

Higgs Physics

Roger Wolf 21. September 2016

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

The case of matter

 Symmetries play an important role in nature. This is especially true for particle physics, where (almost) all forces we know can be derived from local symmetry requirements:

Air sohwer composition:

How can $SU(2)_L$ symmetry be the source of weak interactions while at the same time all interacting particles with $m \neq 0$ explicitly break this symmetry?!?

Nuclear Physics B106 (1976) 292–340 © North-Holland Publishing Company	
A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS **	
CERN, Geneva Received 7 November 1975	
A discussion is given of the production, decay and observability of the scalar Higgs boson H expected in gauge theories of the weak and electromagnetic interactions such as the Weinberg-Salam model. After reviewing previous experimental limits on the mass of the Higgs boson, we give a speculative cosmological argument for a small mass. If its mass is similar to that of the pion, the Higgs boson may be visible in the reactions $\pi^-p \rightarrow Hn$ or $\gamma p \rightarrow Hp$ near threshold. If its mass is $\leq 300 \text{ MeV}$, the Higgs boson may be present in the decays of kaons with a branching ratio $O(10^{-7})$, or in the decays of one of the new par- We should perhaps finish with an apology and a caution. We apologize to ex- perimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, exce	pt
that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performin	g
experiments vulnerable to the Higgs boson should know how it may turn up.	
taken from R. Harland	er, 2014

- 1961: First formulation of a unification of electromagnetic and weak force.
- 1962: Spontaneous symmetry breaking in super conductivity.
- 1964: Higgs mechanism in particle physics.
- 1967: Formulation of electroweak SM.

1971: Proof of renormalizability.

1974-77: Discovery of *charm*, τ and *bottom*.

1983: Discovery of W and Z.

1995: Discovery of top.

2000: Discovery of ν_{τ} .

2012: Discovery of Higgs boson.

2013: Nobel prize to Peter Higgs and Francois Englert.

 $10^{11} \sigma_{incl}(pp)$

The challenge

Expectation from SM: $\Gamma_H(125 \text{ GeV}) = 4.04 \text{ MeV}$

Mass

ATLAS+CMS LHC run-1 combination:

Coupling Estimates

• Determine couplings from production mode and decay channel:

 $gg \rightarrow H$ production: $qq \rightarrow qqH$ production: Decay to f or V:

- f : $\kappa_{\text{Hff}} = \frac{m_f}{v}$ • V : $\kappa_{\text{HVV}} = \frac{2m_V^2}{v}$
- Coupling to gluon can be f or effective ^(*).
- Coupling to γ can be effective or a mixture of f + V.
- Direct measurement not possible since κ_i appear in nominator and denominator of $BR_i = \frac{\Gamma_i \kappa_i}{\Gamma_h(\kappa_i)} = \frac{\Gamma_i \kappa_i}{\sum \Gamma_j \kappa_j}$

Narrow Width Approximation

- Assume $\Gamma_H \ll m_H$, which is well justified by $\Gamma_H = 4.04 \text{ MeV}$ and $m_H = 125 \text{ GeV}$.
- Propagator: $\frac{1}{(q^2-m^2+m^2\Gamma^2)} \rightarrow \frac{\pi}{m\Gamma}\delta(q^2-m^2) \text{ for } \Gamma \rightarrow 0.$ • i.e. put propagating particle on shell. • Calculate cross section as $\sigma \times BR$. • BR_X = $\frac{\Gamma_X}{\Gamma_H}$, $\Gamma_H = \sum_i \Gamma_i$. • $\sigma \propto (\kappa_t \kappa_\tau)^2 \propto (\kappa_u \kappa_d)^2 \propto (\kappa_q \kappa_l)^2 \propto (\kappa_g \kappa_f)^2$.
- For each production mode and decay channel collect κ_i and express Γ_H as sum of individual κ_i .

Coupling structure

- Event categories : 574
- Nuisance parameters: 4268

 $\mu = \sigma/\sigma_{SM} = 1.09 \pm 0.11$

P 08 (2016) 045

The κ model

- Dress each coupling at tree-level with a scaling factor κ_i .
- Loops are resolved according to SM or treated as effective couplings.
- Comprise κ_i 's to obtain simplified models.

