

Statistical Methods used for Higgs Boson Searches

Roger Wolf 16. June 2016

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Schedule for today

- What is the meaning of the degrees of freedom of the χ^2 function?
- What is the relation between the likelihood function and the χ^2 estimate?

Likelihood analyses

Experiment:

- All measurements we do are derived from rate measurements.
- We record millions of trillions of particle collisions.
- Each of these collisions is independent from all the others.

Theory:

- QM wave functions are interpreted as probability density functions.
- The Matrix Element, S_{fi} , gives the probability to find final state f for given initial state i.
- Each of the statistical processes
 pdf → ME → hadronization →
 energy loss in material → digitization
 are statistically independent.
- Event by event simulation using Monte Carlo integration methods.

• Particle physics experiments are a perfect application for statistical methods.

Statistics vs. probability theory (stochastic)

The case of "truth"

• Deduce *truth* from shadows:

Usually phrased in form of (nested) models (=ideas for Platon):

• Mathematically model = hypothesis.

Uncertainty model:

Usually determined to best knowledge (not questioned)

Usually not questioned

Probability distributions

	Expectation:	Variance:
$\mathcal{P}(k,n,p) = \binom{n}{k} p^k \cdot (1-p)^{n-k}$ (Binomial distribution)	$\mu = np$	$\sigma^2 = np(1-p)$

Probability distributions

	Expectation:	Variance:
$\mathcal{P}(k,n,p) = \frac{1}{\sqrt{2\pi n p(1-p)}} e^{-\frac{1}{2} \left(\frac{k-np}{np(1-p)}\right)^2}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Gaussian distribution)		
$ n \to \infty , \ p \text{ fixed} $		
Central limit theorem of <i>de Moivre</i> & <i>Laplace</i> .		
$\mathcal{P}(k,n,p) = \begin{pmatrix} n \\ k \end{pmatrix} p^k \cdot (1-p)^{n-k}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Binomial distribution)		

Probability distributions

	Expectation:	Variance:
$\mathcal{P}(k,n,p) = \frac{1}{\sqrt{2\pi n p(1-p)}} e^{-\frac{1}{2} \left(\frac{k-np}{np(1-p)}\right)^2}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Gaussian distribution)		
$ n \to \infty , \ p \text{ fixed} $		
Central limit theorem of <i>de Moivre</i> & <i>Laplace</i> .		
$\mathcal{P}(k,n,p) = \begin{pmatrix} n \\ k \end{pmatrix} p^k \cdot (1-p)^{n-k}$	$\mu = np$	$\sigma^2 = np(1-p)$
(Binomial distribution)		
$n \to \infty$, np fixed		
Will be shown on next slide.		
$\mathcal{P}(k,n,p) = \frac{(np)^k}{k!} e^{-np}$	$\mu = np$	$\sigma^2 = \mu = np$

(*Poisson* distribution)

$$\mathcal{P}(k,n,p) = \binom{n}{k} p^{k} \cdot (1-p)^{n-k}$$

$$= \frac{n(n-1)(n-2) \cdot \dots \cdot (n-k+1)}{k!} \cdot \frac{\mu^{k}}{n^{k}} \cdot \frac{(1-\frac{\mu}{n})^{n}}{(1-\frac{\mu}{n})^{k}}$$

$$= \frac{1 \cdot (1-\frac{1}{n})(1-\frac{2}{n}) \cdot \dots \cdot (1-\frac{k-1}{n})}{(1-\frac{\mu}{n})^{k}} \cdot \frac{\mu^{k}}{k!} \cdot (1-\frac{\mu}{n})^{n}$$

$$= \underbrace{\frac{1}{(1-\frac{\mu}{n})} \cdot \frac{(1-\frac{2}{n})}{(1-\frac{\mu}{n})} \cdot \frac{(1-\frac{2}{n})}{(1-\frac{\mu}{n})} \cdot \dots \cdot \frac{(1-\frac{k-1}{n})}{(1-\frac{\mu}{n})} \cdot \frac{\mu^{k}}{k!} \cdot (1-\frac{\mu}{n})^{n}}_{\rightarrow e^{-\mu}}$$

$$= \underbrace{\frac{\mu^{k}}{k!} e^{-\mu}}_{a}$$

 $\mu = const, n \to \infty$

Models for counting experiments

Models for counting experiments

Model building (likelihood functions)

Model building (likelihood functions)

• Task of likelihood analyses:

do not determine likelihood of an experimental outcome per se, but distinguish models (=hypotheses) and determine the one that explains the experimental outcome best.

