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Force between color-charged particles
⇒ 6 quarks (with colors), 6 anti-quarks (with anti-colors)

Coupling constant αs

Described in field theory by SU(3) group
⇒ force carried by 8 gluons, each with one color + one anti-color
⇒ non-abelian → gluon self-interactions

QCD Reminder
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Strong Coupling
Vacuum polarization effects:
⇒ couplings depend on energy

EM: screening 
⇒ coupling stronger at higher 

energies

QCD: anti-screening
⇒ coupling weaker at higher

energies

Consequences:
⇒ confinement
⇒ asymptotic freedom

EM: Screening
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QCD Reminder: Phenomenology
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Confinement:
strong coupling increasing at 
low energies, large distances
⇒ QCD potential rising infinitely
⇒ no free color-charged particles 

observable, only hadrons

Asymptotic freedom:
coupling shrinking at high energy
⇒ αs small enough for perturbation theory
⇒ collider strong physics framed as

quark + gluon physics
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Reminder: QCD-Factorisation
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⊗ hadronisation

cross section = PDF ⊗ hard process ⊗ hadronisation
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Proton Structure
Probe proton structure with scattering experiments

Inspiration: Rutherford Scattering

⇒ charge distribution within proton

Add additional degree of freedom: inelastic scattering
→ scattering angle
→ energy loss
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Deep Inelastic Scattering 

Kinematic variables:
four-momentum transfer: 𝑄𝑄2 = −𝑞𝑞2 = 𝑘𝑘 − 𝑘𝑘′ 2

inelasticity: 𝑦𝑦 = 𝑃𝑃�𝑞𝑞
𝑃𝑃�𝑘𝑘

= 𝐸𝐸−𝐸𝐸′

𝐸𝐸

„scaling variable“ 𝑥𝑥 = 𝑄𝑄2

2𝑃𝑃�𝑞𝑞
mass of scattered system: 𝑊𝑊 = 𝑃𝑃 + 𝑞𝑞 2

Processes described by just two variables
𝑄𝑄2 = 𝑥𝑥𝑦𝑦𝑥𝑥 (s = center-of-mass energy)

Kinematics determined by electron kinematics alone

„Deep Inelastic“ if W ≫ M



KSETA Courses 2016

Structure Functions
Scattering Process can be generically written as
𝑑𝑑𝜎𝜎𝑒𝑒±𝑝𝑝

2

𝑑𝑑𝑥𝑥𝑑𝑑𝑄𝑄2
=

2𝜋𝜋𝛼𝛼2

𝑥𝑥𝑄𝑄4
(𝑌𝑌+𝐹𝐹2 − 𝑦𝑦2𝐹𝐹𝐿𝐿 ∓ 𝑌𝑌−𝑥𝑥𝐹𝐹3 )

with F2, F3, FL intrinsic properties of the proton

Interpret proton in the quark model ⇒ functions get meaning
xP: momentum carried by struck quark
𝐹𝐹2 𝑥𝑥,𝑄𝑄2 = 𝑥𝑥 �

𝑞𝑞
𝑒𝑒𝑞𝑞2(𝑞𝑞 𝑥𝑥,𝑄𝑄2 + �𝑞𝑞 𝑥𝑥,𝑄𝑄2 )

𝑥𝑥𝐹𝐹3 𝑥𝑥,𝑄𝑄2 = 𝑥𝑥 �
𝑞𝑞
𝑒𝑒𝑞𝑞2(𝑞𝑞 𝑥𝑥,𝑄𝑄2 − �𝑞𝑞 𝑥𝑥,𝑄𝑄2 )

𝐹𝐹𝐿𝐿 𝑥𝑥,𝑄𝑄2 = 0 (in leading order)

𝑌𝑌± = (1 ± 1 − 𝑦𝑦 2)

photon propagator
and em coupling factorize
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Deep Inelastic Scattering

incoming proton

scattered electron

incoming e

scattered quark
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Naive assumption:
pointlike constituents: 
F2(x,Q2) -> F2 (x)

1969:
SLAC+MIT
experiments

Quarks are real!

looks like scaling

Bjorken Scaling
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Scaling Violations

low x:
Gluon splitting enhances
quark density
⇒ F2 rises with Q2

high x:
Gluon radiation shifts
quark to lower x
⇒ F2 falls with Q2
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Parton-Model and PDFs

„Naive” parton model: 
Proton described by
structure function F2

Simple Model: three valence
quarks → F2 = 1/3

Gluon-exchange 
between valence quarks
→ smearing

Gluon-exachnge and Gluon-
radiation → sea quarks

12

[nach: Halzen, Martin, Quarks & Leptons]
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QCD-Evolution of PDFs
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PDFs depend on energy transfer: 
concept: Parton content of the proton changes with
energy transfer Q2, e.g. more sea-quarks 
adn gluons from radiation at high Q2

Theoretical desription: Resumming of all collinear parton radiation
→ DGLAP-equation

(renormalization group equation)

