

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Günter Quast, Roger Wolf, Pablo Goldenzweig

04. Mai 2017

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Kapitel 2.1: Nachweis geladener Teilchen in Materie

Teilchennachweis...

... erfolgt durch Wechselwirkung (WW) mit Detektormaterial:

- Ionisation des Detektormaterials
- Bremsstrahlung/Paarbildung in elektromagnetischen Feldern im Detektormaterial
- Kernwechselwirkungen mit dem Detektormaterial.

Lokalisation der Ladungstrennung

Sammlung aller frei gewordenen Ladungen

Rekonstruktion der Teilchentrajektorie (**Spur**)

Rekonstruktion der Energie des Teilchens

Was wir wissen wollen:

Inner Tracker Outer Tracker

Von jedem Teilchen ($p_T \phi \eta$) Energie und Teilchenart

- ECAL - HCAL Solenoid - Muon System ()

Impulsbestimmung aus der rekonstruierten Spur

• Spurdetektoren in Magnetfeldern erlauben Impulsbestimmung: üblichgerweise Solenoid-, manchmal auch Toroidfelder $\boxed{\frac{mv^2}{r}\hat{r} = e \cdot \vec{v} \times \vec{B}}\\ \vec{p} = e \cdot \vec{r} \times \vec{B}$

Energieverlust durch Ionisation

- Wichtigste Form der WW für alle geladenen Teilchen
- Grundlegender Prozess: inelastische Stöße mit gebundenen Elektronen in Atomen des Detektormaterials, charakteristischer Energieverlust

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}X} \right\rangle = -4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot \ln\left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} - \beta^2\right)$$

(Bethe-Formel)

- Näherungsformel f
 ür mittleren Energieverlust durch lonisation.
- Gültig für Teilchen mit Ladung $z\,e\,$ und $\,0.1 \lesssim \beta \gamma \lesssim 1000$
- Teilchennachweis in Form von...
 - ... Kondensationskeimen von Gasbläschen/Nebeltropfen
 - ... Freien Ladungen (getrennt durch E-Felder)

• Impulsänderung:

6/23

$$\begin{aligned} |\Delta \vec{p}_{\perp}| &= \int_{-\infty}^{\infty} e \, E_{\perp} \mathrm{d}t = \int_{0}^{\infty} e \, E_{\perp} \frac{\mathrm{d}x}{v} \\ &= \frac{e}{2 \pi b \, v} \int_{-\infty}^{\infty} \vec{E} \cdot \hat{r} \, 2 \pi b \, \mathrm{d}x = \frac{e}{2 \pi b \, v} \int_{V}^{\nabla} \vec{E} \mathrm{d}V \\ &= \frac{e}{2 \pi b \, v} \int_{V}^{\infty} \frac{\rho}{\epsilon_{0}} \, \mathrm{d}V = \frac{2 z \, e^{2}}{(4 \pi \epsilon_{0}) \, b \, v} \end{aligned}$$

• Energieübertrag:

$$\Delta E_{kin} = \frac{\Delta p_{\perp}^2}{2 \, m_2} = \frac{2}{m_e} \left(\frac{z \, e^2}{(4 \, \pi \epsilon_0) \, v \, b} \right)^2$$

- Elektronendichte im Volumentelement $2 \pi b db dx$:

 $N_e = n_e \, 2 \, \pi \, b \, \mathrm{d} b \, \mathrm{d} x$

Energieverlust pro Weglänge:

$$\begin{split} \left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle_{\mathrm{ion}} &= -2 \,\pi \, n_e \int b \,\Delta E_{kin} \mathrm{d}b \\ &= -2 \,\pi \, n_e \int b \, \frac{2 \, z^2 e^4}{m_e \left(4 \,\pi \epsilon_0\right)^2 \, v^2 \, b^2} \mathrm{d}b \\ &= -\frac{4 \,\pi \, n_e \, z^2 e^4}{\left(4 \,\pi \epsilon_0\right)^2 \, m_e \, v^2} \int \frac{\mathrm{d}b}{b} \\ &= -\frac{4 \,\pi \, n_e \, z^2 e^4}{\left(4 \,\pi \epsilon_0\right)^2 \, m_e \, v^2} \ln \left(\frac{b_{max}}{b_{min}}\right) \end{split}$$