Fundamental lemma of Neyman-Pearson:

when performing a test between two simple hypotheses H_1 and H_0 the *likelihood ratio test*, which rejects H_0 in favor of H_1 when

$$Q = \frac{\mathcal{L}_{H_1}(\{k_i\},\{\kappa_i\})}{\mathcal{L}_{H_0}(\{k_i\},\{\kappa_i\})} \le \eta$$
$$\mathcal{P}(Q(\{k_i\},\{\kappa_i\}) \le \eta | H_i) = \alpha$$

is the most powerful test at significance level α for a threshold η .

• For $q = -2 \ln Q$ this ratio turns into a difference (ΔNLL).

This is usually the *test statistic* of choice!

Parameter estimates

Distinguish best parameter (set) in discrete or continuous transformations.

Maximum likelihood fit

 Each likelihood (ratio of) function(s) (with one or more parametric model part(s)) can be subject to a maximum likelihood fit (NB: negative log-likelihood finds its minimum where the log-likelihood is maximal...).

Minimization
problem as known
from school.In our example e.g. four
parameters
$$\kappa_i$$
.Parameters can
be constrained or
unconstrained• Simple example:
signal on top of known background in a bin-
ned histogram:In our example e.g. four
parameters κ_i .In our example e.g. four
unconstrained $\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$
Product for each bin
(Poisson).The ATLAS+CMS Higgs
couplings combined fit has
 $\mathcal{O}(4250)$ parameters and
up to seven POI's. $\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}$
background signalThe CMS Tracker
Alignment problem has
 $\mathcal{O}(50'000)$ parameters and
several thousand POI's.

- In a maximum likelihood fit each case/problem defines its • own *parameter(s)* of *interest* (POI's):
 - POI could be the mass (κ_3).

$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$
Product for each bin
(Poisson).

$$\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}$$
background signal

ratio on its own.

scan based on a likelihood ratio.

Parameter(s) of interest (POI)

- In a maximum likelihood fit each case/problem defines its own parameter(s) of interest (POI's):
 - POI could be the mass (κ_3).
 - In our case POI usually is the signal strength (κ₂) (for a fixed value for κ₃).
- Simple example: signal on top of known background in a binned histogram:

$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$
Product for each bin
(Poisson).

$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$

Institute of Experimental Particle Physics (IEKP)

Incorporation of systematic uncertainties

- Systematic uncertainties are usually incorporated in form of *nuisance parameters*:
 - E.g. background normalization κ_0 not precisely known, but with uncertainty $\sigma(\kappa_0)$:

 Simple example: signal on top of known background in a binned histogram:

$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \underbrace{\mathcal{P}(k_i, \mu_i(\kappa_j))}_{\text{Product for each bin}}$$
$$\underset{(\text{Poisson}).}{\text{Product for each bin}}$$
$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$

Incorporation of systematic uncertainties

- Systematic uncertainties are usually incorporated in form of *nuisance parameters*:
 - E.g. background normalization κ_0 not precisely known, but with uncertainty $\sigma(\kappa_0)$:

Relations between probability distributions

Look for something that is very rare very often.

Relations between probability distributions

Look for something that is very rare very often.

 Special case: (i) histogram; (ii) no further nuisance parameters; (iii) uncertainties normal distributed:

$$\begin{aligned} \mathcal{L}(|\mathrm{data}|_{\mathrm{test}}) &= \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{i}}} e^{-(d_{i} - \lambda_{i})^{2}/2\sigma_{i}} \\ \mathcal{L}(|\mathrm{data}|_{\mathrm{saturated}}) &= \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{i}}} \\ q_{\lambda} &= -2\ln\left(\frac{\mathcal{L}(|\mathrm{data}|_{\mathrm{test}})}{\mathcal{L}(|\mathrm{data}|_{\mathrm{saturated}})}\right) = \sum_{i} \frac{(d_{i} - \lambda_{i})^{2}}{\sigma_{i}} \\ \end{aligned}$$

General case: (i) many histograms;
 (ii) many nuisance parameters:

Hypothesis testing

Distinguish one preferred hypothesis (H_0) against alternative hypotheses, in general in discrete but in special cases also in continuous transformations.

Example: test statistics (LEP ~2000)

 Test signal (*H*₁, for fixed mass, *m*, and fixed signal strength, μ) vs. backgroundonly (*H*₀).

Example: test statistics (Tevatron ~2005)

 Test signal (*H*₁, for fixed mass, *m*, and fixed signal strength, μ) vs. backgroundonly (*H*₀).

