Karlsruher Institut für Technologie

Higgs Boson Physics

From Observable to Measurement

Günter Quast, Roger Wolf

KIT - Universität des Landes Baden-Württemberg und

Matrix element $S_{f f}$ from Feynman Diagram:

$$
i\left(4 \pi^{2} \mathrm{e}\right)^{2} \int \mathrm{~d}^{4} q \delta^{4}\left(p_{3}-p_{1}-q\right) \bar{u}\left(p_{3}\right) \gamma_{\mu} u\left(p_{1}\right) \frac{-q^{\mu \nu}}{q^{2}+i \epsilon} \delta^{4}\left(p_{4}-p_{2}+q\right)(2 \pi)^{4} \bar{u}\left(p_{4}\right) \gamma_{\nu} u\left(p_{2}\right)
$$

Higher Orders contribute

- We have only discussed contributions to $\mathcal{S}_{f i}$, which are of order α^{1} in QED. (e.g. LO $e e \rightarrow e e$ scattering).
- Diagrams which contribute to order α^{2} would look like this:

Additional legs:

- LO term for a $2 \rightarrow 4$ process.
- NLO contrib. for the $2 \rightarrow 2$ process.
- Opens phasespace.

Loops:

(in propagators or legs)

- Modifies (effective) masses of particles ("running masses").

- Modifies (effective) couplings of particles ("running couplings").

Running Couplings

Examples for "running constants"

- Coupling needs to be measured at least in one point.
- One usually gives the value at a reference scale (e.g. m_{Z}).

Bounds on Higgs Mass

Intrinsic bounds on m_{H}

Lecture 5

The simulation chain

from $S_{f i}$ to a representation of real data

Overview: Components of Analysis Chain

Components of Analysis Chain

- Digitizers record data from detector cells
- remove empty cells („zero-suppression" and „noise reduction"
- Trigger and Filter select „interesting" events „on-line"
to be stored for "off-line" analysis (events not stored at this point are lost forever !)
- Reconstruction process constructs physical objects (electrons, muons, jets, ...)
(this and subsequent steps can be repeated many times)
- Pre-selection identifies interesting events and objects in events for further processing and analysis
- Analysis compares measured distributions with theoretical expectations

Experiment	\bullet theoretical calculation of production cross sections e hadronisation of quarks and gluons into jets

- Detector simulation
same reconstruction, selection and analysis steps
for simulated events as for real events

The Observable:

the differential cross section

Reprise: Cross section

cross section:

transition rate initial \rightarrow final state

in theory	experimentally
Fermi's golden rule $\lambda_{i \rightarrow f}=2 \pi\left\|M_{f i}\right\|^{2} \rho$	$\sigma=\frac{N_{c a n d}-N_{b k g}}{\epsilon \cdot f} \frac{1}{T}$
amplitude or "matrix element" of underlying process	$\mathrm{N}_{\text {cand }}$: number of observed events $N_{\text {bkd }}:$ number of expected background events ϵ : acceptance \cdot efficiency
phase space	f : flux T : measurement time
ross Section	
$\sigma=\frac{\|\mathcal{M}\|^{2} \cdot[\text { Phase space }]}{[\text { Colliding particle flux }]}$	

Calculation of differential cross sections

want to understand

$\mathcal{L}_{\text {int }} \rightarrow$ final states
and predict measurable quantities

$$
\frac{\partial \sigma}{\partial O_{i}}=\text { differential cross section }
$$

O_{i} : type, direction of flight (e. g. azimuthal angle and rapidity) energy or momentum, invariant mass of (groups of)
final state particles

Rapidity and invariant cross section

In particle reactions, use rapidity, \mathbf{y}, w.r.t the line of collision of the incident particles: (instead of polar angle θ):

$$
\begin{gathered}
y=\tanh ^{-1} \beta_{z}=\frac{1}{2} \ln \left(\frac{1+\beta_{z}}{1-\beta_{z}}\right)=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right) \\
\beta_{z}=\frac{v_{z}}{c} \text { is the component parallel to } z \text { axis }
\end{gathered}
$$

relation $y \leftrightarrow \beta$ is similar as
α (the angel between a straight line and the x axis) $\leftrightarrow s$ (the slope, with $\alpha=\tan ^{-1}(s)$):

- angles or rapidities are additive, slopes or (relativistic) velocities are not (two subsequent rotations or Lorentz boosts)
- upon a global rotation or Lorentz boost of the coordinate system, difference in angles or rapidities remain constant

At hadron colliders,

where the centre-of-mass system of a collision is not at rest, y is the proper variable
pseudo-rapidity for massless particles: $\eta=-\ln \left[\tan \left(\frac{\theta}{2}\right)\right]$ note: η is easy to measure, y is not !

