
KIT – University of the State of Baden-Wuerttemberg and 
National Research Center of the Helmholtz Association 

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

www.kit.edu

Particle Acceleration – Detection – Analysis

Roger Wolf
19. September 2016



Institute of Experimental Particle Physics (IEKP)2  

What is a particle accelerator?

A particle accelerator is a machine that uses 
electromagnetic fields to propel charged 
particles to nearly light speed and to contain 
them in well-defined beams.

M. S. Livingston (1905 – 1986):

Cross section:

Lecture-1: Introduction to Particle Physics (slide 10)

● Reach out to highest energies (→ resolve smallest 
structures, Heisenberg uncertainty principle).

● Colliding beams are our laboratory.

● Provide as many collisions per second as 
possible (→ observe rarest events).

Livingston plot

What particle do we usually 
collide? – 

https://en.wikipedia.org/wiki/M._Stanley_Livingston
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Linear 
accelerator:

Synchrotron:
LHC, CERN 2010

Different ways to build a collider

Electrostatic 
acceleration:

Cyclotron 
(1920’s):

Betatron (1920’s):

6MeV Betatron 1942 – 44 Siemens-Museum 
München

Radius increases with beam energy.

Radius const. – accelerating field 
induced by increasing B-field.

Radius const. – B-field increased 
synchronous w/ beam energy.
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Accelerating power

● Acceleration happens via UHF in Klystrons:

(1) source

(2) first cavity

(3) UHF created by 
electron bunches

(4) exit to second cavity

(5) electron beam dump 

● Acceleration of electrons (1).
● Density modulations in electron beam implied by external 

field (2).
● Due to these modulations electromagnetic wave travels 

through first cavity (3).
● Exit hole at end of cavity. The passing wave induces 

resonant wave in the surface of hole which damps electron 
beam and couples energy out to second cavity (4).

TESLA 9-cell 1.5 GHz SRF cavities from ACCEL Corp. Germany for the ILC

https://en.wikipedia.org/wiki/Klystron
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Phase focusing

● Energy focusing achieved by proper choice of phase 
of accelerating wave:

● This kind of acceleration leads to bunching of 
projectiles.

energy lower  → more 
acceleration

energy exact  → nominal 
acceleration

energy higher → less 
acceleration

Surfer
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Synchrotron radiation

Advantage of circular structures: 
acceleration infrastructure can be 
recycled.

Disadvantage: need acceleration 
energy only to keep particles on 
track.

Radiation pattern of a dipole antenna.

Radiation pattern of a circular accelerated electron.

electron center of mass frame: laboratory frame:

Energy radiated off per rotation cycle:

(*) using LHC parameters.

(*)

(*)
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Beam quality parameters

Luminosity:

● In experiment    correlated against 
quantities that can be easily moni-
tored (→ hits in pixel, energy in 
low angle calorimeter)

● Most accurate value obtained 
from reference processes.

● Particle flux should be high (→ “bright source”):

● Energy should be high, accurate and stable (→ chromaticity).

● Particles must be kept on track to achieve and sustain highest luminosity.

0.
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Two particles with small opening 
angle meet any half cycle.

Weak focusing:

Weak & strong focusing

● Projectiles enter acceleration 
chain with different opening 
angles.

● Restrict opening angle from 
beginning (→ collimators).

Quadrupole field:

Dipole field:

N

S

Strong focusing:

S

S

N

N

Quadrupole field
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Quadrupole focusing

0.92 "

S

S

N

N

Side-view: focussing

Up-view: defocussing

Quadrupole acts like an 
optical lens focusing in 
one plane, defocussing 
in the other.

Trajectory of traversing proton

Arrange system of “lenses” to 
achieve focusing in both planes:

LHC beamline close to CMS
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The Large Hadron Collider

● Construction costs: 4.1 billion $
● Construction time  : 14 years
● Circumference       : 27 km
● No of dipoles         : 1232
● Power                    : 120 MW
● Luminosity(8TeV)   :  8 nb/sec

● 8.3 T

● 11.8 kA

● 160 cyc

● Energy density 
500 kJ/m

● Tension 
200'000 t/m
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Proton-Proton collision @ CMS

● We call this an (exciting) event.
● We try to record it with a “100 Mpx” 

detector @ 40 MHz rate w/o 
deadtime.

