

KSETA-Course: Accelelerator-Based Particle Physics

QCD and Jet Physics

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

QCD Reminder

- Force between color-charged particles
 ⇒ 6 quarks (with colors), 6 anti-quarks (with anti-colors)
- Coupling constant α_s
- Described in field theory by SU(3) group
 ⇒ force carried by 8 gluons, each with one color + one anti-color
 ⇒ non-abelian → gluon self-interactions

Strong Coupling

- Vacuum polarization effects:
 ⇒ couplings depend on energy
- EM: screening
 ⇒ coupling stronger at higher
 energies
- QCD: anti-screening
 - ⇒ coupling weaker at higher energies
- Consequences: ⇒ confinement
 - \Rightarrow asymptotic freedom

QCD Reminder: Phenomenology

- Confinement: strong coupling increasing at low energies, large distances
 ⇒ QCD potential rising infinitely
 ⇒ no free color-charged particles observable, only hadrons
- Asymptotic freedom: coupling shrinking at high energy
 ⇒ α_s small enough for perturbation theory
 ⇒ collider strong physics framed as quark + gluon physics

Reminder: QCD-Factorisation

cross section = PDF \otimes hard process \otimes hadronisation

Proton Structure

- Probe proton structure with scattering experiments
- Inspiration: Rutherford Scattering

 \Rightarrow charge distribution within proton

- Add additional degree of freedom: inelastic scattering
 → scattering angle
 - \rightarrow energy loss

Deep Inelastic Scattering

- Kinematic variables: four-momentum transfer: $Q^2 = -q^2 = (k - k')^2$ inelasticity: $y = \frac{P \cdot q}{P \cdot k} = \frac{E - E'}{E}$ "scaling variable" $x = \frac{Q^2}{2P \cdot q}$ mass of scattered system: $W = (P + q)^2$
- $k \xrightarrow{k'} W$

- Processes described by just two variables $Q^2 = xys$ (s = center-of-mass energy)
- Kinematics determined by electron kinematics alone
- "Deep Inelastic" if $W \gg M$

Structure Functions

with F_2 , F_3 , F_L intrinsic properties of the proton

• Interpret proton in the quark model \Rightarrow functions get meaning **x**P: momentum carried by struck quark $F_2(x, Q^2) = x \sum_q e_q^2(q(x, Q^2) + \bar{q}(x, Q^2))$ $xF_3(x, Q^2) = x \sum_q e_q^2(q(x, Q^2) - \bar{q}(x, Q^2))$ $F_L(x, Q^2) = 0$ (in leading order)

Deep Inelastic Scattering

ω=1/x

Bjorken Scaling

- Naive assumption: pointlike constituents: F₂(x,Q²) -> F₂ (x)
- 1969:
 SLAC+MIT
 experiments
- Quarks are real!
- Iooks like scaling

10-4

Ó

2

q² (GeV/c)²

6

5

x

8

Scaling Violations

low x: Gluon splitting enhances quark density \Rightarrow F₂ rises with Q²

high x: Gluon radiation shifts quark to lower x \Rightarrow F₂ falls with Q²

Parton-Model and PDFs

 "Naive" parton model:
 Proton described by structure function F₂

$$F_2(x) = \sum_i q_i^2 x f_i(x)$$

- Simple Model: three valence quarks $\rightarrow F_2 = 1/3$
- Gluon-exchange
 between valence quarks
 → smearing
- Gluon-exachinge and Gluon-radiation \rightarrow sea quarks

QCD-Evolution of PDFs

- PDFs depend on energy transfer:
 - concept: Parton content of the proton changes with energy transfer Q², e.g. more sea-quarks adn gluons from radiation at high Q²

 Theoretical desription: Resumming of all collinear parton radiation
 → DGLAP-equation
 (renormalization group equation)

- Starting point: PDFs measurements at starting energy scale
 - non-perturbative process: not calculable ab initio
 - measurement in many processes, e. g. deep inelastic scattering, jet production (HERA, Tevatron, LHC, Fixed Target, Neutrinos)

QCD-Evolution of PDFs

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-equation (DGLAP)

P_{ij}: universal splitting function, e.g. in LO $P_{gq} = \frac{4}{3} \frac{1 + (1 - z)^2}{z}$

• Interpretation: get additional quarks with momentum fraction x at energy scale Q² by splitting $q \rightarrow qg$ or $g \rightarrow qq$ from larger x

Kinematic (x, Q²)-Plane

KSETA Courses 2016

PDFs

Gluon-density steeply with falling x
 ⇒ high cross sections for gluon induced processes at the LHC

Heavy quarks at high momentum transfer
 proton effectively "contains" quarks heavier than itself

