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Schedule for today

Completion of cross 
section calculation

Intrinsic bounds on the 
Higgs boson mass in the 
SM

Discussion of higher order 
effects in perturbation theory

1

3

2

● Does a Feynman diagram have a time 
direction? If yes, what is it?
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The perturbative series
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The perturbative series

● The integral equation can be solved iteratively:

● 0th order perturbation theory:

● 1st order perturbation theory:

● 2nd order perturbation theory:

(       = solution of 
the homogeneous 
Dirac equation)

● Just take        as 
solution (→ boring).

● Assume that             is  
close enough to actual 
solution on RHS.

● Take             as better 
approximation at RHS 
to solve inhomogene-
ous equation.
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● The integral equation can be solved iteratively:

● 0th order perturbation theory:

● 1st order perturbation theory:

● 2nd order perturbation theory:

(       = solution of 
the homogeneous 
Dirac equation)

● Just take        as 
solution (→ boring).
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The matrix element 

●      is obtained from the projection of the scattering wave         on                  :

● 1st order perturbation theory:

“LO” “NLO”

cf. slide 7

cf. slide 28

For           and            respectively.

NB: the time integration has already been carried out for the backward 
evolution from     to   to arrive at the equation of slide 28.
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The matrix element 

●      is obtained from the projection of the scattering wave         on                  :

● 1st order perturbation theory:

This corresponds exactly to the IA term in    , including 
the multiplication by   (cf. Lecture-05 slide 39).

“LO” “NLO”

(1st order matrix element)

http://www-ekp.physik.uni-karlsruhe.de/~quast/vorlesung/TP2HiggsSS16/Higgs-VL-05-HiggsMechanism.pdf
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The photon propagator 

● The evolution of      happens according to the inhomogeneous wave equation of the 
photon field (in Lorentz gauge                )

● We solve (++) again formally via the Green's function                     with the property: 

(++)
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Green's function in Fourier space (fast forward)

In analogy to the fermion case the defining property of                    in Fourier 
space 

● Check for the concrete form of the Green's function again first in Fourier space:

(Fourier transform)

(omitting the discussion of integral paths) leads to

(photon propagator)

!
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Green's function in Fourier space (fast forward)

● The Green's function can again be obtained from the inverse Fourier transform.

● We have now collected all pieces of 
the puzzle to complete the cross 
section calculation.
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On the way to completion...

● Ansatz for target current: 

target● Combination with photon propagator to get the evolution of     : 

● Ansatz for projectile current:

projectile



Institute of Experimental Particle Physics (IEKP)13  

On the way to completion...

● 1st order matrix element: 

targetprojectile
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The matrix element        (complete picture)

targetprojectile virtual photon 
exchange
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The matrix element        (complete picture)

targetprojectile virtual photon 
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Feynman Rules (QED)

● Feynman diagrams are a way to represent the elements of the matrix element 
calculation: 

● Incoming (outgoing) fermion.

● Incoming (outgoing) photon.

● Fermion propagator.

● Photon propagator.

● Lepton-photon vertex.

Legs:

Vertices:

Propagators:

Four-momenta of all virtual particles have to be integrated out.
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Feynman Rules (QED)

● A Feynman diagram:

● is not just a sketch, it has a strict mathematical correspondence.

● is drawn in momentum space.

● does not have a time direction. Only time information is introduced by choice of 
initial and final state by reader (e.g. t-channel vs s-channel processes). 

● Feynman diagrams are a way to represent the elements of the matrix element 
calculation: 
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Higher order
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Fixed order calculations

● Scattering amplitude       only known in perturbation theory.

● Works better the smaller the perturbation is:

● QED:   

● QFD:   

● QCD:   

● If perturbation theory works well, the first contribution of the scattering amplitude is 
already sufficient to describe the main features of the scattering process. 

● This contribution is of order       . It is often called Tree Level, Born Level or Leading 
Order (LO) scattering amplitude.    

● Any higher order of the scattering amplitude in perturbation theory appears at 
higher orders of       . 
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Order       diagrams (QED)

● We have only discussed contributions to      , which are of order     in QED. (e.g. LO 
              scattering) .

