytically not solvable. A formal solution can be obtained by the Green's Function $K\left(x-x^{\prime}\right)$:

$$
\begin{aligned}
& \left(i \gamma^{\mu} \partial_{\mu}-m\right) K\left(x-x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right) \\
& \psi_{\text {scat }}(x)=-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
\end{aligned}
$$

Solution for $\psi_{\text {scat }}$

- In the case of fermion scattering the scattering wave $\psi_{\text {scat }}$ is obtained as a solution of the inhomogeneous Dirac equation for an interacting field:

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi_{\text {scat }}=-e \gamma^{\mu} A_{\mu} \psi_{\text {scat }} \tag{+}
\end{equation*}
$$

- The inhomogeneous Dirac equation is analytically not solvable. A formal solution can be obtained by the Green's Function $K\left(x-x^{\prime}\right)$:

$$
\begin{aligned}
& \left(i \gamma^{\mu} \partial_{\mu}-m\right) K\left(x-x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right) \\
& \psi_{\text {scat }}(x)=-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi_{\text {scat }}(x) & =-e \int \underbrace{\left.i \gamma^{\mu} \partial_{\mu}-m\right) K\left(x-x^{\prime}\right.}_{\delta^{4}\left(x-x^{\prime}\right)}) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime} \\
& =-e \gamma^{\mu} A_{\mu}(x) \psi_{\text {scat }}(x)
\end{aligned}
$$

- In the case of fermion scattering the scattering wave $\psi_{\text {scat }}$ is obtained as a solution of the inhomogeneous Dirac equation for an interacting field:

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi_{\text {scat }}=-e \gamma^{\mu} A_{\mu} \psi_{\text {scat }} \tag{+}
\end{equation*}
$$

- The inhomogeneous Dirac equation is analytically not solvable. A formal solution can be obtained by the Green's Function $K\left(x-x^{\prime}\right)$:

- This is not a solution to (+), since $\psi_{\text {scat }}$ appears on the left- and on the righthand side of the equation. It turns the differential equation into an integral equation. It propagates the solution from the point x^{\prime} to x.

Green's function in Fourier space

- The best way to find the Green's function is to go to the Fourier space:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \tilde{K}(p) e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p
$$

(Fourier transform)
Applying the Dirac equation to the Fourier transform of $K\left(x-x^{\prime}\right)$ turns the derivative into a product operator:

Green's function in Fourier space

- The best way to find the Green's function is to go to the Fourier space:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \tilde{K}(p) e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p
$$

(Fourier transform)
Applying the Dirac equation to the Fourier transform of $K\left(x-x^{\prime}\right)$ turns the derivative into a product operator:

Green's function in Fourier space

- The best way to find the Green's function is to go to the Fourier space:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \tilde{K}(p) e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p
$$

(Fourier transform)
Applying the Dirac equation to the Fourier transform of $K\left(x-x^{\prime}\right)$ turns the derivative into a product operator:

Green's function in Fourier space

Karlsruhe Institute of Technology

- The best way to find the Green's function is to go to the Fourier space:

$$
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \tilde{K}(p) e^{-i p\left(x-x^{\prime}\right)} \mathrm{d}^{4} p
$$

(Fourier transform)
Applying the Dirac equation to the Fourier transform of $K\left(x-x^{\prime}\right)$ turns the derivative into a product operator:

From the uniqueness of the Fourier transformation the solution for $\tilde{K}(p)$ follows:

$$
\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)=\mathbb{I}_{4}
$$

Fermion propagator

- The Fourier transform of the Green's function is called fermion propagator:

$$
\begin{aligned}
& \left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)=\mathbb{I}_{4} \\
& \left(\gamma^{\mu} p_{\mu}+m\right) \cdot\left(\gamma^{\mu} p_{\mu}-m\right) \tilde{K}(p)=\left(\gamma^{\mu} p_{\mu}+m\right) \cdot \mathbb{I}_{4}
\end{aligned}
$$

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}}
$$

(fermion propagator)

- The fermion propagator is a 4×4 matrix, which acts in the Spinor space.
- It is only defined for virtual fermions since $p^{2}-m^{2}=E^{2}-\vec{p}^{2}-m^{2} \neq 0$.