Starting point: PDFs measurements at starting energy scale
non-perturbative process: not calculable ab initio
measurement in many processes, e. g. deep inelastic scattering, 
jet production (HERA, Tevatron, LHC, Fixed Target, Neutrinos) 
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Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-equation (DGLAP)

Pij: universal splitting function, e.g. in LO 

Interpretation: get additional quarks with momentum fraction x at 
energy scale Q2 by splitting q → qg or g → qq from larger x

14

Quarks:

Gluons:

QCD-Evolution of PDFs
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Kinematic (x, Q2)-Plane
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[http://www.hep.phy.cam.ac.uk/~wjs]

7 TeV 14 TeV

http://www.hep.phy.cam.ac.uk/%7Ewjs
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PDFs

16

Gluon-density steeply with falling x
⇒ high cross sections for gluon induced processes at the LHC

Heavy quarks at high momentum transfer
⇒ proton effectively „contains“ quarks heavier than itself
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Parton Shower
Fragmentation of partons:

partons can split into more partons
(„parton splitting“) → parton shower
parton shower: probabilistic modell
for fragmentation, aequivalent to resumming

Described with Sudakov form factor
Probability for the splitting on a parton i in j: 
splitting function Pji

Solve DGLAP-equation for parton shower:
Sudakov form factor

Interpretation: probability that no splitting occurs

17
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Parton Shower Algorithms
Sudakov picture of parton shower well suited for MC-simulation

Basic algorithm: Markov-chain
→ Each step only based on information from previous step

Start: Virtuality t1, momentum fraction of parton x1

Randomly generate new virtuality t2 with random number Rt ∈ [0,1] with

Randomly generate new momentum fraction x2 with Rx ∈ [0,1]

randomly generate azimuthal angle Φ ∈ [0,2π]
iterate until virtuality reaches threshold

18
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Hadronisation Models

Transition from partons to hadrons: not perturbative
→ phaenomenologic models

Monte-Carlo models quite successful
Complete final state predictions → directly applicable to experiments
Disadvantage: many ad-hoc-parameters
→ Requires optimization
→ may hide actual physics effects

Most common models
Independent fragmentation
(historical)
Lund string model (Pythia)
Cluster model (Herwig, Sherpa)

19
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Independent Fragmentation
Ansatz: each parton fragments independently
(Field, Feynman, Nucl. Phys. B136 (1978) 1)

Algorithm
Start: original quark
Quark-antiquark-pairs created
from vacuum → primary
Meson with energyfraction z
New starting point: 
remaining quark
with energyfraction 1 – z 
Stop: at a lowert energy-threshold

Fragmentation-funktion D(z): Probability to find 
a Hadron with energy fraction z in a Jet 
(not perturbative, has to be measured)

20
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Lund String Model
Ansatz: quark-antiquark-pairs form strings
(Andersson et al., Lunds universitet, Phys. Rept 97 (1983) 31)

QCD potential: At large distances like a  tensioned string

Quark-antiquark-pairs form strings
Strings break, when V(r) large enough
→ new quark-antiquark-pairs
Gluons: „kinks” in strings
Create hadrons at a lower energy threshold

Commonly used implementation: Pythia

21

[nach: Ellis et al., QCD and Collider Physics]
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Cluster Model

Ansatz: Colorflow during hadronization subject to confinement
→ form colorneutral clusters of partons

original paper: Webber, Nucl. Phys. B238 (1984) 492
Gluons (color + anticolor charge): 
split into quark-antiquark-Pairs
Decay von clusters according to
available phase-space

Advantage: no free parameters

Commonly used implementation: Herwig

22

[nach: Ellis et al., QCD and Collider Physics]
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Primary goal:
establish correspondence between
→ detector signals
→ final state particles
→ hard partons

Two classes of algorithms
→ Cone algorithms

geometrically combine 
closeby objects

→ Sequential recombination
combine two closest objects
in some distance measure
and iterate

Jet Algorithms
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Iterative cone algorithms: Jet = energy flow in 
cone of radius R in (y,ϕ)- or (η,ϕ)-space

Algorithm: Find all stable cones
Include in jet, if distance from center

Recompute center
Iterate until cone is stable

Starting point (“seed”)
Fixed seeds (e.g. calorimeter cluster 

above threshold): not IR safe
try all possible seeds

→ gain IR safety
→ can be numerically intensive

Cone Algortihms

24

R

jet cone in (y,ϕ)-space
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Sequential Recombination
Main class: kt-algorithms

Define distance measure dij between 
transverse momenta kt e

Define distance to beam:
Compute dij for all pairs of particles
Jet found, if diB smallest dij

Otherwise: combine particles i and j
Variants

n = 1: kt-algorithm → combine similar kt first
n = 0: Cambridge/Aachen-(C/A-)algorithm (diB = 1)→ purely geometrical
n = –1: anti-kt-algorithm (LHC-Standard, ATLAS: R = 0.4, CMS: R = 0.4) 
→ combine all low kt around „hard” particle first