Parton Shower

- Fragmentation of partons:
 - partons can split into more partons ("parton splitting") \rightarrow parton shower
 - parton shower: probabilistic modell for fragmentation, aequivalent to resumming
- Described with Sudakov form factor
 - Probability for the splitting on a parton i in j: splitting function P_{ji}
 - Solve DGLAP-equation for parton shower: Sudakov form factor

$$\Delta_i(t) = \exp\left[-\sum_j \int_{t_0}^t \frac{\mathrm{d}t'}{t'} \int_0^1 \mathrm{d}y \, \frac{\alpha_S}{2\pi} \, P_{ji}(y)\right]$$

Interpretation: probability that no splitting occurs

Parton Shower Algorithms

- Sudakov picture of parton shower well suited for MC-simulation
- Basic algorithm: Markov-chain
 - \rightarrow Each step only based on information from previous step
 - Start: Virtuality t₁, momentum fraction of parton x₁
 - Randomly generate new virtuality t_2 with random number $R_t \in [0,1]$ with

$$\frac{\Delta(t_2)}{\Delta(t_1)} = R_t$$

Randomly generate new momentum fraction x_2 with $R_x \in [0,1]$

$$\frac{\int_0^{x_2/x_1} \mathrm{d}z \, \frac{\alpha_s}{2\pi} \, P(z)}{\int_0^1 \mathrm{d}z \, \frac{\alpha_s}{2\pi} \, P(z)} = R_x$$

- randomly generate azimuthal angle $\Phi \in [0, 2\pi]$
- iterate until virtuality reaches threshold

Hadronisation Models

- Transition from partons to hadrons: not perturbative

 phaenomenologic models
- Monte-Carlo models quite successful
 - Complete final state predictions \rightarrow directly applicable to experiments
 - Disadvantage: many ad-hoc-parameters
 - \rightarrow Requires optimization
 - \rightarrow may hide actual physics effects
- Most common models
 - Independent fragmentation (historical)
 - Lund string model (Pythia)
 - Cluster model (Herwig, Sherpa)

Independent Fragmentation

- Ansatz: each parton fragments independently (Field, Feynman, Nucl. Phys. B136 (1978) 1)
- Algorithm
 - Start: original quark
 - Quark-antiquark-pairs created from vacuum → primary Meson with energyfraction z
 - New starting point: remaining quark with energyfraction 1 – z
 - Stop: at a lowert energy-threshold
- Fragmentation-funktion D(z): Probability to find a Hadron with energy fraction z in a Jet (not perturbative, has to be measured)

Lund String Model

- Ansatz: quark-antiquark-pairs form strings (Andersson et al., Lunds universitet, Phys. Rept 97 (1983) 31)
 - QCD potential: At large distances like a tensioned string

$$V(r) = -\frac{4}{3}\frac{\alpha_{S}(1/r^{2})}{r} + kr$$

- Quark-antiquark-pairs form strings
- Strings break, when V(r) large enough
 → new quark-antiquark-pairs
- Gluons: "kinks" in strings
- Create hadrons at a lower energy threshold
- Commonly used implementation: Pythia

[nach: Ellis et al., QCD and Collider Physics]

Cluster Model

Ansatz: Colorflow during hadronization subject to confinement
 → form colorneutral clusters of partons

• original paper: Webber, Nucl. Phys. B238 (1984) 492

- Gluons (color + anticolor charge): split into quark-antiquark-Pairs
- Decay von clusters according to available phase-space
- Advantage: no free parameters
- Commonly used implementation: Herwig

Jet Algorithms

KSETA Courses 2016

Cone Algortihms

Iterative cone algorithms: Jet = energy flow in cone of radius R in (y,φ)- or (η,φ)-space

 $R = \sqrt{(y-y_0)^2 + (\phi-\phi_0)^2}$

Algorithm: Find all stable cones
 Include in jet, if distance from center

$$\Delta_{iC} = \sqrt{(y_i - y_C)^2 + (\phi_i - \phi_C)^2} \le R$$

Recompute centerIterate until cone is stable

Starting point ("seed")

- Fixed seeds (e.g. calorimeter cluster above threshold): not IR safe
- try all possible seeds
 - \rightarrow gain IR safety
 - \rightarrow can be numerically intensive

jet cone in (y,ϕ) -space

Teilchenphysik II: W, Z, Top am Collider (4022161) – 4. Vorlesung

Sequential Recombination

Main class: kt-algorithms

- Define distance measure d_{ij} between transverse momenta k_t e $d_{ij} = \min(k_{t,i}^{2n}, k_{t,j}^{2n}) \frac{\Delta R_{ij}}{R}$
- Define distance to beam: $d_{iB} = k_{t,i}^{2n}$
- Compute d_{ij} for all pairs of particles
- Set found, if d_{iB} smallest d_{ij}
- Otherwise: combine particles i and j
- Variants
 - **n** = 1: k_t -algorithm \rightarrow combine similar k_t first
 - n = 0: Cambridge/Aachen-(C/A-)algorithm ($d_{iB} = 1$) → purely geometrical
 - n = −1: anti-k_t-algorithm (LHC-Standard, ATLAS: R = 0.4, CMS: R = 0.4) → combine all low k_t around "hard" particle first

