

Kapitel 4.4

Struktur der Kernkräfte

Kernpotenzial

Kernpotenzial für ¹S₀-Zustand

Bethge, Walter, Wiedemann

- Anforderungen an phänomenologisches Kernpotenzial (Einteilchennäherung) durch experimentelle Befunde
 - Starke anziehende Kraft mit kurzer Reichweite (1.5 fm)
 - Abstoßung bei kleinen Abständen (<0.8 fm)</p>
 - Absättigung der Kernkräfte:
 Wechselwirkung fast nur zwischen benachbarten Nukleonen
 → fast konstante Bindungsenergie
 - Starke Spin-Bahn-Kopplung
 - → magische Zahlen
 - Quadrupolmomente
 - → kein reines Zentralpotenzial

Parametrisierung Kernpotenzial

- Allgemeiner phänomenologischer Ansatz für Kernkräfte
 - **Zentralkraft** (Deuteron: 96% ³S₁-Zustand)
 - Spinabhängige Zentralkraft (Spin-Spin-Wechselwirkung)
 - Spin-Bahn-Kopplung (vgl. Schalenmodell)
 - Nichtzentrale Tensorkraft (Deuteron: 4% ³D₁-Zustand)
- Potenzial zwischen zwei Nukleonen mit relativem Abstand r, relativem Impuls p, Spins s₁ und s₂, Bahndrehimpuls L = L₁ + L₂:

$$V(r) = V_0(r)$$

$$+ V_{ss}(r) \frac{\mathbf{s}_1 \cdot \mathbf{s}_2}{\hbar^2}$$
 Spin-Spin
$$+ V_{Ls}(r)(\mathbf{s}_1 + \mathbf{s}_2) \frac{\mathbf{L}}{\hbar^2}$$
 Spin-Bahn
$$+ V_T(r) \left(\frac{3(\mathbf{s}_1 \cdot \mathbf{r})(\mathbf{s}_2 \cdot \mathbf{r})}{r^2 \hbar^2} - \frac{\mathbf{s}_1 \cdot \mathbf{s}_2}{\hbar^2} \right)$$
 Tensor

(+ weitere Terme aus Symmetriegründen → vernachlässigbar)

Yukawa-Potenzial

Ansatz für Kernpotenzial (Yukawa, 1935): abgeschirmtes Coulombpotenzial

$$V_0(r) = -g^2 \frac{\exp[-r/\lambda]}{r}$$

<u>www.nobelprize.org</u>

- Interpretation: begrenzte Reichweite λ durch Austausch massiver skalarer virtueller Teilchen → Vorhersage von "Mesonen"
- Reichweite = reduzierte Compton-Wellenlänge des Mesons

$$\lambda = \frac{\hbar}{m_{\mathsf{Meson}} c}$$

- Vorhersage des Pions: Reichweite λ ≈ 1.5 fm → m_{Meson} ≈ 130 MeV/c²
- 1947: Entdeckung des geladenen Pions in kosmischer Strahlung, heute experimentell: m(π[±]) = 139.57018 (35) MeV/c²

Mesonenaustausch

- Austausch einzelner Pionen:
 - Anziehende Wechselwirkung zwischen Nukleonen für Abstände
 1–2 fm
 - Tensorkraft (→ später)
- Genauere Modellierung der Kernkräfte: weitere Prozesse benötigt
 - Austausch von ≥1 skalaren
 Mesonen (π, η, f₀ = σ):
 Anziehung bei mittleren
 Abständen
 - Austausch von Vektormesonen (ρ, ω): Abstoßung bei kleinen Abständen

Feynman-Diagramm Pionenaustausch

Mesonenaustausch

- Pionenaustausch und Tensorkraft
 - Erklärung des Quadrupolmoments im Deuteron durch Kraft abhängig von Orientierung der Spins relativ zu Verbindungslinie der Nukleonen
 - Beschreibung: Tensorkraft mit Potential

$$V\sim 3rac{(\mathbf{s}_1\cdot\mathbf{r})(\mathbf{s}_2\cdot\mathbf{r})}{|\mathbf{r}|^2}-\mathbf{s}_1\cdot\mathbf{s}_2$$

