

KSETA-Course: Accelelerator-Based Particle Physics

Electroweak Physics

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Elektromagnetic Interaction & CC

Electromagnetic Interaction (Fermion with charge e)

Charged Current: V-A structure

$$\mathcal{L}_{cc} = \frac{g}{\sqrt{2}} \left[J_{\mu}^{+CC} W^{\mu-} + J_{\mu}^{-CC} W^{\mu+} \right]$$

quark mixing

CC for quarks

$$J_{\mu}^{+CC} = (\bar{u}, \bar{c}, \bar{t}) \gamma_{\mu} \frac{1}{2} (1 - \gamma_5) V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
V-A

NC & Selfcoupling

(I_3^f third component of isospin, q^f fermion charge)

• Selfcouplings of gauge bosons: only WW_γ, WWZ $\mathcal{L}_{WW\gamma} = -ie \left[A_{\mu} (W^{-\mu\nu} W_{\nu}^{+} - W^{+\mu\nu} W_{\nu}^{-}) + F_{\mu\nu} W^{+\mu} W^{-\nu} \right]$ $\mathcal{L}_{WWZ} = -ie \cot \vartheta_{w} \left[Z_{\mu} (W^{-\mu\nu} W_{\nu}^{+} - W^{+\mu\nu} W_{\nu}^{-}) + Z_{\mu\nu} W^{+\mu} W^{-\nu} \right]$

+quartic couplings WWWW, WWZZ, WWZγ, WWγγ

Cross Section

- Resonant (s-channel-) production von Z-bosons in e⁺e⁻-scattering
 - Photon and Z-boson: identical quantum numbers $(J^P = 1^-) \rightarrow interference$
 - Matrix-element:

- cross section: $\sigma(e^+e^- \to f\bar{f}) = \sigma_{\gamma^*} + \sigma_{\gamma^*/Z} + \sigma_Z$
- $\sqrt{s} \ll m_Z$: photon exchange dominant \rightarrow simple QED
- $\sqrt{s} \simeq m_Z$: Z-boson-exchange dominant, photon- and interferenceterm negligible

Widh of the Z-Resonance

[Phys. Rep. 427 (2006) 257

- Z = unstable particle
 - finite lifetime τ_z
 → decaywidth Γ_z = 1/τ_z
 ("smeared" mass)
 - modified propagator
- Decay width
 - sum of partial decay widths ("partial widths")
- Cross-section (pb) \mathbf{Z} e⁺e [−]→hadrons 10 ³ k 10 ²) CESR PÉP PETRA TRISTAN SLC KEKB PEP-II 10 2040 10020060 80 120140160 180220Centre-of-mass energy (GeV)

• for $\sqrt{s} \simeq m_Z$:

$$\Gamma_Z = \sum_f \Gamma_f = \sum_{q=u,d,s,c,b} \Gamma_q + \sum_{\ell=e,\mu,\tau} \Gamma_\ell + \sum_{\nu=\nu_e,\nu_\mu,\nu_\tau} \Gamma_\nu$$

in leading order:

$$\Gamma_f = N_C^f \, \frac{G_F m_Z^3}{6\sqrt{2}\pi} \, \left[(g_V^f)^2 + (g_A^f)^2 \right]$$

Number of light neutrinos

• Compare different cross sections to find Γ_{inv} from Γ_{z} and other f

$$\frac{\Gamma_{inv}}{\Gamma_e} \equiv R_{inv}^0 = \frac{\Gamma_Z}{\Gamma_e} - 3 - R_e^0 = \sqrt{\frac{12\pi}{m_Z^2} \cdot \frac{R_e^0}{\sigma_{had}^0}} - 3 - R_e^0$$

• Divide Γ_{inv} by Γ_{v} derived from theory

 $=> N_v = 2.9840(82)$

Number of neutrinos in pictures

[Phys. Rep. 427 (2006) 257]

