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Astroparticle vs. particle physics

● Highest beam energies (up to           
    → fixed target).

● Complicated detection medium (→ 
atmosphere).

● Large area detectors required.

● Perfect control over initial state 
under ideal laboratory conditions.

● Compact and tailored detector 
designs.
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Collision kinematics
Center of mass energy of a 
relativistic two body collision:

Boost along z-direction:
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Particle kinematics

● For known mass the kinematics of a single particle are completely described by 
three variables:                          or better

Rapidity:
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Pseudorapidity

● For              the rapidity turns into the pseudorapidity   , which itself only depends 
on the polar angle   .  

Pseudorapidity:

Imagine in the air shower of slide 4 a particle were 
scattered at 90° to the axis of its incident direction in 
the center of mass frame. What is the scattering 
angle in the laboratory frame?  
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Cross section (classic)

● Imagine a continuous flux of (small) incident particles    impinging on a target 
particle    at rest and the elastic reaction                      :
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Cross section (classic)

● Imagine a continuous flux of (small) incident particles    impinging on a target 
particle    at rest and the elastic reaction                      :

Cross section:

In classic elastic 
scattering the cross 
section is      .



Institute of Experimental Particle Physics (IEKP)11  

Cross section (QM)

● Imagine a continuous flux of (small) incident particles    impinging on a target 
particle    at rest and the elastic reaction                      :

Observation (in      ): 
projection of plain wave   
    out of spherical scat-
tering wave         .

Spherical scat-
tering wave        .

Localized potential.

Initial particle: 
described by plain 
wave    .

Observation 
probability: 

Scattering matrix    transforms initial state 
wave function     into scattering wave        
(                   ). 

Fermi's golden rule:
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The matrix element

projectile targetvirtual photon 
exchange
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Matrix element calculations 
can be represented 
pictorially with the help of 
Feynman diagrams.
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The matrix element

● The full calculation (ideally) includes all possible diagrams to all orders in QM 
perturbation theory:

s-channel, 
if allowed. 

t-channel. Higher order 
correction to 
propagator.

Higher order 
correction to 
vertex.

● Coherent sum: includes absolute value squares of individual diagrams and 
interference terms across different diagrams.
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History of particle physics
● Relativistic QM (→ Dirac-Equation 1928)

Discovery of the electron (1897)

Discovery of the positron (1932)

J. J. Thomson (1856 – 1940)

C. D. Anderson (1905 – 1991)

● Discovery         (→ C. D. Anderson 1937)
● Discovery         (→ C. Powel/G. Occhialini 1947)
● Discovery     (→ R. Bjorklund et al 1950)
● Discovery          (→ “V”-particles 1947 – 49)
● Discovery             (→ “V”-particles 1947)
● Discovery              (→ 1950’s)
● Discovery                              (→ 1952)
● Invention of bubble chamber (→ D. Glaser 1952)

● Theory of weak IA (→ E. Fermi 1933 – 34)

● Observation of     (→ C. Cowan, F. Reines 1956)

● Observation of     (→ L. Lederman, M. Schwartz, J. Steinberger 1962)

● Discovery           (→ B. Richter, S.Thing, 1974)

DONUT collaboration

● Observation of     (→ DONUT collaboration 2000)

● Discovery       (→ L. Lederman, E288 collaboration, 1977)

● Observation of   (→ CDF & D0 collaboration 1995)

● Observation P violation of weak IA (→ C. Wu, R. Garwin 1556)

● Observation CP violation of weak IA (→ J. Cronin, V. Fitch 1964)

● Gauge field theory of weak IA (→ S. Glashow, S. Weinberg 1961)

● Discovery of           (→ UA1 & UA2 collaboration, 1983)

● Discovery of     (→ ATLAS & CMS collaboration 2012)

discovered in airshower experiments
discovered in collider experiments

https://en.wikipedia.org/wiki/DONUT
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Overall           Nobel prizes in 
physics went to directly particle 
physics related topics.

https://en.wikipedia.org/wiki/DONUT
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The particle zoo

Leptons:

Hadrons:

Mesons:

Baryons:
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The particle zoo

Leptons:

Hadrons:

Mesons:

Baryons:

+152 further known 
Baryon resonances.

+150 further known 
Meson resonances.

             known 
elementary particles.
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More order into the chaos...

… could be achieved once it was realized that 
hadrons are composed of more fundamental 
constituents → quarks (first only sorting principle):

baryon           decuplet. 

strangeness

charge
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More order into the chaos...

… could be achieved once it was realized that 
hadrons are composed of more fundamental 
constituents → quarks (first sorting principle only):

baryon           decuplet. 

strangeness

charge

requires:
● all spins up         .

● all same flavors         .
● No orbital momentum            .

As spin ½ fermion        needs 
anti-symmetric wave function:
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Flavor 
wave 
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Spin 
wave 
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New quantum number required to obtain 
anti-symmetric wave function (→ first 
indication for color).
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The evidence of quarks...

… emerged from deep inelastic scattering (DIS) experiments 
(first @SLAC 1969, here shown @HERA ~2000):

For the DIS process: H1 Experiment @ HERA

http://h1.desy.de/
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Change of flavor & charge

H1 Experiment @ HERA

● In the scattering vertex the electron 
can change flavor and charge and 
leave detector unobserved.

● Opposed to the neutral current (NC) 
process this is called charged current 
(CC) process. 

http://h1.desy.de/
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Parity violation

● HERA ran with e-beams of different 
polarization:

● CC reaction is maximally parity 
violating!

● NB: weak interaction intrinsically also violating CP.

●     bosons couple only to left-
handed particles (right-handed 
anti-particles).
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Massive force mediators
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The case of matter

● All matter we know is made up of 
six quark flavors and six lepton 
flavors:

Four fundamental forces act between them 
(three of importance for particle physics).
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A wealth of structures
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The power of symmetry

● The SM draws its explaining and predictive power from the level of symmetry of    . 

● Each symmetry of     is related to a conserved quantity. This relation is revealed by 
the Noether theorem:

For illustration assume: And the symmetry operation:

Taylor expansion symmetry requirement

(on shell requirement) (conserved current)

(conserved charge)

The conserved charge is the generator of the symmetry 
operation that creates it. 
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Examples of symmetries

● A few examples of symmetry operations and/or conserved quantities on    are given 
below (→ try to complete the missing parts on your own): 

● One last non-trivial symmetry on    is the symmetry against an operation that 
transforms bosons into fermions and vice versa.
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Remaining lecture program

Monday (19.09):

Introduction to particle 
physics (RW).

● In case of questions – contact us matthias.mozer@cern.ch (Bld. 30.23 Room 9-8  )  
                                                     roger.wolf@cern.ch          (Bld. 30.23 Room 9-20).

Tuesday (20.09.): Wednesday (21.09.):

Particle acceleration & 
detection; data analysis 
(RW).

Proton structure, QCD and 
physics with jets (MM).

Physics with gauge bosons 
(MM).

Flavor physics - including 
top-quarks (MM).

Higgs physics (RW).
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