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Schedule for today

Likelihood analyses

p-value, significance and 
limit setting

Parameter estimates

1

3

2

● What is the meaning of the degrees of 
freedom of the      function?

● What is the relation between the 
likelihood function and the     estimate?
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Statistics vs. particle physics

● Particle physics experiments are a perfect application for statistical methods.

Theory:
● QM wave functions are interpreted 

as probability density functions.

● The Matrix Element,      ,gives the 
probability to find final state f  for 
given initial state i.

● Each of the statistical processes 
pdf → ME → hadronization → 
energy loss in material → digitization 
are statistically independent. 

● Event by event simulation using 
Monte Carlo integration methods. 

Experiment:
● All measurements we do are 

derived from rate measurements. 

● We record millions of trillions of 
particle collisions.

● Each of these collisions is 
independent from all the others.
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Statistics vs. probability theory (stochastic)

Test statistic:

Stochastic

Statistic

(στοχαστική)

Probability (density) function:

● NLL (                           ).

● Boosted Decision Tree 
BDT output.

●                                  .

● Laplacian paradoxa.

● Problem of statistics is usually 
ill-defined.

● Deduce truth from shadows in 
Platon's cave...
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The case of “truth” 

● Deduce truth from shadows:

Usually phrased in form of (nested) 
models (=ideas for Platon):

Statistics model:

Uncertainty model:

Physics model:

arX
iv:h

ep
-ph

/060
41

56

● Mathematically model = hypothesis.

Usually not questioned

Usually determined to best 
knowledge (not questioned)

Usually competing models/ hypothe-
ses will be discussed here!

http://arxiv.org/abs/hep-ph/0604156
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Probability distributions

(Binomial distribution)

Expectation: Variance:
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Probability distributions

Central limit theorem of de Moivre & 
Laplace.

(Binomial distribution)

(Gaussian distribution)

Expectation: Variance:
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Probability distributions

Central limit theorem of de Moivre & 
Laplace.

(Binomial distribution)

(Gaussian distribution)

(Poisson distribution)

Will be shown on next slide.

Expectation: Variance:
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Binomial ↔ Poisson distribution
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Models for counting experiments

Uncertainty model

Statistics model (      )

Physics model (     )

Siméon Denis Poisson 
(21.07.1781 –  25.04.1840)

single experiment
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Models for counting experiments

Uncertainty model

Statistics model (      )

Physics model (     )

Siméon Denis Poisson 
(21.07.1781 –  25.04.1840)

many experiments
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Model building (likelihood functions)

● Likeliness of a model to be true quantified by 
likelihood function                      .

● Simple example:
signal on top of known background in a bin-
ned histogram:

Product of pdfs for 
each bin (Poisson).

background signal

model parameters.

measured number of events (e.g. in bins i).
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Model building (likelihood functions)

● Likeliness of a model to be true quantified by 
likelihood function                      .

● Simple example:
signal on top of known background in a bin-
ned histogram:

Product of pdfs for 
each bin (Poisson).

background signal

model parameters.

NB: a value of a likelihood function 
as such is most of the time very 
close to zero, and w/o a reference 
in general w/o further meaning.

EX: histogram with 25 bins; for 
each bin                                :

measured number of events (e.g. in bins i).
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Distinguishing models (likelihood ratio)

● Task of likelihood analyses:

is the most powerful test at significance level     for a threshold   .

when performing a test between two simple hypotheses      and      the likelihood 
ratio test, which rejects      in favor of      when 

● For                     this ratio turns into a difference (           ). 

Fundamental lemma of Neyman-Pearson:

This is usually the test 
statistic of choice!

do not determine likelihood of an experimental outcome per se, but distinguish 
models (=hypotheses) and determine the one that explains the experimental 
outcome best.
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Parameter estimates

Distinguish best parameter (set) in 
discrete or continuous transforma-
tions.



Institute of Experimental Particle Physics (IEKP)16  

Maximum likelihood fit

● Each likelihood (ratio of) function(s) (with one or more parametric model part(s)) can be 
subject to a maximum likelihood fit (NB: negative log-likelihood finds its minimum where 
the log-likelihood is maximal...).

● Simple example:
signal on top of known background in a bin-
ned histogram:

background signal

Product for each bin 
(Poisson).

In our example e.g. four 
parameters    .

Parameters can 
be constrained or 
unconstrained

The ATLAS+CMS Higgs 
couplings combined fit has 
             parameters and 
up to seven POI's.

The CMS Tracker 
Alignment problem has       
                parameters and 
several thousand POI's.

Minimization 
problem as known 
from school.

(see next slides)
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Parameter(s) of interest (POI)

● In a maximum likelihood fit each case/problem defines its 
own parameter(s) of interest (POI's):

● Simple example:
signal on top of known background in a bin-
ned histogram:

Product for each bin 
(Poisson).

background signal

● POI could be the mass (    ).