$\sqrt{s} \ll m_z$: differential Xsec

 $\sqrt{s} \ll m_z$: photon exchange (pure QED)

helicities: photon \Rightarrow spin 1

$\sqrt{s} \ll m_z$: Angular Distribution

- Before LEP: measurements at PETRA (DESY) → first deviations from pure QED
- LEP: γ*/Z-interference und Z central physics topic

Asymmetries

- Why asymmetries?
 - Asymmetries = Ratios, not absolute rates

Generic definition of an asymmetry:

Backgrounds and systematic effects on numerator/denominator equal or similar

 \rightarrow Reduction of uncertainties due to cancellations

Partition a dataset into two parts X,Y $\rightarrow A = \frac{X - Y}{Y + Y}$

Increased sensitivity to small differences

Differential Cross Section

Angular distribution for Z exchange:

$$\rightarrow 4 \text{ helicities (using } g_R = g_V + g_A, g_L = g_V - g_A)$$

$$\frac{d\sigma_f}{d\cos\theta} \sim (g_L^e)^2 (g_L^f) (1 + \cos\theta)^2$$

$$\frac{d\sigma_f}{d\cos\theta} \sim (g_L^e)^2 (g_R^f) (1 - \cos\theta)^2$$

$$\frac{d\sigma_f}{d\cos\theta} \sim (g_R^e)^2 (g_R^f) (1 + \cos\theta)^2$$

$$\frac{d\sigma_f}{d\cos\theta} \sim (g_R^e)^2 (g_L^f) (1 - \cos\theta)^2$$

$$\rightarrow \frac{d\sigma_f}{d\cos\theta} \sim (g_R^e)^2 (g_L^f) (1 - \cos\theta)^2$$

$$A_f = \frac{(g_L^f)^2 - (g_R^f)^2}{(g_L^f)^2 + (g_R^f)^2} = 2 \frac{g_V^f / g_A^f}{1 + (g_A^f)^2}$$

$$A_f = \frac{(g_L^f)^2 - (g_R^f)^2}{(g_L^f)^2 + (g_R^f)^2} = 2 \frac{g_V^f / g_A^f}{1 + (g_A^f)^2}$$

Forward-Backward-Asymmetry

AFB: Results from LEP

LEP-average: A_{FB} for leptons

A_{FB} separatly for e, μ , τ vs. R⁰

[Phys. Rep. 427 (2006) 257]

Final State Polarisation

Measure the polarization P of the outgoing particles

- $P_f \equiv \frac{\sigma_L \sigma_R}{\sigma_L + \sigma_R}$
- No initial state polarization at LEP

$$\Rightarrow P_f(\cos\vartheta) = \frac{A_f(1+\cos^2\vartheta)+2A_e\cos\vartheta}{(1+\cos^2\vartheta)+\frac{8}{3}A_{fFB}\cos\vartheta}$$

Separate access to A_f and A_e

Polarisation Measurement

 Visible daughter(s) carry larger (smaller) momentum fraction for right- (left-) handed τ-leptons

Polarisation: Results

Fit for P with $A_e = A_\tau$ and $A_e \neq A_\tau$ \Rightarrow test lepton universality

- Lepton final states preferred for low backgrounds, precise reco
- Learn about proton structure (See other lecture)
- Unknown initial state complicates studies of EWK physics

Weak mixing angle

- Drell-Yan-Prozess: $qq \rightarrow \gamma^*/Z \rightarrow ff$
 - Standard model: relative couplings of fermions to γ/Z given by sin² $\theta^{f}_{W,eff}$

$$\sin^2 \theta^f_{W,\text{eff}} = \frac{I_3^f}{2q^f} \left(1 - \frac{g^f_V}{g^f_A}\right)$$

- Assumption: differential cross section and PDFs known \rightarrow Extraktion von sin² $\theta^{f}_{W,eff}$
- Tricky: which direction did the quark/antiquark come from?
- Simulatenous maximum-likelihood-fit to
 - Myon pair mass M(µµ)
 (= partonic center of mass energy)
 - Myon pair rapidity Y
 - Myon angle θ* (Collins-Soper-frame)