● Diagrams which contribute to order     would look like this:

Additional legs: Loops:

(in propagators or legs) (in vertices)
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Order       diagrams (QED)

● We have only discussed contributions to      , which are of order     in QED. (e.g. LO 
              scattering) .

● Diagrams which contribute to order     would look like this:

Additional legs: Loops:

(in propagators or legs) (in vertices)

● LO term for a           
process.

● NLO contrib. for the     
           process.

● Opens phasespace.

● Modifies (effective) 
masses of particles 
(“running masses”).

● Modifies (effective) 
couplings of particles 
(“running couplings”).
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Examples for “running constants”

● Running of the constants can be 
predicted and are indeed observed.

● One usually gives the value at a 
reference scale (e.g.      ).

● Coupling needs to be measured 
at least in one point.
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Effect of higher order corrections

● Change of over all normalization of cross sections (e.g. via change of coupling, but 
also by kinematic opening of phasespace – large effect).

● Change of kinematic distributions (e.g. harder or softer transverse momentum 
spectrum of particles)
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Effect of higher order corrections

● Change of over all normalization of cross sections (e.g. via change of coupling, but 
also by kinematic opening of phasespace – large effect).

● Change of kinematic distributions (e.g. harder or softer transverse momentum 
spectrum of particles)

● In QED effects are usually “small” (correction to LO is already at            level). In 
QCD effects are usually “large” (            ). Therefore reliable QCD predictions 
almost always require (N)NLO calculations. 

● Higher orders can be mixed (e.g.             ).

● In concrete calculations the number of contributing diagrams quickly explodes for 
higher order calculations, which makes these calculations very difficult.
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Boundaries on Higgs mass within the SM 
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Running of     in the Higgs potential

● Like the couplings    ,      and     also the self-coupling    in the Higgs potential is 
subject to higher order corrections:

(Higgs potential)

(Renormalization group equation at 1-loop 
accuracy)

Higgs top quark

● Since the Higgs boson couples proportional to the mass the high energy behavior 
of    will be dominated by the heaviest object in the loop.
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Running of     in the Higgs potential

● First case: large Higgs mass (                ).

solution

● For                                 we get                              and                  .

● For increasing                 will run into a pole and become non-perturbative. This 
pole is called Landau pole. From the pole an upper bound on       can be obtained 
depending on the scale    .

Higgs top quark
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Triviality bound

● The upper bound on       due to the Landau pole is called triviality bound:

(triviality bound)

● NB: here     indicates up to which scale the SM should be applicable. 



Institute of Experimental Particle Physics (IEKP)33  

The Running of     in the Higgs Potential

● Second case: small Higgs mass (                )

solution

(with:                 )

● With increasing                will turn negative and the Higgs potential will no longer be 
bound from below. The vacuum turns instable. From this turning point we obtain a 
lower bound on       depending on the scale   . 

Higgs top quark

Higgs potential w/ running    .
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Triviality bound & stability bound

● The upper bound on       due to the Landau pole is called triviality bound:

(triviality bound)

(stability bound)

● The lower bound on       is called stability bound:

● Indeed the later search window for the SM Higgs boson was in the range of              
                                    , for these and other reasons.  

● NB: here     indicates up to which scale the SM should be applicable. 
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Intrinsic bounds on 

Higgs potential w/ running    .

Running of    .

The SM in the stress field 
of vacuum stability.
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Intrinsic bounds on 

Higgs potential w/ running    .

What we have found and 
measured for       .

Different levels of fine 
tuning in the SM.
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Concluding Remarks

● Reviewed Feynman rules and calculated cross section for simple QED scattering 
process.

● Briefly discussed effects of higher order corrections in perturbation theory.

● Discussed boundaries on Higgs boson mass immanent to the SM as an 
application of higher order effects on the Higgs self-coupling.

● Note: on Thursday next week will be holiday. On Friday next week there will be 
an Exercise session. The week after we will start with the experimental part of the 
lecture.
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Backup
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