

Introduction to Particle Physics

Roger Wolf 19. September 2016

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Astroparticle vs. particle physics

- Highest beam energies (up to 10^{21} eV \rightarrow fixed target).
- Complicated detection medium (→ atmosphere).
- · Large area detectors required.

- Perfect control over initial state under ideal laboratory conditions.
- Compact and tailored detector designs.

Collision kinematics

$$\begin{bmatrix}
E \\
0 \\
0 \\
E
\end{bmatrix} \stackrel{p}{10^{19} \text{ eV}} \stackrel{p}{6} \stackrel{1680}{0} \begin{pmatrix} M \\
0 \\
0 \\
0 \end{pmatrix} \stackrel{p}{0} \stackrel{p}{6} \stackrel{m}{6} \stackrel{m}{6} \begin{pmatrix} M \\
0 \\
0 \\
0 \end{pmatrix} \stackrel{p}{0} \stackrel{p}{6} \stackrel{m}{6} \begin{pmatrix} M \\
0 \\
0 \\
0 \end{pmatrix} \stackrel{p}{0} \stackrel{p}{6} \stackrel{m}{6} \stackrel{m}{$$

-

Particle kinematics

• For known mass the kinematics of a single particle are completely described by three variables: $(\begin{array}{cc} p_x & p_y & p_z \end{array})$ or better $(\begin{array}{cc} p_T & \phi & \theta \end{array})$

 p_T and ϕ in the plane perpendicular to z are invariant under *boosts* along z, θ not. Therefore we usually replace θ by:

Rapidity: $y = \frac{1}{2} \ln \left(\right)$

which is form invariant under boosts along z.

Particle kinematics

• For known mass the kinematics of a single particle are completely described by three variables: $(\begin{array}{cc} p_x & p_y & p_z \end{array})$ or better $(\begin{array}{cc} p_T & \phi & \theta \end{array})$

 p_T and ϕ in the plane perpendicular to z are invariant under *boosts* along z, θ not. Therefore we usually replace θ by:

Rapidity: $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$

which is form invariant under

$$y = \frac{1}{2} \ln\left(\frac{E' + p'_z}{E' - p'_z}\right) = \frac{1}{2} \ln\left(\frac{(E - \beta p_z) + (p_z - \beta E)}{(E - \beta p_z) - (p_z - \beta E)}\right) = \frac{1}{2} \ln\left(\frac{(1 - \beta)(E + p_z)}{(1 + \beta)(E - p_z)}\right)$$
$$= \frac{1}{2} \left(\ln\left(\frac{1 - \beta}{1 + \beta}\right) + \ln\left(\frac{E + p_z}{E - p_z}\right)\right) = y + \frac{1}{2} \ln\left(\frac{1 - \beta}{1 + \beta}\right)$$

Pseudorapidity

(IEKP)

• For $E \gg m$ the rapidity turns into the pseudorapidity η , which itself only depends on the polar angle θ .

Pseudorapidity:

$$\eta = -\ln\left(\tan(\theta/2)\right)$$

$$y = \frac{1}{2} \ln \left(\frac{E(1 + \cos \theta)}{E(1 - \cos \theta)} \right)$$

= $\frac{1}{2} \ln \left(\frac{(\sin^2 \theta/2 + \cos^2 \theta/2) + (\cos^2 \theta/2 - \sin^2 \theta/2)}{(\sin^2 \theta/2 + \cos^2 \theta/2) - (\cos^2 \theta/2 - \sin^2 \theta/2)} \right)$
= $\frac{1}{2} \ln \left(\frac{\cos^2 \theta/2}{\sin^2 \theta/2} \right) = -\ln (\tan \theta/2) = \eta$

Imagine in the air shower of slide 4 a particle were scattered at 90° to the axis of its incident direction in the center of mass frame. What is the scattering angle in the **laboratory frame**?