Weak Mixing Angle

CMS-results:

 $sin^2 \theta^{f}_{W,eff} = 0.2287 \pm 0.0020 \text{ (stat.)} \pm 0.0025 \text{ (syst.)}$

- consistent with LEP- resultat (sin² $\theta^{f}_{W,eff} = 0.23153 \pm 0.00016$)
- uncertainty: 1.4% (LEP: 0.07%)

Systematic uncertainties:

source	correction	uncertainty
PDF	_	± 0.0013
FSR	_	± 0.0011
LO model (EWK)	_	± 0.0002
LO model (QCD)	+0.0012	± 0.0012
resolution and alignment	+0.0007	± 0.0013
efficiency and acceptance	_	± 0.0003
background	_	± 0.0001
total	+0.0019	± 0.0025

Measuring the W-mass

- electroweak theory predicts
 - Connection of W- and Z-mass by the weak mixing angle

$$m_W^2 = \frac{g^2 v^2}{4}, \quad m_Z^2 = \frac{v^2}{4} (g^2 + g'^2) \quad \rightarrow \quad \rho_0 = \frac{m_W^2}{m_Z^2 \cos \theta_W} = 1$$

 Connection with Top-quarks and Higgs-Boson masses through loop diagram , i.e. "self-energy" of W and Z

Measuring the W-mass

- Looking for indirect effect needs highest precision
 - Z-mass: extremely precise measurements at LEP (uncertainty: 2.10⁻⁵)
 - W-mass: LEP + Tevatron
 - Prediction of Top-quark mass before discovery
 - bounds on allowed Higgsboson masses before discovery

vgl. Tevatron (2012): mt = 173.2 ± 0.9 GeV

[Phys. Rept. 427 (2006) 257]

W-pair creation at LEP-II

TGC: γWW und ZWW

 $M \sim W^{-}$

W-Mass at Hadron-Colliders

Start the reconstruction with lepton

- Isolated leptons with high transverse momentum → suppress multijet background
- Prototype for many high-p₇-analyses at hadron-colliders
- Additional hadronic activity
 → recoil against W
- Observable: transverse mass

$$egin{aligned} m_T^2 &= (E_T^\ell + E_T^
u)^2 - (ec{p}_T^\ell + ec{p}_T^
u)^2 \ &pprox 2 \, |ec{p}_T^\ell| \, |ec{p}_T^
u| \, (1 - \cos\Delta\phi_{\ell\nu})) \end{aligned}$$

• p_T^{ν} missing transverse energy in the event \rightarrow assumed to represent neutrino

W-Mass at Hadron-Colliders

- Extraction of the W-boson Mass: differential cross sections as function of p_T^{ν} , p_T^{\prime} , m_T (different systematic uncertainties)
- Look for edge/flank in the cross section: Jacobian edge
 - W-boson: created approximately at rest \rightarrow two-body decay $p_T^{\ell} = p_T^{\nu} = \frac{m_W}{2} \sin \theta$, $\cos \Delta \phi_{\ell \nu} = -1 \rightarrow m_T = m_W \sin \theta$ • $\mu \coloneqq \frac{m_T}{m_W}$: $\frac{d\sigma}{d\mu} = \frac{d\sigma}{d\cos\theta} \cdot \left| \frac{d\cos\theta}{d\mu} \right| = \frac{d\sigma}{d\cos\theta} \cdot \left| \frac{d\sqrt{1-\mu^2}}{d\mu} \right| = \frac{d\sigma}{d\cos\theta} \cdot \left| \frac{-\mu}{\sqrt{1-\mu^2}} \right|$ \rightarrow singular for $\mu = 1$
 - Jacobi edge is smeared: finite W boson width (F_W ≈ 2 GeV)
 W boson not exactly at rest detector resolution effects

W-Mass at Hadron-Colliders

- Analysis: Likelihood-fit with templates from simulations with different W-masses
- Precision limited by systematic uncertainties: parton-densities, lepton energies, ...