25

step 1:
sequential recombination

step 2:

step 3:
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Desireable Properties
IR-safety: 
soft gluon radiation has high probability
→ shouldn’t matter for jet
Collinear safety:
parton splitting probability divergent
→ shouldn’t matter for jet
Boost invariance:
at hadron colliders cms-frame not known
→ shouldn’t matter for jet
Compute Performance:
need to reconstruct jets in finite time
Shape regularity
how to subtract noise/pileu-up
→ prefer regular shape, less greedy algo.
(mostly a concern for hadron colliders)
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Jet Production

27

The dream analysis
=> Basically background free
=> Unlimited statistics

[CMS-SMP-15-007]
also: [ATLAS-CONF-2015-034]

𝜎𝜎 =
𝑁𝑁𝑠𝑠𝑒𝑒𝑠𝑠 − 𝑁𝑁𝑏𝑏𝑘𝑘𝑏𝑏
𝜀𝜀𝜀𝜀 ∫ℒ

~1

~0

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-15-007/index.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-034/
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Challenges with Jets

28

Huge statistical precision: Dream or nightmare?

Systematic effects are everywhere:
=> Jet energy scale/resolution
=> Jet energy corrections depend on parton type/flavor
=> Pileup effects
=> …

Theory uncertainties not negligible
=> QCD is hard to compute
=> PDFs not precisely known
=> Non-perturbative effects at low pT
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Jet Energy Calibration

Determine parton energy from „raw” 
detector measurement → calibration 
jet energy scale (JES)

Calorimeter cells: equalize response, 
mask at high noise
Calorimeter (whole): correct for different 
response to EM particles and hadrons 
(„compensation”) 
Additional energy in the jet, 
e. g. pile-up
Particles not caught by the jet
algorithm („out of cone”)
Differences in jet shapes for jets from 
gluons, udsc-quarks, b-Quarks

2
9

Calibration, for example
by jet pair balance

Jet 1

Jet 2

[https://tw
iki.cern.ch/tw

iki/bin/view
/

C
M

SPublic/PhysicsR
esultsJM

E2013JEC
]

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsJME2013JEC
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsJME2013JEC
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Theory Uncertainties

30

Large theory uncertainties at high jet pT

Large extrapolation from HERA data

Large x gluon density not that well constrained

[C
M

S
-S

M
P

-14-001
]

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-14-001/index.html
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Turning the tables

31

Measurement interpretation
limited by theory uncertainties

Measurements constrain
theory parameters

=> Parton densities (PDFs)
=> Strong coupling (αs)

Systematics are critical
=> some 7TeV studies still current
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αs: 3-jet mass

32

More jets in the final state => higher power of αs

Tricky theory calculation (NLO available)

Correlated with PDFs => requires tuned PDF-sets

[E
ur. P

hys. J. C
 75 (2015) 186] 

http://dx.doi.org/10.1140/epjc/s10052-015-3376-y
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αs: Results

33
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Exotic Physics with Jets
Why use jets with huge backgrounds?
⇒ quark final state implies possible strong production
⇒ huge cross sections

⇒ if several decays are possible quarks can be common
(5/6 flavors x 3 colors)

⇒ can have large branching Ratios

Typical things to look for:

Excited quarks (possible if quarks are composite)
⇒ decay to quark + gluon

Extended Gauge groups: Z’, W’
⇒ high BR to quarks if extra bosons are similar to SM bosons
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Dijet Resonance
Very high jet energies (TeV!)
⇒ “soft” gluon radition

not so soft any more
⇒ R=0.4 jets not sufficient
⇒ add all other jets within 

R=1.1

Fit with:

Smooth curve (SM hypothesis)

Smooth curve + bump
(signal + background hypothesis)

Limit from Likelihood ratio
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Contact Interactions
What if the resonance is too heavy

Analogy: Fermi theory of weak interaction

ad-hoc description
of weak interaction
with quartic vertex

is the low energy 
approximation
of the W-propagator

q

q q

q

X
Invent new theory
with heavy particle X

Integrate out heavy
particles
⇒ effective contact 

interaction

q

q q

q
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Signal (contact interaction)
⇒ roughly isotropic 

biggest background:
t-channel processes

low momentum transfer
most likely:
⇒ jets mostly forward

Look at angular distribution 
to find signal

Contact Interactions

q

q q

q

X

signal at low χ
jets central ⇒ cos(θ) ~ 0
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Black Holes
Black holes decay via 
Hawking radiation:
⇒ Black-Body spectrum with
𝑇𝑇𝐻𝐻 =

�ℎ𝑐𝑐3

8𝜋𝜋𝜋𝜋𝜋𝜋𝑘𝑘𝐵𝐵
⇒ τ ~ 5⋅10-27s⋅M3 (in g)
⇒ astronomical black holes

essentially stable

Microscopic black holes producible?
⇒ unclear, requires theory

of quantum gravity
⇒ usually expect lower limit

on BH mass of 10-5g
⇒ but could be lower for

exotic scenarios (extra dimensions)
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Black Holes
Hawking radiation is “democratic”
⇒ all particles with same probability
⇒ 6x3 = 18 quarks
⇒ expect many jet final state

Impractical to study jets separately
⇒ us scalar sum of all jet pt
⇒ expect black hole decays 

at high masses

None found yet!
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