Cross section (classic)

 Imagine a continuous flux of (small) incident particles *a* impinging on a target particle *b* at rest and the elastic reaction *a* + *b* → *a* + *b*:

Cross section (classic)

Imagine a continuous flux of (small) incident particles *a* impinging on a target particle *b* at rest and the elastic reaction *a* + *b* → *a* + *b*:

Cross section (QM)

Imagine a continuous flux of (small) incident particles *a* impinging on a target particle *b* at rest and the elastic reaction *a* + *b* → *a* + *b*:

products.

$$S_{fi}^{(1)} = i \left((2\pi)^2 e \right)^2 \cdot \int \mathrm{d}^4 q \,\,\delta^4(p_3 - p_1 - q) \overline{u}(p_3) \gamma^\mu u(p_1) \frac{-g_{\mu\nu}}{q^2 + i\epsilon} \delta^4(p_4 - p_2 + q) \overline{u}(p_4) \gamma^\nu u(p_2)$$

The matrix element \mathcal{S}_{fi}

0

• The full calculation (ideally) includes all possible diagrams to all orders in QM perturbation theory:

$$|\mathcal{S}_{fi}|^{2} = \left| \underbrace{|\mathcal{S}_{fi}|^{2}}_{a} + \underbrace{|\mathcal{S}_{fi}|^{2}}_{a}$$

• Coherent sum: includes absolute value squares of individual diagrams and interference terms across different diagrams.

Discovery of the electron (1897)

History of particle physics

- Relativistic QM (\rightarrow Dirac-Equation 1928)
- Theory of weak IA (\rightarrow E. Fermi 1933 34)
- Discovery $\mu^{+/-}$ (\rightarrow C. D. Anderson 1937)
- Discovery $\pi^{+/-}$ (\rightarrow C. Powel/G. Occhialini 1947)
- Discovery $\pi^0 (\rightarrow \mathsf{R}.$ Bjorklund et al 1950)
- Discovery $K^{+/-}$ (\rightarrow "V"-particles 1947 49)
- Discovery K^0 , Λ^0 (\rightarrow "V"-particles 1947)
- Discovery Σ 's, Ξ 's (\rightarrow 1950's)
- Discovery Δ^{++} , Δ^{+} , Δ^{0} , Δ^{-} (\rightarrow 1952)
- Invention of bubble chamber (\rightarrow D. Glaser 1952)
- Observation of $\nu_e (\rightarrow C. \text{ Cowan, F. Reines 1956})$
- Observation P violation of weak IA (\rightarrow C. Wu, R. Garwin 1556)
- Gauge field theory of weak IA (\rightarrow S. Glashow, S. Weinberg 1961)
- Observation of ν_{μ} (\rightarrow L. Lederman, M. Schwartz, J. Steinberger 1962)
- Observation CP violation of weak IA (\rightarrow J. Cronin, V. Fitch 1964)
- Discovery J/ψ 's (\rightarrow B. Richter, S. Thing, 1974)
- Discovery Υ 's (\rightarrow L. Lederman, E288 collaboration, 1977)
- Discovery of $W, Z \rightarrow UA1 \& UA2$ collaboration, 1983)
- Observation of t (→ CDF & D0 collaboration 1995)
- Observation of ν_{τ} (\rightarrow DONUT collaboration 2000)
- Discovery of $H \rightarrow ATLAS \& CMS collaboration 2012)$

discovered in airshower experiments discovered in collider experiments

Discovery of the positron (1932)

C. D. Anderson (1905 – 1991)

J. J. Thomson (1856 - 1940)

DONUT collaboration

14

History of particle physics

- Relativistic QM (\rightarrow Dirac-Equation 1928)
- Theory of weak IA (\rightarrow E. Fermi 1933 34)
- Discovery $\mu^{+/-}$ (\rightarrow C. D. Anderson 1937)
- Discovery $\pi^{+/-}$ (\rightarrow C. Powel/G. Occhialini 1947)
- Discovery π^0 (\rightarrow R. Bjorklund et al 1950)
- Discovery $K^{+/-}$ (\rightarrow "V"-particles 1947 49)
- Discovery K^0 , Λ^0 (\rightarrow "V"-particles 1947)
- Discovery Σ 's, Ξ 's (\rightarrow 1950's)