Fermion propagator \leftrightarrow Green's function

- The Green's function can be obtained from the propagator by inverse Fourier transformation:

$$
\begin{gathered}
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \mathrm{~d}^{3} \vec{p} e^{i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)} \int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)} \\
E=\sqrt{\vec{p}^{2}+m^{2}}
\end{gathered}
$$

- This integral can be solved with the methods of function theory.

Fermion propagator \leftrightarrow Green's function

- The Green's function can be obtained from the propagator by inverse Fourier transformation:

$$
\begin{gathered}
K\left(x-x^{\prime}\right)=(2 \pi)^{-4} \int \mathrm{~d}^{3} \vec{p} e^{i \vec{p}\left(\vec{x}-\overrightarrow{x^{\prime}}\right)} \int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)} \\
E=\sqrt{\vec{p}^{2}+m^{2}}
\end{gathered}
$$

- This integral can be solved with the methods of function theory.
- $K\left(x-x^{\prime}\right)$ has two poles in the integration plane (at $p_{0}= \pm E$).

Excursion into function theory

cf. Freitag/Busam Funktionentheorie

Residual theorem

- When integrating a "well behaved" function w/o poles in the complex plain the path integral along any closed path \mathcal{C} is 0 :

Example: $\oint_{\mathcal{C}} z^{2} \mathrm{~d} z=0$

- When integrating a "well behaved" function w/ poles in the complex plain the solution is $2 \pi i \times$ the sum of "residuals" of the poles surrounded by the path:

Example: $\oint_{\mathcal{C}} \frac{R}{z} \mathrm{~d} z=2 \pi i \times R$
No matter how \mathcal{C} is chosen, as long as it includes $z=(0+i 0)$.

The Green's function (time integration for $t>t^{\prime}$)

- Choose path \mathcal{C} in complex plain to circumvent poles:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- For $t>t^{\prime}\left(e^{-i p_{0}\left(t-t^{\prime}\right)} \rightarrow 0\right.$ for $\left.\operatorname{Im}\left(p_{0}\right) \ll 0\right)$:

\rightarrow close contour in lower plane \& calculate integral from residual of enclosed pole.

$$
\oint_{\mathcal{C}} \mathrm{d} p_{0} \underbrace{\frac{1}{p_{0}-E}}_{\begin{array}{l}
\text { pole at: } \\
p_{0}=+E
\end{array}} \cdot \underbrace{\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p_{0}+E} e^{-i p_{0}\left(t-t^{\prime}\right)}}_{\text {residual: } f\left(p_{0}\right)}=-\left.2 \pi i \cdot f\left(p_{0}\right)\right|_{p_{0}=+E}
$$

The Green's function (time integration for $t>t^{\prime}$)

- Choose path \mathcal{C} in complex plain to circumvent poles:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- For $t>t^{\prime}\left(e^{-i p_{0}\left(t-t^{\prime}\right)} \rightarrow 0\right.$ for $\left.\operatorname{Im}\left(p_{0}\right) \ll 0\right)$:

\rightarrow close contour in lower plane \& calculate integral from residual of enclosed pole.

$$
\oint_{\mathcal{C}} \mathrm{d} p_{0} \frac{1}{p_{0}-E} \cdot \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p_{0}+E} e^{-i p_{0}\left(t-t^{\prime}\right)}=-\left.2 \pi i \cdot f\left(p_{0}\right)\right|_{p_{0}=+E}
$$

$$
K\left(x-x^{\prime}\right)=-i(2 \pi)^{-3} \int \mathrm{~d}^{3} \vec{p} \frac{+\gamma^{0} E-\vec{\gamma} \vec{p}+m}{2 E} \cdot e^{-i E\left(t-t^{\prime}\right)+i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)}
$$

The Green's function (time integration for $t<t^{\prime}$)

- Choose path \mathcal{C} in complex plain to circumvent poles:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- For $t<t^{\prime}\left(e^{+i p_{0}\left(t-t^{\prime}\right)} \rightarrow 0\right.$ for $\left.\operatorname{Im}\left(p_{0}\right) \gg 0\right)$:
\rightarrow close contour in upper plane \& calculate integral from residual of enclosed pole.