A single collision of two smashing protons may produce several thousand collision products.

Overlay of 20 pp-collisions.
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Particle energy loss in matter

Charged particles:

+

+
+

+

+ +

medium

Ionize or excite 
atoms when 
traversing 
media 

Ionization (energy loss → Bethe-Bloch):

Each point on the left corresponds 
to the mean of a Landau distribution 
for the actual energy loss (above 
shown for a      in    ).

Excitation (band theory):

0.
65

 "

By the application of an external 
electric field charge carriers can 
be separated and electric signal 
obtained.

+

+
–



Institute of Experimental Particle Physics (IEKP)13  

Neutral particles

Photons:

photoeffect Compton effect

pair 
production

Neutral hadrons:

turned into charge carriers 
by main interaction 
processes with matter.

turned into charge carriers 
by nuclear interactions 
(depends on energy of 
hadron).
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Tracking devices

● Make detection devices small/granular enough to 
identify just where the particle passed the detector. 

+ +

+
+

+

Time evolution of signal build-up in a proportional chamber.

Drift tube:

Voltage [v]
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Collection of drift chamber types

Straw tube 
detectors 
for OTR of 
LHCb.

Drift chamber for muon system of CMS.

Time projection chamber as in use at ALICE:

● Strong electric field along beam axis.
● Charge carriers drift to segmented endcaps 

for readout.
● Drift time ~ position in z.

Distances in mm.
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Silicon detectors

Reminder: pn-junction.

Layout of a typical Si-strip detector.

Impressions of the CMS detector.
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Calorimeters

● Stop particle in active device with good 
energy resolution.

For better energy resolution choose homo-
geneous, for better stopping power use 
sampling calorimeters.

Scintillator:

Use excitation of atoms → turned 
into scintillation light:

Usually connected via 
light guides to PMTs for 
readout.

Important material parameters:
● Energy resolution.
● Linearity.
● Same response for all particle 

types (      , → compensation).
● Stopping power (in      or    )
● Radiation hardness.
● Granularity in readout.

Ionization:

E.g. by ATLAS Pb-LAr sampling 
calorimeter:



Institute of Experimental Particle Physics (IEKP)18  

Key demands on the experiment

Vertex 
identification:

Momentum 
determination:

Energy determination:
● Energy resolution
● Stopping power
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The Large Scale Solution (ATLAS)

● Magnet field (solenoid): 2.6 T 
(inside calorimeter)

● Tracker: Si/multi-wire 
chambers

● ECAL/HCAL: LAr (varying 
granularity)

● Magnet field (toroid): ~4 T 
(outside calorimeter)

● Length : 45 m
● Diameter : 22 m
● Weight : 7'000 t

Magnet Field:
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The Compact Solution (CMS)

● Length : 21 m
● Diameter : 16 m
● Weight : 12'500 t

● Magnet field: 3.8 T (outside 
calorimeter)

● Tracker: Si (                     for a 
10 GeV track)

● ECAL: PbWO (                    for 
a 30 GeV        ,                )

4

● HCAL: Sampling (brass 
scintillator,                       for a 
100 GeV           ,               )
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Deadtime free readout
Requirements (e.g. CMS):
● ~100 million detector cells.
● 40 MHz event rate.
● 10 – 12 bits/cell.

→ ~1000 TByte/s raw data (most    
     of this data is not of interest).

● Achieve deadtime free readout by 
sophisticated data acquisition.

Layered trigger system:

L1 Hardware Trigger

L2 software farm

L2 software farm

Detector granularity available 
for trigger readout.

● App. high     electron.
● App. high     muon
● Decisions within          .

● Regional readout of 
tracker and CALO e.g. 
to check isolation.

● Decisions within          .

● Nearly full event 
reconstruction.

● Decisions within           .

On board on FPGA proc’s.

On commercial computer farm 
(~2000 CPU’s).