15

- Discovery Δ^{++} , Δ^{+} , Δ^{0} , Δ^{-} (\rightarrow 1952)
- Invention of bubble chamber (\rightarrow D. Glaser 1952)
- Observation of ν_e (\rightarrow C. Cowan, F. Reines 1956)
- Observation P violation of weak IA (\rightarrow C. Wu, R. Garwin 1556)
- Gauge field theory of weak IA (\rightarrow S. Glashow, S. Weinberg 1961)
- Observation of ν_{μ} (\rightarrow L. Lederman, M. Schwartz, J. Steinberger 1962)
- Observation CP violation of weak IA (\rightarrow J. Cronin, V. Fitch 1964)
- Discovery J/ψ 's (\rightarrow B. Richter, S. Thing, 1974)
- Discovery Υ 's (\rightarrow L. Lederman, E288 collaboration, 1977)
- Discovery of $W, Z \rightarrow UA1 \& UA2$ collaboration, 1983)
- Observation of $t \rightarrow CDF \& D0$ collaboration 1995)
- Observation of ν_{τ} (\rightarrow DONUT collaboration 2000)
- Discovery of $H \rightarrow ATLAS \& CMS collaboration 2012$)

Discovery of the positron (1932)

C. D. Anderson (1905 – 1991)

Overall $\mathcal{O}(30)$ Nobel prizes in physics went to directly particle physics related topics.

PARTICLEZ00

Hadrons:

Baryons:

Mesons:

PARTICLE ZOO

Institute of Experimental Particle Physics (IEKP)

PARTICLE ZOO

 $J^P = 0^- J^P = 1^-$

PARTICLEZ00

$$J^P = 0^- \ J^P = 1^- \ J^P = 1/2^+$$

PARTICLEZ00

⁺¹⁵² further known Baryon resonances.

 $\mathcal{O}(400)$ known elementary particles.

 $J^P = 0^- J^P = 1^- J^P = 1/2^+ J^P = 3/2^+$

More order into the chaos...

... could be achieved once it was realized that hadrons are composed of more fundamental constituents \rightarrow quarks (first only sorting principle):

 $J^P = \frac{3}{2}^+$ baryon SU(3) decuplet.

sics (IEKP)

22.9.80

The evidence of quarks...

... emerged from deep inelastic scattering (DIS) experiments (first @SLAC 1969, here shown @HERA ~2000):

$$Q^{2} = -q^{2} = (k' - k)^{2}$$

$$s = (p - k)^{2} = 4E_{p}E_{e}$$

$$x = \frac{Q^{2}}{2pq}$$

$$y = \frac{pq}{pk}$$

$$Q^{2} = xys$$

For the DIS process:

$$\begin{aligned} (xp+q)^2 &= m_q^2 + 2xpq - Q^2 = m_q^2 \\ x &= \frac{Q^2}{2pq} \end{aligned}$$

The evidence of quarks...

... emerged from deep inelastic scattering (DIS) experiments (first @SLAC 1969, here shown @HERA ~2000):

27.5 GeV

H1 Experiment @ HERA

Change of flavor & charge

- In the scattering vertex the electron can change flavor and charge and leave detector unobserved.
- Opposed to the neutral current (NC) process this is called charged current (CC) process.

Parity violation

- HERA ran with e-beams of different polarization:
- CC reaction is maximally parity violating!
- W bosons couple only to lefthanded particles (right-handed anti-particles).

• NB: weak interaction intrinsically also violating CP.

The case of matter

• All matter we know is made up of six quark flavors and six lepton flavors:

		Rosons			
Quarks	U up	C	t _{top}		
	d down	S strange	b		
Leptons	Ve electron neutrino	<i>Vμ</i> muon neutrino	V _t tau neutrino		
	electron	$\mu_{_{muon}}$	τ tau		
Source: AA	st	pin^{-1}	$'_{2}$	Higgs boson	

Four fundamental forces act between them (three of importance for particle physics).