$$
\oint_{\mathcal{C}} \mathrm{d} p_{0} \underbrace{\frac{1}{p_{0}+E}}_{\begin{array}{c}
\text { pole at: } \\
p_{0}=-E
\end{array}} \cdot \underbrace{\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p_{0}-E} e^{-i p_{0}\left(t-t^{\prime}\right)}}_{\text {residual: } f\left(p_{0}\right)}=+\left.2 \pi i \cdot f\left(p_{0}\right)\right|_{p_{0}=-E}
$$

The Green's function (time integration for $t<t^{\prime}$)

- Choose path \mathcal{C} in complex plain to circumvent poles:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- For $t<t^{\prime}\left(e^{+i p_{0}\left(t-t^{\prime}\right)} \rightarrow 0\right.$ for $\left.\operatorname{Im}\left(p_{0}\right) \gg 0\right)$:
\rightarrow close contour in upper plane \& calculate integral from residual of enclosed pole.

$$
\oint_{\mathcal{C}} \mathrm{d} p_{0} \frac{1}{p_{0}+E} \cdot \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p_{0}-E} e^{-i p_{0}\left(t-t^{\prime}\right)}=+\left.2 \pi i \cdot f\left(p_{0}\right)\right|_{p_{0}=-E}
$$

$$
K\left(x-x^{\prime}\right)=-i(2 \pi)^{-3} \int \mathrm{~d}^{3} \vec{p} \frac{-\gamma^{0} E-\vec{\gamma} \vec{p}+m}{2 E} \cdot e^{+i E\left(t-t^{\prime}\right)+i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)}
$$

The Green's function (time integration for $t<t^{\prime}$)

- Choose path \mathcal{C} in complex plain to circumvent poles:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- For $t<t^{\prime}\left(e^{+i p_{0}\left(t-t^{\prime}\right)} \rightarrow 0\right.$ for $\left.\operatorname{Im}\left(p_{0}\right) \gg 0\right)$:
\rightarrow close contour in upper plane \& calculate integral from residual of enclosed pole.

$$
\oint_{\mathcal{C}} \mathrm{d} p_{0} \frac{1}{p_{0}+E} \cdot \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p_{0}-E} e^{-i p_{0}\left(t-t^{\prime}\right)}=+\left.2 \pi i \cdot f\left(p_{0}\right)\right|_{p_{0}=-E}
$$

$$
K\left(x-x^{\prime}\right)=-i(2 \pi)^{-3} \int \mathrm{~d}^{3} \vec{p} \frac{-\gamma^{0} E-\vec{\gamma} \vec{p}+m}{2 E} \cdot e^{+i E\left(t-t^{\prime}\right)+i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)}
$$

The Green's function (Nota Bene)

- Choose path \mathcal{C} in complex plain to circumvent poles:

- The bending of the integration path can be avoided by shifting the poles by ϵ.

$$
\begin{aligned}
{\left[p_{0}+\left(E-\frac{i \epsilon}{2 E}\right)\right] \cdot\left[p_{0}-\left(E-\frac{i \epsilon}{2 E}\right)\right] } & =p_{0}^{2}-\left(\vec{p}^{2}+m^{2}\right)+i \epsilon \\
& =p^{2}-m^{2}+i \epsilon
\end{aligned}
$$

The Green's function (Nota Bene)

- Choose path \mathcal{C} in complex plain to circumvent poles:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- The bending of the integration path can be avoided by shifting the poles by ϵ.

$$
\begin{aligned}
{\left[p_{0}+\left(E-\frac{i \epsilon}{2 E}\right)\right] \cdot\left[p_{0}-\left(E-\frac{i \epsilon}{2 E}\right)\right] } & =p_{0}^{2}-\left(\vec{p}^{2}+m^{2}\right)+i \epsilon \\
& =p^{2}-m^{2}+i \epsilon
\end{aligned}
$$

The Green's function (Nota Bene)