Then and Now

- Pre-Higgs discovery: use $M_W + M_{top}$ to constrain Higgs mass
- Post Hoggs discovery: use M_W + M_{top} + M_H to constrain exotic theories that could add more particles to the loops → very strong limits on supersymmetry

KSETA Courses 2016

Resonant Di-Boson Production

- Typical model: Graviton with extra-dimensionen
- would explain relatively weak gravitational force
- EWK + QCD confined to usual 3 dimensions
- Gravitation also progates in extra-dimension(s)
- "curled up" extra-dimension prohibits macroscopic effects

Graviton Search

- Semi-leptonic Decay best compromise of purity/backgrounds and branching ratio
- "Merged Decays" for high gravtion masses

V-tag

- Finding "fat jets" compatible with W/Z decay => jet mass
 - => jet substructure
- Jet mass:
 - sum of constituent four-vectors
 - falling steeply for quark/gluon jets
 (~ virtuality of outgoing particles)
 - peak at 83/91 GeV for W/Z
 - W/Z hard to separate

Jet-Substruktur-Landscape

apologies for omitted taggers, arguable links, etc.

[G. Salam, BOOST 2012]

Example: Massdrop + Filter

Beispiel: N-Subjettiness

Graviton with boosted W/Z

But: nothing found yet, looking again at 13TeV

Anomalous TGC

 Modified couplings caused by physics beyond the SM: higher cross sections, especially at high V-transverse-momentum

Anomalous TGC: Lagrange density

Remember: SM only allows WWγ and WWZ triple boson vertices

$$\mathcal{L}_{WW\gamma} = -ie \Big[A_{\mu} (W^{-\mu\nu} W_{\nu}^{+} - W^{+\mu\nu} W_{\nu}^{-}) + F_{\mu\nu} W^{+\mu} W^{-\nu} \Big] \mathcal{L}_{WWZ} = -ie \cot \vartheta_{W} \Big[Z_{\mu} (W^{-\mu\nu} W_{\nu}^{+} - W^{+\mu\nu} W_{\nu}^{-}) + Z_{\mu\nu} W^{+\mu} W^{-\nu} \Big]$$

• Most general possibe effektive Lagrange density ($V = \gamma$, Z) $L_{WWV}^{eff} = -ig_{WWV} \left[g_1^V V_\mu (W^{-\mu\nu} W_\nu^+ - W_\mu^+ W_\nu^-) + \kappa_V V_{\mu\nu} W^{+\mu} W^{-\nu} + \frac{\lambda_V}{m_W^2} V_{\mu\nu} W^{+\nu\rho} W_\rho^{-\mu} + ig_5^V \epsilon_{\mu\nu\rho\sigma} \left((\partial^\rho W^{-\mu}) W^{+\nu} - W^{-\mu} (\partial^\rho W^{+\nu}) \right) V^\sigma + ig_4^V W_\mu^- W_\nu^+ (\partial^\mu V^\nu + \partial^\nu V^\mu) - \frac{\tilde{\kappa}_V}{2} W_\mu^- W_\nu^+ \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} - \frac{\tilde{\lambda}_V}{2m_W^2} W_{\rho\mu}^- W_\nu^{+\mu} \epsilon^{\nu\rho\alpha\beta} V_{\alpha\beta} \right]$

• SM: $g^{V_1} = \kappa_V = 1$, all all other couplings vanish

• C- und P-Erhaltung: g_{1}^{V} , $\kappa_{V} \neq 1$, $\lambda_{V} \neq 0$, $g_{4}^{V} = g_{5}^{V} = \tilde{\kappa}_{V} = \tilde{\lambda}_{V} = 0$

Limits on aTGCs

- Example: CMS W + W/Z semi-leptonic
- Isolated lepton + MET
 → leptonic W candidate
- Fat jet with substructure
 → hadronic W candidate
- Search for excess at high diboson invariant masses
 → high aTGC contributions
- Extract limits from likelihood contours in signal+background fit

36

aTGC limits

.