 \vec{x}

Bethe-Formel (Herleitung - II)

Bestimmung der Integrationsgrenzen:

 $b_{min} pprox rac{h}{p} = rac{h}{\gamma \, m_e \, v}$ (de-Broglie Wellenlänge)

 b_{max} : das vorbei fliegende Teilchen stört das Atom durch sein elektromag. Feld für eine Zeit $\Delta t \approx \frac{b}{\gamma v}$

Ist Δt lang gegen die Periode, $\langle \nu \rangle$, des Atoms wird sich das Atom langsam strecken und dann wieder in seinen Ausgangszustand zurückkehren, ohne nennenswerten Energieübertrag. Im umgekehrten Fall kann das Elektron als quasi-frei betrachtet werden.

 $\Delta t \cdot \langle \nu
angle \lesssim 1$ (Heisenberg)

 $b \lesssim rac{\gamma \, v}{\langle \nu
angle} \equiv b_{max}$

• Energieverlust pro Weglänge:

$$\begin{split} \left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle_{\mathrm{ion}} &= -2 \,\pi \, n_e \int b \,\Delta E_{kin} \mathrm{d}b \\ &= -2 \,\pi \, n_e \int b \, \frac{2 \, z^2 e^4}{m_e \left(4 \,\pi \epsilon_0\right)^2 \, v^2 \, b^2} \mathrm{d}b \\ &= -\frac{4 \,\pi \, n_e \, z^2 e^4}{\left(4 \,\pi \epsilon_0\right)^2 \, m_e \, v^2} \int \frac{\mathrm{d}b}{b} \\ &= -\frac{4 \,\pi \, n_e \, z^2 e^4}{\left(4 \,\pi \epsilon_0\right)^2 \, m_e \, v^2} \ln \left(\frac{b_{max}}{b_{min}}\right) \end{split}$$

Bethe-Formel (Herleitung - II)

Bestimmung der Integrationsgrenzen:

 $b_{min} pprox rac{h}{p} = rac{h}{\gamma \, m_e \, v}$ (de-Broglie Wellenlänge)

 b_{max} : das vorbei fliegende Teilchen stört das Atom durch sein elektromag. Feld für eine Zeit $\Delta t \approx \frac{b}{\gamma v}$

Ist Δt lang gegen die Periode, $\langle \nu \rangle$, des Atoms wird sich das Atom langsam strecken und dann wieder in seinen Ausgangszustand zurückkehren, ohne nennenswerten Energieübertrag. Im umgekehrten Fall kann das Elektron als quasi-frei betrachtet werden.

 $\Delta t \cdot \langle \nu
angle \lesssim 1$ (Heisenberg)

 $b \lesssim rac{\gamma \, v}{\langle \nu
angle} \equiv b_{max}$

• Energieverlust pro Weglänge:

$$\begin{split} \left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle_{\mathrm{ion}} &= -2 \,\pi \, n_e \int b \,\Delta E_{kin} \mathrm{d}b \\ &= -2 \,\pi \, n_e \int b \, \frac{2 \, z^2 e^4}{m_e \left(4 \,\pi \epsilon_0\right)^2 \, v^2 \, b^2} \mathrm{d}b \\ &= -\frac{4 \,\pi \, n_e \, z^2 e^4}{\left(4 \,\pi \epsilon_0\right)^2 \, m_e \, v^2} \int \frac{\mathrm{d}b}{b} \\ &= -\frac{4 \,\pi \, n_e \, z^2 e^4}{\left(4 \,\pi \epsilon_0\right)^2 \, m_e \, v^2} \ln \left(\frac{m_e \,\gamma^2 \,\beta^2 \, c^2}{h \langle \nu \rangle}\right) \end{split}$$