E
ach de cision bu ys the s ystem

 
m

ore tim
e to tak e a close r look.

Requirements (e.g. CMS):
● ~100 million detector cells.
● 40 MHz event rate.
● 10 – 12 bits/cell.

→ ~1000 TByte/s raw data (most    
     of this data is not of interest).

●          L1-keep decisions.
●           HLT trigger bits.

3 G
igace ll 

buffer lin es

Keep all detector 
information till 
trigger decision is 
reached.

HLT paths with too high rate can be 
prescaled (prescale=2 → only any 
second event recorded).
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High level object reconstruction

● Combine all energy 
deposits in detector 
to a unique event 
description (→ stable 
particle level).

neutral 
hadron

charged 
hadrons

photon

● Unambiguous list of stable 
particles: muons, electrons, 
photons, charged & neutral 
hadrons.

Particle Flow:



Institute of Experimental Particle Physics (IEKP)23  

High level object reconstruction

● Combine all energy 
deposits in detector 
to a unique event 
description (→ stable 
particle level).

neutral 
hadron

charged 
hadrons

photon

● Unambiguous list of stable 
particles: muons, electrons, 
photons, charged & neutral 
hadrons.

Particle Flow:
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Particle flow of the future
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● Excellent separation of 
neutral & charged 
hadrons (→              ).

● Minimal material in 
front of CALO.

● High granularity CALO.

Prerequisites:
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Jet clustering

● At analysis level we are most of the time more 
interested in partonic structures than all hadrons 
in the event.

● Today sequential recombination jet cluster 
algorithms are state of the art, which recombine 
hadrons into jets according to their energy and 
distance in               :

G. Salam Towards Jetography

CMS 11-jet event

Jets can be associated to partons in 
hard scattering

https://arxiv.org/abs/0906.1833
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Jet calibration
Expected response reconstructed / parton level

Corrections to simulation

● Response matches expected 
energy at parton level already 
within 10%.

● Correction and uncertainty at 
%-level.
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Missing energy

● In the initial state have                    . Must be true 
also for final state due to momentum 
conservation. 

● Mis-balance of           indicates presence of unde-
tected energy (→ MET).

MET resolution can be measured in           
              events w/o genuine MET.
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Lepton identification

● Lepton identification can be measured 
using “Tag & Probe” techniques.

x
particle track

layer-1

layer-x

layer-2 x

?

Example: Hit efficiency

Probe: how often do we see a hit in   
            layer-x?

Tag    : coincident hits in layer-1 & 2.

Example: Lepton ID efficiency

Probe: inner/outer track, calo deposit. 

Tag    : well identified and ID’ed lepton & Z-mass 
            requirement.

● inner/Outer track reconstruction efficiency,
● efficiency of ID or isolation requirements,
● track-cluster linking efficiency,
● cluster efficiency in calo,
● … 

What can be tested:

Tag: everything that let’s you think that 
you know the truth of the probe.
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Control of background processes

● Several flavors of estimation methods of 
contributions of background processes in 
signal regions.

Normalize background events in 
sideband region.

B

A

C

D

Even shape can be taken 
from region B.

Each of these estimates requires 
a (more or less sophisticated/robust/ 
physics motivated) model.

Background for 

W+jets background for 

QCD multijets background for 



Institute of Experimental Particle Physics (IEKP)30  

More sophisticated methods

hybrid event

Estimate of               
background for             .

Literally background 
free sideband 
region for              .

Only simulation part: decay of 
  -lepton.
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Remaining lecture program

Monday (19.09):

Introduction to particle 
physics (RW).

● In case of questions – contact us matthias.mozer@cern.ch (Bld. 30.23 Room 9-8  )  
                                                     roger.wolf@cern.ch          (Bld. 30.23 Room 9-20).

Tuesday (20.09.): Wednesday (21.09.):

Particle acceleration & 
detection; data analysis 
(RW).

Proton structure, QCD and 
physics with jets (MM).

Physics with gauge bosons 
(MM).

Flavor physics - including 
top-quarks (MM).

Higgs physics (RW).
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Backup
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