Rapidity and invariant cross section (2)

As a consequence of the above (dy being Lorentz-invariant w.r.t. boosts in z),
$\frac{d \sigma}{d y}, \frac{d \sigma}{d \phi}$ and hence the double-differential cross section $\frac{d^{2} \sigma}{d y d \phi}$
are Lorentz-invariant w.r.t. boosts in z
$d \sigma$
$\frac{d \sigma}{d \eta}$ is invariant for high-energetic particles with negligible rest mass

Source: Wikipedia

Monte-Carlo Generators

Reprise: the Proton

in fact, the proton is complicated:
composed of

- valence quarks
- sea quarks
- gluons (carry 50\% of momentum)

Precision study of proton composition in electron-proton scattering HERA at DESY in Hamburg

Source: DESY

Reprise: Structure Functions

Parton Densitiy Functions (PDFs) have to be taken into account when calculating cross sections at hadron colliders.
see, e.g., Courses Particle Physics II - Jet Physics

$\mathrm{pp} \rightarrow$ final state is a multi-step process

Calculation of Cross sections

Complicated process - use MC techniques to calculate cross sections, phenomenological modes to describe hadronization process (quarks \rightarrow jets)

Example: simulated Higgs Decay in CMS

Can you see the Higgs?
nice lecture, much more detailed than what can be shown here:
Monte Carlo School 2012, Helmholtz Alliance „Physcis at the Terascale" lecture by Stefan Giesecke, KIT

Technique in particle physics:

- Generate artificial events reflecting all processes in the Lagrangian using the Monte Carlo Technique
- obtain arbitrary distributions from simulated final state particles
- and compare with measurements

Steps of MC simulation

Example: pp collision

Example: pp collision

Example: pp collision

parton shower

Example: pp collision

parton shower

phenomenological:
Lund string model (Pythia)
or
cluster hadronisation (Herwid(++))

Example: pp collision

hadron decays
tedious -
relies on
measurements

Example: pp collision

Multi-parton interactions and underlying event

Summary: pp collision

Example: pp collision

last step:

- process stable particles through detector simulation to obtain „hits" in detector cells;
- run reconstruction software to obtain „reconstructed objects"
- run selection procedures („Analysis") to obtain „identified reconstructed objects"
in total:
true properties of objects from hard process at parton level are folded with
- parton distribution functions,
- hadronization effects,
- detector acceptance and efficiency,
- reconstruction efficiency and resolution,
- identification efficiency and purity
to obtain reconstructed properties
all steps involve multi-dimensional integrations; Monte Carlo is the only choice!

Detector Simulation

Stable Particles in a Detector

Detector registers only „stable particles", i.e. with life times long enough to traverse the detector

7 stable particles:
$\gamma, e, \mu, p, n, \pi^{ \pm}, K^{ \pm}$

Basics: Detector simulation

Tracking of individual interactions of particles

Starting point:

ONE interaction of a SINGLE particle in a volume element $\mathrm{dV}=\mathrm{AdL}$

Interaction probatility w depends on

- cross section σ of a process and
- number N of particles in volume element

$$
d N=A d L \rho N_{A} / m_{M o l}=\rho_{n} A d L
$$

$$
\rightarrow d w=\rho_{n} \sigma d L
$$

Probability, to pass fraction of length L/n without interaction:

$$
1-d w=1-\rho_{n} \sigma L / n
$$

Probatility to pass length L without interaction:

$$
\mathrm{dL}=\mathrm{L} / \mathrm{n}
$$

$$
\mathrm{P}_{\mathrm{o}-\mathrm{ww}}=\left(1-\rho_{n} \sigma L / n\right)^{\mathrm{n}} \rightarrow \exp \left(-\rho_{n} \sigma L\right)
$$

$P_{o-w w}(L)$ describes the free path length in material

Basics: detector simulation (2)

By differentiation one obtains from $\mathrm{P}_{\mathrm{o}-\mathrm{ww}}$ the probability density of the path in matter to the first interaction:

$$
w(L)=\rho_{n} \sigma \exp \left(-\rho_{n} \sigma L\right)=\frac{1}{\lambda} \exp (-L / \lambda)
$$

$$
\lambda=\left(\rho_{n} \sigma\right)^{-1}: \text { interaction length }
$$

The interaction length in materials with multiple components is given by the inverse sum over the individual densities and interaction lengths

$$
\lambda=\left(\sum_{j}\left[\rho_{n_{j}} \sigma\left(Z_{j}, E\right)\right]\right)^{-1}=\left(\sum_{j} \frac{1}{\lambda_{j}}\right)^{-1}
$$

$\boldsymbol{\lambda}$ is an important property of materials
Clearly, λ depends on the kind of processes considered!