NB: this is a likelihood 
ratio on its own.

NB: I've also made the 
scan based on a 
likelihood ratio.

Likelihood scan
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Parameter(s) of interest (POI)

● In a maximum likelihood fit each case/problem defines its 
own parameter(s) of interest (POI's):

● POI could be the mass (    ).

● Simple example:
signal on top of known background in a bin-
ned histogram:

● In our case POI usually is the 
signal strength (    ) (for a fixed 
value for     ). 

background signal

Product for each bin 
(Poisson).

NB: this is a likelihood 
ratio on its own

NB: I've also made the 
scan based on a 
likelihood ratio.

Likelihood scan
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Incorporation of systematic uncertainties

● Systematic uncertainties are usually incorporated in form of nuisance parameters:

● Simple example:
signal on top of known background in a bin-
ned histogram:

● E.g. background normalization     not precisely known, but with uncertainty         :

background signal

Product for each bin 
(Poisson).

uncertainty

expected value/best knowledge

possible values of single 
“measurements” (integrated out)
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Incorporation of systematic uncertainties

● Systematic uncertainties are usually incorporated in form of nuisance parameters:
● E.g. background normalization     not precisely known, but with uncertainty         :

uncertainty

expected value/best knowledge

possible values of single 
“measurements” (integrated out)

signal-like background-
like

Probability density function (   )

Effect on BG normalization
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Relations between probability distributions

Binomial

Gaussian

Poisson

Log-normal        Distribution

Look for something that is very rare very often.

Random variable variable 
made up of a sum of many 
single measurements.

Random variable variable 
made up of a product of 
many single measurements.

loglog
What does the parameter 
k correspond to in the       
distributions?

Central Limit Theorem:
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Relations between probability distributions

Binomial

Gaussian

Poisson

Log-normal        Distribution

Look for something that is very rare very often.

Random variable variable 
made up of a sum of many 
single measurements.

Random variable variable 
made up of a product of 
many single measurements.

loglog
What does the parameter 
k correspond to in the       
distributions?

Central Limit Theorem:

x
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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k = ndof = dim 
of Gaussian 
distribution in 
product of 
likelihood.
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Example: saturated model

● Example of a likelihood ratio: Model to be tested.

Model w/ as many 
parameters,    , as 
measurements.

e.g. one shape for each bin. 

● Special case: (i) histogram; (ii) no further 
nuisance parameters; (iii) uncertainties 
normal distributed:

Generalization of the     
test.

● General case: (i) many histograms; 
(ii) many nuisance parameters:

CL of interest:

Corresponds to 
compatibility
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Hypothesis testing

Distinguish one preferred hypothesis 
(     ) against alternative hypotheses, 
in general in discrete but in special 
cases also in continuous transforma-
tions.

Full exclusion (here in            scenario).

PRL 106 (2011) 231801

All further examples are taken from this 
very publication:

http://dx.doi.org/10.1103/PhysRevLett.106.231801
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Example: test statistics (LEP ~2000)

nuisance parameters      integrated out before evaluation of      (→marginalization). 

● Test signal (     , for fixed mass,    , and fixed signal strength,   ) vs. background-
only (     ).

pdf's for nuisance parameters 
modified according to Bayes 
theorem.
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Example: test statistics (Tevatron ~2005)

nominator maximized for given    before marginalization. Denominator for           . Better 
estimates of nuisance parameters w/ reduced uncertainties. 

● Test signal (     , for fixed mass,    , and fixed signal strength,   ) vs. background-
only (     ).

pdf's for nuisance parameters 
modified according to Bayes 
theorem.

→ profiling.



Institute of Experimental Particle Physics (IEKP)27  

Example: test statistics (LHC ~2010)

nominator maximized for given    before marginalization. For the denominator a global maximum 
is searched for at    . In addition allows use of asymptotic formulas (→ no more toys needed!(*)). 

● Test signal (     , for fixed mass,    , and fixed signal strength,   ) vs. background-
only (     ).

→ profiling.

profile likelihood (→ Feldman-
Cousins test statistic).

(*) will not be discussed further here.
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background signal

Product for each bin 
(Poisson).

Test statistic in life

● From the evaluation of the test statistic on data always obtain a plain value          
(in our discussion:               – signal-like;              – background-like).

to
ys

● → True outcome of the experiment 
(nuisance parameters estimated to best 
knowledge, no uncertainties involved here)!
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background signal

Product for each bin 
(Poisson).

Meaning and interpretation of the test statistic

● How compatible is        with      or     ? For this evaluate the test 
statistic on large number of toy experiments based on      or      .

to
ys

● Proceed as often 
as possible; do 
this for     &     .

● Determine toy 
dataset.