÷	$(1.26\kappa_W)$	$-0.26\kappa_t)^2$	
	· · · ·	- /	

Production	Loops	Interference	Multiplicative factor	
$\sigma(ggF)$	\checkmark	b-t	$\kappa_{\rm g}^2 \sim 1.0$	$06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b}$
$\sigma(VBF)$	_	_	~ 0.7	$4 \cdot \kappa_{\rm W}^2 + 0.26 \cdot \kappa_{\rm Z}^2$
$\sigma(WH)$	_	_	$\sim \kappa_{\rm W}^2$,
$\sigma(qq/qg \to ZH)$	_	_	$\sim \kappa_{\rm Z}^2$	
$\sigma(gg \to ZH)$	\checkmark	Z-t	~ 2.2	$27 \cdot \kappa_{\rm Z}^2 + 0.37 \cdot \kappa_{\rm t}^2 - 1.64 \cdot \kappa_{\rm Z} \kappa_{\rm t}$
$\sigma(ttH)$	_	_	$\sim \kappa_{\rm t}^2$	
$\sigma(gb \to WtH)$	_	W-t	~ 1.8	$34 \cdot \kappa_{\rm t}^2 + 1.57 \cdot \kappa_{\rm W}^2 - 2.41 \cdot \kappa_{\rm t} \kappa_{\rm W}$
$\sigma(qb \to tHq)$	_	W-t	~ 3.4	$\kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	_	_	$\sim \kappa_b^2$	
Partial decay width				
Γ^{ZZ}	_	_	$\sim \kappa_{\rm Z}^2$	
Γ^{WW}	_	_	$\sim \kappa_{\rm W}^2$,
$\Gamma^{\gamma\gamma}$	\checkmark	W-t	$\kappa_{\gamma}^2 \sim 1.5$	$69 \cdot \kappa_{\rm W}^2 + 0.07$; $\kappa_{\rm t}^2 - 0.66 \cdot \kappa_{\rm W} \kappa_{\rm t}$
$\Gamma^{\tau\tau}$	_	_	$\sim \kappa_{\tau}^2$	
Γ^{bb}	_	_	$\sim \kappa_{\rm b}^2$	
$\Gamma^{\mu\mu}$	_	_	$\sim \kappa_{\mu}^2$	
Total width for $BR_{BSM} = 0$				
			0.5	$57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 +$
Γ _H	\checkmark	_	$\kappa_{\rm H}^2 \sim + 0$	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
			+ ($0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 +$
			+ ($0.0001 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{\rm \mu}^2$
				•

Non measurable couplings tied to measurable ones: $\kappa_c = \kappa_t$, $\kappa_\mu = \kappa_\tau$, $\kappa_s = \kappa_b$.

$\kappa_V - \kappa_F \operatorname{model}$

- Resolve loops according to SM.
- Combine tree-level couplings into κ_V (coupling to W & Z boson) and κ_F (couping to fermions).

"Money plot"

Why the Higgs boson still is not THE Higgs boson⁽¹⁾

- Gravity is not included in the SM.
- The SM suffers from the hierarchy problem.
- Dark matter is not included in the SM.
- Neutrino masses are not included in the SM.
- There are known deviations in $a_{\mu} \equiv \frac{g_{\mu}-2}{2}$ from the SM expectation (3.6 σ unresolved).

- There must be physics beyond the SM!
- At what scale does it set in?
- (How) Does it influence the Higgs sector?

Extended Higgs sectors

 The MSSM, like any other Two Higgs Doublet Model (THDM) predicts five Higgs bosons:

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix}, \quad Y_{H_{u}} = +1, \quad v_{u} : VEV_{u}$$
$$H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix}, \quad Y_{H_{d}} = -1, \quad v_{d} : VEV_{d}$$
$$N_{ndof} = 8 \quad -3 = 5$$
$$W, Z \quad H^{\pm}, H, h, A$$

Strict mass requirements at tree level: two free parameters: m_A , $\tan \beta = v_u/v_d$

 $\tan \alpha = \frac{-(m_A^2 + m_Z^2) \sin 2\beta}{(m_Z^2 - m_A^2) \cos 2\beta + \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 \cos^2 2\beta}}$

 $m_{H^{\pm}}^2 = m_A^2 + m_W^2$

(angle btw. H_u & H_d in isospace)

The role of down-type fermions

	g_{VV}/g_{VV}^{SM}	g_{uu}/g_{uu}^{SM}	g_{dd}/g_{dd}^{SM}
A	—	$\gamma_5 \coteta$	$\gamma_5 an eta$
H	$\cos(\beta - \alpha) \rightarrow 0$	$\sin lpha / \ \sin eta \ o \cot eta$	$\cos\alpha/\cos\beta \to \tan\beta$
h	$\sin(\beta - \alpha) \rightarrow 1$	$\cos \alpha / \sin \beta \rightarrow 1$	$-\sin \alpha / \cos \beta \rightarrow 1$

For $m_A \gg m_Z$: $\alpha \to \beta - \pi/2$ (coupling to down-type fermions enhanced by $\tan \beta$).

Interesting decay channels:

Space left for new physics in the Higgs sector

The search

• Search for additional peak(s) e.g. in $m_{\tau\tau}$ distribution.

JHEP 10 (2014) 160

CMS-HIG-PAS-16-006

The SM in the stress field of vacuum stability.

Remaining lecture program

- In case of questions contact us matthias.mozer@cern.ch (Bld. 30.23 Room 9-8) roger.wolf@cern.ch (Bld. 30.23 Room 9-20).
- We hope you had fun (and learned something...).