Example: test statistics (LHC ~2010)

 Test signal (*H*₁, for fixed mass, *m*, and fixed signal strength, μ) vs. backgroundonly (*H*₀).

Test statistic in life

- From the evaluation of the test statistic on data always obtain a plain value q_{obs} (in our discussion: $q_{obs} < 0$ – signal-like; $q_{obs} > 0$ – background-like).
- \rightarrow True outcome of the experiment (nuisa knowl

nuisance parameters estimated to best
knowledge, no uncertainties involved here)!

$$\overline{\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \underbrace{\mathcal{P}(k_i, \mu_i(\kappa_j))}_{i} \underbrace{\mathcal{P}(k_i, \mu_i$$

Meaning and interpretation of the test statistic

Institute of Experimental Particle Physics (IEKP)

Determine *toy*

Determine *toy*

dataset.

•

•

Confidence levels (CL)

- The association to one or the other hypothesis can be performed up to a given confidence level $\alpha\,.$

The <i>p</i> -value	Challenging the H_0 hypothesis	Karlsruhe Institute of Technology

• The association to one or the other hypothesis can be performed up to a given confidence level α .

Significance

- If the measurement is normal distributed q is distributed according to a χ^2 distribution (cf. slide 21f).
- The resulting χ^2 probability is then equivalent to a Gaussian confidence interval in terms of standard deviations σ .

p-values:

$$\mathcal{P}(q \ge 3\sigma | H_0) = 1 \cdot 10^{-3}$$

 $\mathcal{P}(q \ge 5\sigma | H_0) = 2 \cdot 10^{-5}$

Significance (in practice)

33

- If the measurement is normal distributed q is distributed according to a χ^2 distribution (cf. slide 21f).
- The resulting χ^2 probability is then equivalent to a Gaussian confidence interval in

• Sorry, don't see any signal. Up to what size should I definitely have seen it?

Observed exclusion

- Traditionally we determine 95% CL exclusions on the POI ($\alpha=0.05$).
- To be conservative choose probability α that q is more BG-like than q_{obs} low (\rightarrow safer exclusion).

- $\mathcal{P}(-q|_{H_0})$ and $\mathcal{P}(-q|_{H_1})$ move apart from each other with increasing POI.
- The more separated $\mathcal{P}(-q|_{H_0})$ and $\mathcal{P}(-q|_{H_1})$ are the clearer H_0 and H_1 can be distinguished.
- For 95% CL identify value of POI for which: $CL_{s+b} = \int_{q_{obs}}^{+\infty} \mathcal{P}_{s+b} = 0.05$ for this value $a|H_1$ would have been more

for this value $q|H_1$ would have been more signal-like than q_{obs} with 95% probability.

• There is still a 5% chance that we exclude by mistake.

Expected exclusion

- To obtain expected limit mimic calculation of observed; base it on toy datasets.
- Use fact that P(-q|_{H₀}) and P(-q|_{H₁}) do not depend on toys (i.e. schematic plot on the left does not change).

Institute of Experimental Particle Physics (IEKP)

Modified frequentist exclusion method (CLs)

In particle physics we set more conservative limits, following the *CLs* method:

- $CL_{s+b} = \int_{q_{obs}}^{+\infty} \mathcal{P}_{s+b}$ $CL_b = \int_{q_{obs}}^{\infty} \mathcal{P}_b$
- Identify value of POI for which: $CL_s = \frac{CL_{s+b}}{CL_b} = 0.05$
- If H_0 and H_1 become indistinguishable: $CL_{s+b} < CL_s \rightarrow 1$

•

Judgment call	
---------------	--

• Assume our POI is the signal strength μ of a new signal: does the 90% CL upper limit on μ correspond to a higher or a lower value than the 95% CL limit?

• Assume our POI is the signal strength μ of a new signal: does the 90% CL upper limit on μ correspond to a higher or a lower value than the 95% CL limit?

- Reviewed all statistical tools necessary to search for the Higgs boson signal (→ as a small signal above a known background):
- Limits: usual way to 'challenge' signal hypothesis (H_1) .
- *p*-values: usual way to 'challenge' background hypothesis (H_0) .
- Under the assumption that the test statistic q is χ^2 distributed *p*-values can be translated into Gaussian confidence intervals σ .
- In particle physics we call an observation with $\geq 3\sigma$ an evidence.
- We call an observation with $\geq 5\sigma$ a discovery.

During the next lectures we will see 1:1 life examples of all methods that have been presented here.