● Determine toy 
values for all 
uncertainties.

● Determine value 
of      for each toy.
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to
ys

signal-likebackground-
like

Confidence levels (CL)

● The association to one or the other hypothesis can be performed up to a given 
confidence level    .

Attention: in all plots      is shown.
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to
ys

signal-likebackground-
like

The p-value

● The association to one or the other hypothesis can be performed up to a given 
confidence level    .

Probability to obtain values of   , which 
are at least as signal-like as       . If p-
value is small      can be excluded.

Imagine data show a peak. 
What is the prob. that this is 
due to an upward fluctuation 
of the expectation from     . 

(*)

(*)

Challenging the  
      hypothesis

Attention: in all plots      is shown.
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Significance

● If the measurement is normal distributed    is distributed according to a     
distribution (cf. slide 21f).

● The resulting     probability is then equivalent to a Gaussian confidence interval in 
terms of standard deviations   . 

p-values:

Challenging the  
      hypothesis
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● The resulting     probability is then equivalent to a Gaussian confidence interval in 
terms of standard deviations   . 

Significance (in practice)

● If the measurement is normal distributed    is distributed according to a     
distribution (cf. slide 21f).

Challenging the  
      hypothesis

Deviation from 
expectation for 
     .

Poisson uncert. 
for      .
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● Usually    depends on POI:

Excluding parameters

fixed

to
ys

● Sorry, don't see any signal. Up to what size should I definitely have seen it?

fixed

varies

sig-likeBG-like

Challenging the  
      hypothesis
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Excluding parameters
to

ys

small signal

Challenging the  
      hypothesis

● Usually    depends on POI:

sig-likeBG-like
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Excluding parameters Challenging the  
      hypothesis

● Usually    depends on POI:

to
ys

sig-likeBG-like
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Excluding parameters Challenging the  
      hypothesis

● Usually    depends on POI:

to
ys

sig-likeBG-like
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Excluding parameters Challenging the  
      hypothesis

large signal

● Usually    depends on POI:

to
ys

sig-likeBG-like
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Observed exclusion

● Traditionally we determine 95% CL exclusions on the POI (                ). 

●                 and                 move apart 
from each other with increasing POI.

● The more separated                 and                 
are the clearer      and      can be distinguished.

● For 95% CL identify value of         for which:

for this value         would have been more 
signal-like than        with 95% probability.

● There is still a 5% chance that we exclude by 
mistake.

sig-likeBG-like

Challenging the  
      hypothesis

● To be conservative choose probability    that    is more BG-like than       low 
(→ safer exclusion).
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Expected exclusion

● To obtain expected limit mimic calculation of observed; base it on toy datasets.

● Use fact that             and             do not depend on toys (i.e. schematic plot on the 
left does not change).

Throw toys under      hypothesis; 
determine distribution of 95% CL 
limits on POI:

Obtain quantiles for expected exclusion 
from this distribution (expected limit = 
median).

POI

to
ys

0.
02

5

0.
16

0

0.
50

0

0.
84

0

0.
97

5

Challenging the  
      hypothesis

sig-likeBG-like
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Interpretation issues (increasing pathology) 

●        compatible with BG 
hypothesis.

●        incompatible with signal 
hypothesis.

● Signal and BG hypothesis 
cannot be distinguished.

● Should this outcome lead to 
an exclusion of the signal 
hypothesis? ●        incompatible both with 

signal and BG hypothesis.

● Should this outcome lead to 
an exclusion of the signal 
hypothesis?
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●                

Modified frequentist exclusion method (CLs)

● In particle physics we set more conservative limits, following the CLs method:

● Identify value of         for which:

● If      and      become indistinguishable:

sig-likeBG-like
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Judgment call

interested in 
blue pdf from 
below.

● Assume our POI is the signal strength    of a new signal: does the 90% CL 
upper limit on    correspond to a higher or a lower value than the 95% CL 
limit?          
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Judgment call

Testing small 
signal

interested in 
blue pdf from 
below.

1%
probability of    to be “more 
background like” than        .

● Assume our POI is the signal strength    of a new signal: does the 90% CL 
upper limit on    correspond to a higher or a lower value than the 95% CL 
limit?          

It's lower:

10%

5%

In
cr

e
a
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n
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si
g

n
a

l
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Concluding remarks

● Reviewed all statistical tools necessary to search for the Higgs boson signal (→ 
as a small signal above a known background):

● In particle physics we call an observation with          an evidence.

● We call an observation with          a discovery.

● Limits: usual way to 'challenge' signal hypothesis (     ).

● p-values: usual way to 'challenge' background hypothesis (     ).

● Under the assumption that the test statistic    is      distributed p-values can be 
translated into Gaussian confidence intervals   .

During the next lectures we will see 1:1 life examples of all methods that have 
been presented here.
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Backup
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