Electromagnetism

Weak force

Strong force

The case of matter

• All matter we know is made up of six quark flavors and six lepton flavors:

Juarks		Fermions	4	Bosons	Force		
guarito	U up	C charm	t top	photon	carriers		
	<i>d</i> down	S strange	bottom	Z Z boson			
eptons	Ve electron neutrino	<i>Vμ</i> muon neutrino	V _t tau neutrino	W W boson			
	electron	$\mu_{_{muon}}$	Т tau	g gluon			
ource: AA	st	pin^{-1}	$'_{2}$	Higgs boson			
					Γ	$\psi e^{i\vartheta'}$	
						φt	

Electromagnetism

Weak force

Strong force

$$\begin{split} \mathcal{L}^{\mathrm{SM}} &= \mathcal{L}_{\mathrm{kin}}^{\mathrm{Lepton}} + \mathcal{L}_{\mathrm{IA}}^{CC} + \mathcal{L}_{\mathrm{IA}}^{\mathrm{RC}} + \mathcal{L}_{\mathrm{kin}}^{\mathrm{Gauge}} + \mathcal{L}_{kin}^{\mathrm{Higgs}} + \mathcal{L}_{V(\phi)}^{\mathrm{Higgs}} + \mathcal{L}_{\mathrm{Yukawa}}^{\mathrm{Higgs}} \\ \mathcal{L}_{\mathrm{kin}}^{\mathrm{Lepton}} &= i\overline{e}\gamma^{\mu}\partial_{\mu}e + i\overline{\nu}\gamma^{\mu}\partial_{\mu}\nu \\ \mathcal{L}_{\mathrm{IA}}^{CC} &= -\frac{e}{\sqrt{2}\sin\theta_{W}} \left[W_{\mu}^{+}\overline{\nu}\gamma_{\mu}e_{L} + W_{\mu}^{-}\overline{e}_{L}\gamma_{\mu}\nu \right] \\ \mathcal{L}_{\mathrm{IA}}^{NC} &= -\frac{e}{2\sin\theta_{W}\cos\theta_{W}}Z_{\mu} \left[(\overline{\nu}\gamma_{\mu}\nu) + (\overline{e}_{L}\gamma_{\mu}e_{L}) \right] - e \left[A_{\mu} + \tan\theta_{W}Z_{\mu} \right] (\overline{e}\gamma_{\mu}e) \\ \mathcal{L}_{\mathrm{Kin}}^{\mathrm{Gauge}} &= -\frac{1}{2}Tr \left(W_{\mu\nu}^{a}W^{a\mu\nu} \right) - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} \right| \begin{array}{c} B_{\mu} \rightarrow A_{\mu} \\ W_{\mu}^{3} \rightarrow Z_{\mu} \end{array} \\ \mathcal{L}_{\mathrm{kin}}^{\mathrm{Higgs}} &= \frac{1}{2}\partial_{\mu}H\partial^{\mu}H + \left(1 + \frac{1}{v}\frac{H}{\sqrt{2}} \right)^{2}m_{W}^{2}W_{\mu}^{+}W^{\mu-} + \left(1 + \frac{1}{v}\frac{H}{\sqrt{2}} \right)^{2}m_{Z}^{2}Z_{\mu}Z^{\mu} \\ \mathcal{L}_{\mathrm{V}(\phi)}^{\mathrm{Higgs}} &= -\frac{m_{H}^{2}v^{2}}{4} + \frac{m_{H}^{2}}{2} \left(\frac{H}{\sqrt{2}} \right)^{2} + \frac{m_{H}^{2}}{v} \left(\frac{H}{\sqrt{2}} \right)^{3} + \frac{m_{H}^{2}}{4v^{2}} \left(\frac{H}{\sqrt{2}} \right)^{4} \\ \mathcal{L}_{\mathrm{Yukawa}}^{\mathrm{Higgs}} &= -\left(1 + \frac{1}{v}\frac{H}{\sqrt{2}} \right) m_{e}\overline{e}e \end{array}$$
Full SM Lagrangian density (first lepton generation)

The power of symmetry

- The SM draws its explaining and predictive power from the level of symmetry of ${\cal L}$.
- Each symmetry of \mathcal{L} is related to a conserved quantity. This relation is revealed by the *Noether* theorem:

For illustration assume:

And the symmetry operation:

 $\mathcal{L} = \left(\partial_{\mu}\phi^{\dagger}\partial^{\mu}\phi\right) - m^{2}\phi^{\dagger}\phi$

$$\phi_j \longrightarrow \phi'_j = \phi_j + \delta \phi_j$$

$$\partial_\mu \phi_j \longrightarrow (\partial_\mu \phi_j)' = \partial_\mu \phi_j + \delta \partial_\mu \phi_j$$

$$\mathcal{L}(\{\phi_{j} + \delta\phi_{j}\}, \{\partial_{\mu}\phi_{j} + \delta\partial_{\mu}\phi_{j}\}) = \mathcal{L}(\{\phi_{j}\}, \{\partial_{\mu}\phi_{j}\}) + \underbrace{\frac{\delta\mathcal{L}}{\delta(\partial_{\mu}\phi_{j})}}{\delta\partial_{\mu}\phi_{j}} \underbrace{\frac{\delta\mathcal{L}}{\delta\phi_{j}}}{\delta\phi_{j}} = \mathcal{L}(\{\phi_{j}\}, \{\partial_{\mu}\phi_{j}\}) = \mathcal{L}(\{\phi_{j}\}, \{\partial_{\mu}\phi_{j}\}) = 0$$

$$= 0$$

$$\int d^{3}x \partial_{\mu}J^{\mu} = \int d^{3}x \left(\partial_{0}J^{0} - \partial_{i}J^{i}\right) = 0$$

$$\int d^{3}x \partial_{\mu}J^{\mu} = \int d^{3}x \left(\partial_{0}J^{0} - \partial_{i}J^{i}\right) = 0$$

$$\int d^{3}x \partial_{\mu}J^{\mu} = \int d^{3}x \left(\partial_{0}J^{0} - \partial_{i}J^{i}\right) = 0$$

$$\int d^{3}x \partial_{\mu}J^{\mu} = \int d^{3}x \left(\partial_{0}J^{0} - \partial_{i}J^{i}\right) = 0$$

$$\int d^{3}x \partial_{\mu}J^{\mu} = \int d^{3}x \left(\partial_{0}J^{0} - \partial_{i}J^{i}\right) = 0$$

$$\int d^{3}x \partial_{\mu}J^{\mu} = \int d^{3}x \left(\partial_{0}J^{0} - \partial_{i}J^{i}\right) = 0$$

$$\int d^{3}x \partial_{\mu}J^{\mu} = \int d^{3}x \left(\partial_{0}J^{0} - \partial_{i}J^{i}\right) = 0$$

$$\int d^{3}x \partial_{\mu}J^{\mu} = \int d^{3}x \left(\partial_{0}J^{0} - \partial_{i}J^{i}\right) = 0$$

$$\int d^{3}x \partial_{\mu}J^{\mu} = \int d^{3}x \left(\partial_{0}J^{0} - \partial_{i}J^{i}\right) = 0$$

$$\int d^{0}x \left(\partial_{0}J^{0} - \partial_{0}J^{i}\right) = 0$$

$$\int d^{0}x \left(\partial_{0}J^{0} - \partial_{0}J^{$$

 A few examples of symmetry operations and/or conserved quantities on *L* are given below (→ try to complete the missing parts on your own):

	internal	external	symmetry	conserved quantity
discrete symmetry		\checkmark	C, P, T, CP, CPT	
		\checkmark	rotation in \mathbb{R}^3	$ec{L}$
continuous symmetry		\checkmark	translation in \mathbb{R}^3	$ec{p}$
		\checkmark	translation in t	E
symmetry only on fields	\checkmark		$U(1)_Y, SU(2)_L, SU(3)_c$	• • •
symmetry only on fields & arguments	\checkmark	\checkmark	Lortentz transformation	• • •
symmetry only on fields & arguments	\checkmark	\checkmark	Lortentz transformation	• • •
				baryon number
		•••	•••	lepton number

• One last non-trivial symmetry on \mathcal{L} is the symmetry against an operation that transforms bosons into fermions and vice versa.

Remaining lecture program

	Monday (19.09):	Tuesday (20.09.):	Wednesday (21.09.):
13:30 15:00	Introdu particle	Proton structure, QCD and physics with jets (MM).	Flavor physics - including top-quarks (MM).
15:15 16:45	Particle acceleration & detection; data analysis (RW).	Physics with gauge bosons (MM).	Higgs physics (RW).

 In case of questions – contact us matthias.mozer@cern.ch (Bld. 30.23 Room 9-8) roger.wolf@cern.ch (Bld. 30.23 Room 9-20).