• Typische Ersetzungen:

Bethe-Formel

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}X} \right\rangle_{\mathrm{ion}} = -4 \pi N_A r_e^2 m_e \, c^2 \, z^2 \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot \ln\left(\frac{m_e \, \gamma^2 \, \beta^2 \, c^2}{I}\right)$$

- Volle QM Rechnung:
 - $m_e c^2 \beta^2 \gamma^2 \rightarrow 2 m_e c^2 \beta^2 \gamma^2$
 - $\frac{m_e c^2 \beta^2 \gamma^2}{I} \rightarrow \frac{2 m_e c^2 \beta^2 \gamma^2}{I} \beta^2$

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}X} \right\rangle_{\mathrm{ion}} = -4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot \ln\left(\frac{2m_e \gamma^2 \beta^2 c^2}{I} - \beta^2\right)$$

• Es gibt noch weitere Korrekturen (die auch den Gültigkeitsbereich erweitern)

Bethe-Formel (Diskussion)

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}X} \right\rangle_{\mathrm{ion}} = -4 \pi N_A r_e^2 m_e \, c^2 \, z^2 \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot \ln\left(\frac{2 \, m_e \, \gamma^2 \, \beta^2 \, c^2}{I} - \beta^2\right)$$

- Unabhängig von Masse des einfallenden Teilchens
- Energieverlust hängt für hohe Z nur von Materialdichte ab ($\frac{Z}{A} \approx 0.5$)
- Für niedrige Energien $\propto rac{1}{v^2}$ ($\ln(\ldots) \approx 1$)
- Für $\beta \gamma \approx 3 \dots 3.5$ breites Minimum bei $dE/dX \approx 1 \dots 2 \text{ MeV} \cdot \text{cm}^2/g$ (unabh. von Teilchenart oder Medium, minimal ionizing particle, MIP)
- Danach logarithmischer Anstieg (bedingt durch Lorentzkontraktion der elektromagnetischen Felder)

Bethe-Formel (Diskussion)

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}X} \right\rangle_{\mathrm{ion}} = -4 \pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot \ln\left(\frac{2 m_e \gamma^2 \beta^2 c^2}{I} - \beta^2\right)$$

- Unabhängig von Masse des einfallenden Teilchens
- Energieverlust hängt für hohe Z nur von Materialdichte ab ($\frac{Z}{A} \approx 0.5$)
- Für niedrige Energien $\propto \frac{1}{v^2}$ ($\ln(\ldots) \approx 1$)
- Für $\beta \gamma \approx 3...3.5$ breites Minimum bei $dE/dX \approx 1...2 \text{ MeV} \cdot \text{cm}^2/g$ (unabh. von Teilchenart oder Medium, minimal ionizing particle, MIP)
- Danach logarithmischer Anstieg (bedingt durch Lorentzkontraktion der elektromagnetischen Felder)

Breite eines Luftschauers:

• Front i.A. nicht breiter als 1m

dE/dx Fluktuationen

Vielfachstreuung

- Durch vielfache Coulomb-Streuung (Vielfachstreuung, engl. multiple scattering)
 → Änderung der Bewegungsrichtung
- Streuwinkel θ ungefähr nach Gauß verteilt (→ zentraler Grenzwertsatz)

• In der Ebene:
$$f(\theta') = \frac{1}{\sqrt{2\pi}\theta_0} e^{-\frac{\theta'^2}{2\theta_0^2}} d\theta'$$

• Breite der Streuwinkelverteilung nach Wegstrecke *x* in Materie:

$$\theta_0 \approx 13.6 \,\mathrm{MeV} \frac{Z}{\beta \, c \, p} \sqrt{\frac{x}{X_0}}$$

- Z: Kernladungszahl Material
- β : rel. Geschwindigkeit
- p: Impuls einfallendes Teilchen
- $X_0: Strahlungslänge$ (Anm.: Einführung auf slide 18)

Streuwinkel im CMS Spurdetektor: $p(\pi) = 10 \text{ GeV}$ $m(\pi) = 140 \text{ MeV}$ Z(Si) = 14Wie groß ist der Streuwinkel für $x = X_0$?