- Choose path \mathcal{C} in complex plain to circumvent poles:

$$
\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{\left(p_{0}-E\right)\left(p_{0}+E\right)} e^{-i p_{0}\left(t-t^{\prime}\right)}
$$

- The bending of the integration path can be avoided by shifting the poles by ϵ.

$$
\begin{aligned}
{\left[p_{0}+\left(E-\frac{i \epsilon}{2 E}\right)\right] \cdot\left[p_{0}-\left(E-\frac{i \epsilon}{2 E}\right)\right] } & =p_{0}^{2}-\left(\vec{p}^{2}+m^{2}\right)+i \epsilon \\
& =p^{2}-m^{2}+i \epsilon
\end{aligned}
$$

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}+i \epsilon} \quad \epsilon>0
$$

(fermion propagator)

Summary of time evolution

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}+i \epsilon} \quad \epsilon>0
$$

(Fermion propagator in momentum space)

- Green's function (for $t>t^{\prime}$, forward evolution):

$$
K\left(x-x^{\prime}\right)=-i(2 \pi)^{-3} \int \mathrm{~d}^{3} \vec{p} \frac{+\gamma^{0} E-\vec{\gamma} \vec{p}+m}{2 E} \cdot e^{-i E\left(t-t^{\prime}\right)+i \vec{p}\left(\vec{x}-\overrightarrow{x^{\prime}}\right)}
$$

- Green's function (for $t<t^{\prime}$, backward evolution):

$$
K\left(x-x^{\prime}\right)=-i(2 \pi)^{-3} \int \mathrm{~d}^{3} \vec{p} \frac{-\gamma^{0} E-\vec{\gamma} \vec{p}+m}{2 E} \cdot e^{+i E\left(t-t^{\prime}\right)+i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)}
$$

- But why did I choose explicitly THIS integration path and not another one?

Summary of time evolution

$$
\tilde{K}(p)=\frac{\left(\gamma^{\mu} p_{\mu}+m\right)}{p^{2}-m^{2}+i \epsilon} \quad \epsilon>0
$$

- The chosen integration path defines the time evolution of the solution.
(Fermion propagator in momentum space)
- General solution to (inhomogeneous) Dirac equation:

$$
\phi(t, \vec{x})=\left\{\begin{array}{ll}
i \int \mathrm{~d}^{3} \vec{x}^{\prime} K\left(x-x^{\prime}\right) \gamma^{0} \phi\left(t^{\prime}, \vec{x}^{\prime}\right) & \text { for } t>t^{\prime} \\
0 & \text { for } t<t^{\prime}
\end{array} \text { particle w/ pos. energy }\right. \text { traveling forward in time. }
$$

$$
\bar{\phi}(t, \vec{x})=\left\{\begin{array}{lll}
0 & \text { for } t>t^{\prime} & \text { particle w/ pos. energy } \\
i \int \mathrm{~d}^{3} \vec{x}^{\prime} \bar{\phi}\left(t^{\prime}, \vec{x}^{\prime}\right) \gamma^{0} K\left(x-x^{\prime}\right) & \text { for } t<t^{\prime} & \text { traveling backward in time. }
\end{array}\right.
$$

$$
\phi(t, \vec{x})=\left\{\begin{array}{lll}
0 & \text { for } t>t^{\prime} & \text { particle w/ neg. energy } \\
i \int \mathrm{~d}^{3} \vec{x}^{\prime} K\left(x-x^{\prime}\right) \gamma^{0} \phi\left(t^{\prime}, \vec{x}^{\prime}\right) & \text { for } t<t^{\prime} & \text { traveling forward in time. }
\end{array}\right.
$$

$$
\bar{\phi}(t, \vec{x})=\left\{\begin{array}{lll}
i \int \mathrm{~d}^{3} \vec{x}^{\prime} \bar{\phi}\left(t^{\prime}, \vec{x}^{\prime}\right) \gamma^{0} K\left(x-x^{\prime}\right) & \text { for } t>t^{\prime} & \text { particle w/ neg. energy } \\
0 & \text { for } t<t^{\prime} & \text { traveling backward in time. }
\end{array}\right.
$$

The perturbative series

The perturbative series

- The integral equation can be solved iteratively:

$$
\psi_{\text {scat }}(x)=\phi(x)-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
$$

- $0^{\text {th }}$ order perturbation theory:

$$
\psi^{(0)}(x)=\phi(x)
$$

($\phi(x)=$ solution of the homogeneous Dirac equation)

- Just take $\phi(x)$ as solution (\rightarrow boring).