.

August 2016	Central	ATLAS				c	
	Fit Value			Channel	Limits	∫ <i>L</i> dt	√s
Δκ-		⊢−−−		WW	[-4.3e-02, 4.3e-02]	4.6 fb ⁻¹	7 TeV
		H-H		WW	[-2.5e-02, 2.0e-02]	20.3 fb ⁻¹	8 TeV
		⊢ ●−−1		WW	[-6.0e-02, 4.6e-02]	19.4 fb ⁻¹	8 TeV
				WZ	[-1.3e-01, 2.4e-01]	33.6 fb ⁻¹	8,13 TeV
		H		WV	[-9.0e-02, 1.0e-01]	4.6 fb⁻¹	7 TeV
		⊢−−−		WV	[-4.3e-02, 3.3e-02]	5.0 fb ⁻¹	7 TeV
		⊢●		LEP Comb.	[-7.4e-02, 5.1e-02]	0.7 fb ⁻¹	0.20 TeV
λ _z	H		WW	[-6.2e-02, 5.9e-02]	4.6 fb ⁻¹	7 TeV	
	H		WW	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV	
		⊢−−−−		WW	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV
		⊢●┥		WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
		⊢−−−−		WZ	[-4.6e-02, 4.7e-02]	4.6 fb ⁻¹	7 TeV
		н		WZ	[-1.4e-02, 1.3e-02]	33.6 fb ⁻¹	8,13 TeV
		⊢ −−−1		WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
		⊢ −−1		WV	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV
		⊢-●		D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV
		⊢ •−-1		LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
∆g ^z ⊢	⊢−−− 1		WW	[-3.9e-02, 5.2e-02]	4.6 fb ⁻¹	7 TeV	
	H		WW	[-1.6e-02, 2.7e-02]	20.3 fb ⁻¹	8 TeV	
			WW	[-9.5e-02, 9.5e-02]	4.9 fb ⁻¹	7 TeV	
	⊢●		WW	[-4.7e-02, 2.2e-02]	19.4 fb ⁻¹	8 TeV	
	HH		WZ	[-5.7e-02, 9.3e-02]	4.6 fb ⁻¹	7 TeV	
	H		WZ	[-1.5e-02, 3.0e-02]	33.6 fb ⁻¹	8,13 TeV	
	⊢−−−− 1		WV	[-5.5e-02, 7.1e-02]	4.6 fb ⁻¹	7 TeV	
		⊢ ●−−−		D0 Comb.	[-3.4e-02, 8.4e-02]	8.6 fb ⁻¹	1.96 TeV
1		. ⊢ ∙⊢1		LEP Comb.	[-5.4e-02, 2.1e-02]	0.7 fb ⁻¹	0.20 TeV
_0 4	2	0	02	04	0.6	0.8	
0.4	0.2	0	0.2	0.4			
	aigu limits @95						5% U.L.

Triple Boson Production

Quartic Vertex similar to triple-Vertex

SM:

38

- WWWW
- W+W-ZZ
- W+W-Ζγ
- ₩+₩- γγ
- 4x neutral forbidden
- Problem: cross sections extremely low

KSETA Courses 2016

Vector-Boson Scattering

- Study quartic vertex in vector boson scattering
- Similar to VBF process in Higgs boson physics
- Scattering cross section with longitudinally polarized bosons not unitary at high energies
- Regularised in SM by interference with Higgs boson graphs

Vector-Boson Scattering

- Detailed test of the Higgs mechanism
- 2W + 2jet processes "common" even without quartic vertex
- Enhance VBS with suitable selections:
 - jets with high dijet-mass
 - large difference in rapidity
- Only look at W^{+/-}W^{+/-}
 => no gluons in the initial state

Quartic Couplings

• Measurement in pp \rightarrow W+W+jj

[Atlas-CONF-2014-013]