KSETA Courses 2016

Desireable Properties

IR-safety:

soft gluon radiation has high probability \rightarrow shouldn't matter for jet

Collinear safety:

parton splitting probability divergent \rightarrow shouldn't matter for jet

Boost invariance:

at hadron colliders cms-frame not known

- \rightarrow shouldn't matter for jet
- Compute Performance:

need to reconstruct jets in finite time

Shape regularity

how to subtract noise/pileu-up \rightarrow prefer regular shape, less greedy algo. (mostly a concern for hadron colliders)

IR unsafe: Sensitive to the addition of soft particles

Coll. unsafe: Sensitive to the splitting of a 4-vector (seeds!)

Jet Production

Challenges with Jets

Huge statistical precision: Dream or nightmare?

- Systematic effects are everywhere:
 - => Jet energy scale/resolution
 - => Jet energy corrections depend on parton type/flavor
 - => Pileup effects
 - => ...
- Theory uncertainties not negligible
 => QCD is hard to compute
 => PDFs not precisely known
 => Non-perturbative effects at low p_T

Jet Energy Calibration

■ Determine parton energy from "raw" detector measurement → calibration jet energy scale (JES)

- Calorimeter cells: equalize response, mask at high noise
- Calorimeter (whole): correct for different response to EM particles and hadrons ("compensation")
- Additional energy in the jet, e. g. pile-up
- Particles not caught by the jet algorithm ("out of cone")
- Differences in jet shapes for jets from gluons, udsc-quarks, b-Quarks

Theory Uncertainties

Large theory uncertainties at high jet p_T

- Large extrapolation from HERA data
- Large x gluon density not that well constrained

Turning the tables

Measurement interpretation limited by theory uncertainties

Measurements constrain theory parameters

- => Parton densities (PDFs)
- => Strong coupling (α_s)

Systematics are critical => some 7TeV studies still current α_s: 3-jet mass

More jets in the final state => higher power of α_s

- Tricky theory calculation (NLO available)
- Correlated with PDFs => requires tuned PDF-sets

 α_s : Results

Exotic Physics with Jets

Why use jets with huge backgrounds?

- \Rightarrow quark final state implies possible strong production
- \Rightarrow huge cross sections
- \Rightarrow if several decays are possible quarks can be common (5/6 flavors x 3 colors)
- \Rightarrow can have large branching Ratios
- Typical things to look for:
 - Excited quarks (possible if quarks are composite) ⇒ decay to quark + gluon

Extended Gauge groups: Z', W' \Rightarrow high BR to quarks if extra bosons are similar to SM bosons

Dijet Resonance

- Very high jet energies (TeV!) \Rightarrow "soft" gluon radition not so soft any more \Rightarrow R=0.4 jets not sufficient \Rightarrow add all other jets within R=1.1
- Fit with:
 - Smooth curve (SM hypothesis)
 - Smooth curve + bump (signal + background hypothesis)

Contact Interactions

What if the resonance is too heavy

Analogy: Fermi theory of weak interaction

Contact Interactions

- Signal (contact interaction) \Rightarrow roughly isotropic
- biggest background: t-channel processes

low momentum transfer most likely: \Rightarrow jets mostly forward

Look at angular distribution to find signal

$$\chi = \exp(|\eta_1 - \eta_2|) = \frac{1 + |\cos(\hat{\theta})|}{1 - |\cos(\hat{\theta})|}$$

KSETA Courses 2016

Black Holes

- Black holes decay via Hawking radiation: \Rightarrow Black-Body spectrum with $T_H = \frac{\overline{h}c^3}{8\pi GMk_B}$ $\Rightarrow \tau \sim 5.10^{-27} \text{s} \cdot \text{M}^3 \text{ (in g)}$ \Rightarrow astronomical black holes essentially stable
- Microscopic black holes producible?
 - ⇒ unclear, requires theory of quantum gravity
 - \Rightarrow usually expect lower limit on BH mass of 10⁻⁵g
 - ⇒ but could be lower for exotic scenarios (extra dimensions)

Virtual pairs of electrons and positrons continually appear and annihilate each other.

... leaving the other particle as a real particle.

Black Holes