The perturbative series

- The integral equation can be solved iteratively:

$$
\psi_{\text {scat }}(x)=\phi(x)-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
$$

- $0^{\text {th }}$ order perturbation theory:

$$
\psi^{(0)}(x)=\phi(x)
$$

- $1^{\text {st }}$ order perturbation theory:

$$
\begin{aligned}
\psi^{(1)}(x) & =\psi^{(0)}(x) \\
& -e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
\end{aligned}
$$

($\phi(x)=$ solution of the homogeneous Dirac equation)

- Just take $\phi(x)$ as solution (\rightarrow boring).
- Assume that $\psi^{(0)}(x)$ is close enough to actual solution on RHS.

The perturbative series

- The integral equation can be solved iteratively:

$$
\psi_{\text {scat }}(x)=\phi(x)-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
$$

- $0^{\text {th }}$ order perturbation theory:
$\psi^{(0)}(x)=\phi(x)$
- $1^{\text {st }}$ order perturbation theory:

$$
\begin{aligned}
\psi^{(1)}(x) & =\psi^{(0)}(x) \\
& -e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
\end{aligned}
$$

- $2^{\text {nd }}$ order perturbation theory:

$$
\begin{aligned}
\psi^{(2)}(x) & =\psi^{(0)}(x) \\
& -e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(1)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
\end{aligned}
$$

($\phi(x)=$ solution of the homogeneous Dirac equation)

- Just take $\phi(x)$ as solution (\rightarrow boring).
- Assume that $\psi^{(0)}(x)$ is close enough to actual solution on RHS.
- Take $\psi^{(1)}(x)$ as better approximation at RHS to solve inhomogeneous equation.

The perturbative series

- The integral equation can be solved iteratively:

$$
\psi_{\text {scat }}(x)=\phi(x)-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
$$

- $0^{\text {th }}$ order perturbation theory:

$$
\psi^{(0)}(x)=\phi(x)
$$

($\phi(x)=$ solution of the homogeneous Dirac equation)

- Just take $\phi(x)$ as solution (\rightarrow boring).
- Assume that $\psi^{(0)}(x)$ is close enough to actual solution on RHS.
- $2^{\text {nd }}$ order perturbation theory:

$$
\begin{aligned}
\psi^{(2)}(x) & =\psi^{(0)}(x) \\
& -e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime} \\
& +e^{2} \iint K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) K\left(x^{\prime}-x^{\prime \prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime \prime}\right) \psi^{(0)}\left(x^{\prime \prime}\right) \mathrm{d}^{4} x^{\prime} \mathrm{d}^{4} x^{\prime \prime}
\end{aligned}
$$

The perturbative series

- The integral equation can be solved iteratively:

$$
\psi_{\text {scat }}(x)=\phi(x)-e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi_{\text {scat }}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime}
$$

- $0^{\text {th }}$ order perturbation theory:

$$
\psi^{(0)}(x)=\phi(x)
$$

($\phi(x)=$ solution of the homogeneous Dirac equation)

- Just take $\phi(x)$ as solution (\rightarrow boring).
- Assume that $\psi^{(0)}(x)$ is close enough to actual solution on RHS.
- $2^{\text {nd }}$ order perturbation theory:

$$
\begin{array}{rl|l}
\psi^{(2)}(x) & =\psi^{(0)}(x) & \begin{array}{c}
\text { This procedure is just } \\
e=\sqrt{4 \pi \alpha} \approx \sqrt{4 \pi / 13}
\end{array} \\
& -e \int K\left(x-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \psi^{(0)}\left(x^{\prime}\right) \mathrm{d}^{4} x^{\prime} &
\end{array}
$$