Basics: detector simulation (3)

a simple algorithm for tracking of particle reactions:

1. choose particle from list of particles
2. set initial parameres of particle (type, position, four-moment)
3. calculate λ from ρ_{n} and σ for given material
4. generate random paht lenth L according to density $w(L)$
5. propagate particle by length L or to the next material boundary, taking into account deflections from multiple scattering and electrical or magnetic fields
6. if still inside the same material:
let process take place at calculated position and

- add newly generated particles to list
- if original particle still exists
is its energy > given "cut off"
? yes: go to 2
? no: done with this object; add energy as energy deposit to material element and remove particle from list
eventually, additional random numbers are needed:
- energy loss of particle along path,
- new parameters of particle at the end of the step
- initial parameters of new particles

Basics: detectors imulation (4)

What if there are many Processes $1, \ldots, p$?
1., 2. as above
3.' determine all interaction lengths $\lambda_{1}, \ldots, \lambda_{p}$
4.' draw p random numbers and caclulate L_{p}, determine $L_{i}=\min \left(L_{p}\right), 1 \leq i \leq p$
5.' propageta particle by length L_{i}
6.' let process i take place

Detector simulation - wrap up

what's needed:

- a list of relevant processes for each particle type (for short-lived particles, their lifetime and decay topologies also is such a "process")
- properties of materials
- cross section for each process depending on parameters of particle and material properties
- propagation rules for particles in materials and fields
- treatment of boundaries:

\rightarrow geometrie of detektor volumes and description of complex detectors

- recording of energy deposited in volume elements and simulation of the amount of generated charge or light
- for short-lived particles:
list of life times and branching fractions

This, and a lot more, is provided by the simulations framework GEANT

The simulation framework Geant

Geant 4

- a world-wide Collaboration
- open-source Tool-Kit from particle physics
- definition of gemometres and materials
- Tracking of particles in material taking into account a large number of physics processes
- visualisation
- Open interfaces for input/output, storage of geerated data („persistence")

Began 1994 as a development project, first release 1998 predecessor: Geant 3 (FORTRAN package), applications in nuclear, particle and astro particle physics, medicine and many others
see http://geant4.cern.ch/
documention, tutorials, code ...
at EKP, we packed Geant4 in a virtual machine

Own applicatoins

Geant4 is a very powerful and hence complex tool \rightarrow familiarization takes much time
Geant4 is used by all experiments in particle physics for

- design of detectors prior to construction
- generation of „simulated data" for the development of reconstruction algorithms and analysis strategies
- determination of detector response to assumed scenarios of "new physcs"
- securing proper understanding of „known" physics when analysing experimental data

Simulated Data

are an important component in any phase of an experiments.

Eigene Übungen
graphical interface with shower of an elektrons of 1 GeV energy

Shower of an electron of $\mathrm{E}=10 \mathrm{GeV}$ in a lead -scintillator sandwich calorimeter, simulated with geant4

Shower of a pions of $E=10 \mathrm{GeV}$ in a lead scintillator sandwich calorimeter, simulated with geant4

Detector Simulation - the last step

- follow each particle through the material of each detector component
- simulate energy deposit in each sensor
- convert energy deposit to detectable signal
- free charges
- photons (=visible light) from excitations,
- eventually light from other processes
(Cherenkov-light, transition radiation ...)
- final result of simulation:
> signal (in mV)
> per detector cell

"The Event"

(here an example from the BaBar experimen@SLAC)

Abstract

0x01e84c10: 0x01e84c20: 0x01e84c30: $0 x 01 \mathrm{e} 84 \mathrm{c} 40$: $0 x 01 \mathrm{e} 84 \mathrm{c} 50$: 0x01e84c60: 0x01e84c70: $0 x 01 \mathrm{e} 84 \mathrm{c} 80$: $0 x 01 e 84 \mathrm{c} 90$: 0x01e84ca0: $0 x 01 \mathrm{e} 84 \mathrm{cb} 0$: $0 x 01 \mathrm{e} 84 \mathrm{cc} 0$: 0x01e84cd0: 0x01e84ce0: 0x01e84cf0: 0x01e84d00: 0x01e84d10: $0 x 01 \mathrm{e} 84 \mathrm{~d} 20$: $0 x 01 \mathrm{e} 84 \mathrm{~d} 30$: $0 x 01 \mathrm{e} 84 \mathrm{~d} 40$: 0x01e84d50: 0x01e84d60: 0x01e84d70: 0x01e84d80: $0 x 01 \mathrm{e} 84 \mathrm{~d} 90$:

0x01e8 0x8848 0x01e8 0x83d8 0x6c73 0x6f72 0x7400 0x0000 0x0000 0x0019 0x0000 0x0000 0x01e8 0x4d08 0x01e8 0x5b7c 0x01e8 0x87e8 0x01e8 0x8458 0x7061 0x636b 0x6167 0x6500 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x8788 0x01e8 0x8498 0x7072 0x6f63 0x0000 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x8824 0x01e8 0x84d8 0x7265 0x6765 0x7870 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x8838 0x01e8 0x8518 0x7265 0x6773 0x7562 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x8818 0x01e8 0x8558 0x7265 0x6e61 0x6d65 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x8798 0x01e8 0x8598 0x7265 0x7475 0x726e 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x87ec 0x01e8 0x85d8 0x7363 0x616e 0x0000 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x87e8 0x01e8 0x8618 0x7365 0x7400 0x0000 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x87a8 0x01e8 0x8658 0x7370 0x6c69 0x7400 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x8854 0x01e8 0x8698 0x7374 0x7269 0x6e67 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x875c 0x01e8 0x86d8 0x7375 0x6273 0x7400 0x0000 0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c 0x01e8 0x87c0 0x01e8 0x8718 0x7377 0x6974 0x6368 0x0000

- apply thresholds to suppress "noise" (i.e. "fake" hits)
- convert signal (mV) in each detector cell to energy deposit (using "calibration constants" of each cell)
- apply pattern recognition to hits above threshold, search for
- "track segments" (circular arc) in tracking detectors
- "clusters" in calorimeters
- attempt "particle identification" by combining information from sub-detectors
- cluster particles into jets ("jet algorithms")
- store reconstructed objects and their properties, final result:

reconstructed
 event

reconstructed objects only approximately correspond to true properties, as in real life!

Recap: what we have up to now

After

- precise (including next-to-leading order) cross sections of signal and background processes
- generation of a large number of representative single "events" in an "event generator"
- simulation of parton showers and hadronization
- simulation of detector response ("hits")
- reconstruction of physics objects from the hits application of (soft) selection criteria to roughly represent the acceptance (see later) of the detector obtain samples of

simulated signal and background events

From these, obtain distributions of (reconstructable) variables to design an analysis and determine its selection and background rejection efficiencies (see (ater)

Example: Expected Distributions of Signal and Background

Hint: in the real experiment, only very small numbers are expected to be observed (see y-axis), and therefore statistical fluctuations will be large

- the question will be:
are they best described by the $S+B$ or the B-only shape?
\rightarrow need for sophisticated statistical treatment (see later)

Next on this channel:

The real experiment and data analysis

(Integrated) Luminosity

Luminosity, \mathcal{L}, connects event rate, r , and cross section, $\boldsymbol{\sigma}$:
$r=\mathcal{L} \cdot \sigma$, unit of $[\mathcal{L}]=\mathrm{cm}^{-2 / s}$ oder $1 / \mathrm{nb} / \mathrm{s}$
Integrated luminosity, $\int \mathcal{L} d t$, is a measure of the total number of events at given cross section, $N=\int \mathcal{L} d t \cdot \sigma$
\mathcal{L} is a property of the accelerator:
$\mathcal{L}=\frac{f_{\text {rev }} n_{b} N_{p}{ }^{2}}{4 \pi A_{\text {bunch }}}=\frac{f_{\text {rev }} n_{b} N_{p}{ }^{2}}{4 \pi \epsilon \beta^{*}}$
$\mathrm{f}_{\text {rev }}$: revolution frequency of beams
n_{b} : number of bunches
N_{p} : number of particles in a bunch
$A_{\text {bunch }}$: area of bunches
ε : emittance of beam
β^{*} : beta-function at collision point
LHC design Luminosity: $10^{-34} / \mathrm{cm}^{2} / \mathrm{s}$
$\int_{\llcorner }$recorded by the CMS experiment

The total integrated Luminosity of $29.4 \mathrm{fb}^{-1}$ corresponds to $1.8 \cdot 10^{15} \mathrm{pp}$ collisions (assuming 60 mb inelastic pp cross section)

Determination of Luminosity

Luminosity is, however, not determined from machine parameters
(precision only $\sim 10 \%$)
but by simultaneous measurements of a reference reaction with well-known cross section:

$$
\int L=N_{r e f} / \sigma_{r e f}
$$

absolute value from

- elastic proton-proton scattering at small angles
- production of W or Z bosons
- production of photon or muon pairs in $\gamma \gamma$-reactions
measurement of luminous beam profile:
- van-der-Meer scans by transverse displacement of beams, record \mathcal{L} vs. δx, δy

relative methods:
- particle counting or current measurements in
 detector components with high rates
(need calibration against one of the absolute methods)