Vielfachstreuung

- Durch vielfache Coulomb-Streuung (Vielfachstreuung, engl. multiple scattering)
 → Änderung der Bewegungsrichtung
- Streuwinkel θ ungefähr nach Gauß verteilt (→ zentraler Grenzwertsatz)

• In der Ebene:
$$f(\theta') = \frac{1}{\sqrt{2\pi}\theta_0} e^{-\frac{{\theta'}^2}{2\theta_0^2}} d\theta'$$

• Breite der Streuwinkelverteilung nach Wegstrecke *x* in Materie:

$$\theta_0 \approx 13.6 \,\mathrm{MeV} \frac{Z}{\beta \, c \, p} \sqrt{\frac{x}{X_0}}$$

- Z: Kernladungszahl Material
- $\beta:$ rel. Geschwindigkeit
- p: Impuls einfallendes Teilchen
- X_0 : Strahlungslänge (Anm.: Einführung auf slide 18)

Streuwinkel im CMS Spurdetektor: $p(\pi) = 10 \text{ GeV}$ $m(\pi) = 140 \text{ MeV}$ Z(Si) = 14Wie groß ist der Streuwinkel für $x = X_0$? $\theta_0 \approx 1 \text{ deg}$

Impuls-/Energie- & Spurauflösung oft durch Vielfachstreuung begrenzt.

Zusammenfassung: Energieverlust durch Ionisation

- Nachweis geladener Teilchen in Materie: Lokalisation und Energiemessung
- Wichtigster Mechanismus f
 ür alle geladenen Teilchen: Energieverlust durch Ionisation und Anregung des Nachweismaterials
- Erwarteter mittlerer Energieverlust: **Bethe-Gleichung**
- Fluktuationen in Energieverlust von Fall zu Fall (insb. in dünnen Absorberschichten) beschrieben durch Landau-Verteilung
- Vielfachstreuung oft limitierender Faktor für Bestimmung der Teilchentrajektorie

Kapitel 2.2: Wechselwirkung von Elektronen und Photonen mit Materie

Wechselwirkung von Elektronen mit Materie

• Zusätzlich zur lonisation:

Niedrige Energien:

- Møller-Streuung (→ für e⁻)
- Bhabha-Streuung & Paarvernichtung (→ für e⁺)

Hohe Energien:

Ladung)

Bremsstrahlung (→ beschleunigte

Møller-scattering

Wechselwirkung von Elektronen mit Materie

Zusätzlich zur Ionisation: •

Niedrige Energien:

- Møller-Streuung (\rightarrow für e⁻) •
- Bhabha-Streuung & •

e

E (MeV)

Hohe Energien:

Bremsstrahlung (→ beschleunigte

Bremsstrahlungsspektrum

- Kontinuierlich bis zur maximalen Energie des Elektrons
- Zusätzlich charakteristische monoenergetische Linien durch Fluoreszenz des Detektormaterials

Strahlungslänge

18/23

• Mittlerer Energieverlust durch Bremsstrahlung (für Materialien mit großem Z):

$$\langle \frac{\mathrm{d}E}{\mathrm{d}X} \rangle_{\mathrm{Brem}} = -4 \,\alpha \, r_e^2 N_A \, \frac{Z^2}{A} \cdot \ln\left(\frac{187}{Z^{1/3}}\right) \cdot E = -\frac{E}{X_0}$$
$$X_0 = \frac{1}{4 \,\alpha \, r_e^2 N_A \, \frac{Z^2}{A} \cdot \ln\left(\frac{187}{Z^{1/3}}\right)} \quad \text{(Strahlungslänge)}$$