The matrix element $\mathcal{S}_{f i}$

- $\mathcal{S}_{f i}$ is obtained from the projection of the scattering wave $\psi_{\text {scat }}$ on $\phi_{f}=\phi\left(x_{f}\right)$:

$$
\begin{aligned}
& \mathcal{S}_{f i}=\int \mathrm{d}^{4} x_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \psi_{\text {scat }}\left(x_{f}\right)=\int \mathrm{d}^{4} x_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \mathcal{S} \phi_{i}\left(x_{f}\right) \\
&=\delta_{f i}+\mathcal{S}_{f i}^{(1)}+\mathcal{S}_{f i}^{(2)}+\ldots \\
& \hline \mathbf{L O} "
\end{aligned}
$$

- $1^{\text {st }}$ order perturbation theory:

$$
\equiv \phi_{f}\left(x_{f}\right)=\phi\left(x_{f}\right)
$$

$$
\mathcal{S}_{f i}^{(1)}=-e \int \mathrm{~d}^{4} x^{\prime} \int \underbrace{\mathrm{d}^{4} x_{f} \phi_{f}^{\dagger}\left(x_{f}\right) K\left(x_{f}-x^{\prime}\right.}_{\equiv-i \bar{\phi}_{f}\left(x^{\prime}\right)=-i \bar{\phi}\left(x_{f}\right)}) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi_{i}\left(x^{\prime}\right)
$$

For $E>0$ and $t_{f}>t^{\prime}$ respectively.

$$
\begin{array}{ll}
\phi\left(x_{f}\right)=-e \int \mathrm{~d}^{4} x^{\prime} K\left(x_{f}-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi\left(x^{\prime}\right) & \text { cf. slide } 7 \\
\bar{\phi}\left(x^{\prime}\right)=i \int \mathrm{~d}^{3} \vec{x} \bar{\phi}\left(x_{f}\right) \gamma^{0} K\left(x^{\prime}-x_{f}\right)=-i \int \mathrm{~d}^{3} \vec{x}_{f} \bar{\phi}\left(x_{f}\right) \gamma^{0} K\left(x_{f}-x^{\prime}\right) & \text { cf. slide } 28
\end{array}
$$

The matrix element $\mathcal{S}_{f i}$

Karlsruhe Institute of Technology

- $\mathcal{S}_{f i}$ is obtained from the projection of the scattering wave $\psi_{\text {scat }}$ on $\phi_{f}=\phi\left(x_{f}\right)$:

$$
\begin{aligned}
& \mathcal{S}_{f i}=\int \mathrm{d}^{4} x_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \psi_{\text {scat }}\left(x_{f}\right)=\int \mathrm{d}^{4} x_{f} \phi_{f}^{\dagger}\left(x_{f}\right) \mathcal{S} \phi_{i}\left(x_{f}\right) \\
&=\delta_{f i}+\mathcal{S}_{f i}^{(1)}+\mathcal{S}_{f i}^{(2)}+\ldots \\
& \text { "LO" }
\end{aligned}
$$

- $1^{\text {st }}$ order perturbation theory:
$\mathcal{S}_{f i}^{(1)}=-e \int \mathrm{~d}^{4} x^{\prime} \int \mathrm{d}^{3} x_{f} \phi_{f}^{\dagger}\left(x_{f}\right) K\left(x_{f}-x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi_{i}\left(x^{\prime}\right)$

$$
\mathcal{S}_{f i}^{(1)}=i \cdot \int \mathrm{~d}^{4} x^{\prime} e \bar{\phi}_{f}\left(x^{\prime}\right) \gamma^{\mu} A_{\mu}\left(x^{\prime}\right) \phi_{i}\left(x^{\prime}\right)
$$

This corresponds exactly to the IA term in \mathcal{L}, including the multiplication by i (cf. Lecture-05 slide 39).

Concluding Remarks

- Amplitude of scattering processes can be obtained from a QM model via perturbation theory.
- Introduced propagator as formal solution of the equation of motion for fermion case.
- Derived $1^{\text {st }}$ order matrix element.

We are not yet done: since projectile is back-

- In the next lecture we will complete the picture of Feynman rules for the simple example of electron scattering.

Backup