- Materialspezifische Größe, Einheiten: $[X_0] = g/cm^2$
- Nach Durchqueren einer Strahlungslänge in einem bestimmten Material ist die Energie eines hochenergetischen Elektrons im Mittel auf den Bruchteil 1/e (e: Eulersche Zahl) abgefallen
- $X_0 \propto \frac{1}{Z^2} \rightarrow$ kürzere Strahlungslänge für Absorber mit höherer Kernladungszahl

Strahlungslänge

• Mittlerer Energieverlust durch Bremsstrahlung (für Materialien mit großem Z):

$$\langle \frac{\mathrm{d}E}{\mathrm{d}X} \rangle_{\mathrm{Brem}}^{=} -4 \,\alpha \, r_e^2 N_A \, \frac{Z^2}{A} \cdot \ln\left(\frac{187}{Z^{1/3}}\right) \cdot E = -\frac{E}{X_0}$$
$$X_0 = \frac{1}{4 \,\alpha \, r_e^2 N_A \, \frac{Z^2}{A} \cdot \ln\left(\frac{187}{Z^{1/3}}\right)} \quad \text{(Strahlungslänge)}$$

• Beispielwerte:

Material	X_0 in g/cm ²	X_0/ ho in cm
Si	21.82	9.37
LAr	19.55	14.00
Eisen	13.84	1.757
Blei	6.37	0.5612

CMS em Kalorimeter ($PbWO_4$, $x/X_0 = 28$)

Strahlungslänge

• Mittlerer Energieverlust durch Bremsstrahlung (für Materialien mit großem Z):

CMS em Kalorimeter ($PbWO_4$, $x/X_0 = 28$)

Strahlungslänge

• Mittlerer Energieverlust durch Bremsstrahlung (für Materialien mit großem Z):

CMS em Kalorimeter ($PbWO_4$, $x/X_0 = 28$)

Kritische Energie

- E_c : Energieverlust durch Ionisation = Energieverlust durch Bremsstrahlung
- Faustformel für Materialabhängigkeit von E_c in Festkörpern: $E_c \approx \frac{610 \text{ MeV}}{Z+1.24}$ (Festkörper)

Kritische Energie

- E_c : Energieverlust durch Ionisation = Energieverlust durch Bremsstrahlung
- Faustformel für Materialabhängigkeit von E_c in Festkörpern: $E_c \approx \frac{610 \text{ MeV}}{Z+1.24}$ (Festkörper)

Kritische Energie

- E_c : Energieverlust durch Ionisation = Energieverlust durch Bremsstrahlung
- Faustformel für Materialabhängigkeit von E_c in Festkörpern: $E_c \approx \frac{610 \text{ MeV}}{Z+1.24}$ (Festkörper)

Gliederung der Vorlesung

	(1	Ein	führung
/L-/		1.1	Organisation der Vorlesung
		1.2	Übersicht und Literatur
	/	1.3	Geschichte
$\mathbf{\tilde{\mathbf{A}}}$		1.4	Einheiten und Einheitssysteme
		1.5	Relativistische Kinematik
		1.6	Streuexperimente
$\frac{1}{2}$	$\left(\begin{array}{c} 2 \end{array} \right)$	\mathbf{Exp}	berimentelle Methoden
	J	2.1	Nachweis geladener Teilchen in Materie
≥`		2.2	Wechselwirkung von Elektron und Photon mit Materie .
×	l	2.3	Hadronische Wechselwirkungen und Materie
רכ	2	2.4	Detektionstechniken
	ļ	2.5	Detektorsysteme in der Teilchenphysik
\mathbf{S}	l	2.6	Beschleuniger in der Teilchenphysik
_		~	
D	3	Stru	<u>iktur der Materie</u>
	J	3.1	Kernradien und Formfaktoren
\leq		3.2	Struktur der Nukleonen
X.	l	3.3	Fundamentaler Aufbau der Materie und ihre Wechselwirkungen

YOU ARE Here