Tensorkraft

Pionenaustausch auf Quarkebene

Ebene der Mesonen p π p n p

Abstoßung im Quarkmodell

- Abstoßung bei kleinen Abständen: Spin-Spin-Wechselwirkung der Quarks
 - Kleine Abstände zwischen zwei Nukleonen: Wellenfunktionen der sechs Quarks überlappen
 - Drehimpuls ℓ = 0 für alle Quarks: Energieerhöhung durch parallel ausgerichtete Spins oder durch Drehimpulsänderung für ≥2 Quarks
- Fazit: Mesonenaustausch
 - Mesonenaustausch: gutes Modell aber keine vollständige Theorie der Wechselwirkung zwischen Nukleonen
 - Sehr erfolgreich bis in 1980er Jahre
 - Neuere theoretische Entwicklungen: effektive Feldtheorie (chirale Störungstheorie) und Gittereichtheorie (engl.: lattice gauge theory)

Kurze Zusammenfassung

- Kern = komplexes Vielteilchensystem
 - Starke Kraft = Restwechselwirkung der QCD
 - Reichhaltige Struktur der Kernkräfte: abstoßende und anziehende Kräfte, Richtungsabhängigkeit, Korrelationen zwischen ≥2 Teilchen, kollektive Kernanregungen, Halo-Kerne, …
 - Bis heute keine vollständige Theorie der Kernkräfte → Modelle
- Modellierung der Kernkräfte:
 - Phänomenologische Parametrisierung des Kernpotenzials: Zentralkraft, Spin-Spin- und Spin-Bahn-Kopplung, Tensorkraft
 - Modell für Beiträge zum Kernpotenzial: Austausch eines oder mehrerer virtueller Mesonen

Kapitel 5

Instabile Kerne

Überblick

Farbcode:

stabil

β⁻-Zerfall β⁺-Zerfall

α-Zerfall

Z N N

Nur sehr wenige stabile Kerne, alle anderen zerfallen spontan (vgl. Nuklidkarte), wichtigste Mechanismen:

- Überschuss an Neutronen: $β^-$ -Zerfall (n \rightarrow p + e $^-$ + \overline{v}_e)
- Überschuss an Protonen: $β^+$ -Zerfall (p \rightarrow n + e⁺ + v_e)
- Schwerer Kern mit genug Energie zur Bildung von zwei Tochterkernen, einer davon meist Heliumkern: α-Zerfall
- Angeregte Kernzustände: Zerfall unter Emission von Gammastrahlung
- Sehr schwere Kerne: (induzierte) Kernspaltung

Reaktionen in Nuklidkarte

Radioaktive Zerfälle:

$$lacksquare$$
 β --Zerfall: ${}^A_ZX o {}^A_{Z+1}Y + e^- + \overline{\nu}_e$ $(\Delta N = -1, \Delta Z = +1)$

■ β*-Zerfall:
$${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^{+} + \nu_{e}$$
 (ΔN = +1, ΔZ = −1)

•
$$\alpha$$
-Zerfall: ${}^A_Z X \rightarrow {}^{A-4}_{Z-2} Y + {}^4_2 \text{He} \quad (\Delta N = \Delta Z = -2)$

Weitere Prozesse:

Elektroneneinfang (engl.: electron capture, EC):

$$_Z^AX + e^- \rightarrow _{Z-1}^AY + \nu_e$$

- Gammastrahlung: ${}_{Z}^{A}X^{*} \rightarrow {}_{Z}^{A}X + \gamma$
- Weitere Kernreaktionen, z. B. Beispiel (n,p)-Prozess:

$$^{14}N + n \rightarrow ^{14}C + p$$

 $^{14}N(n, p)^{14}C$

Kurzschreibweise: Ausgangskern (Projektil, Ejektil) Endkern

Cepheiden, Radioaktive_Zerfallsarten_in_der_Nuklidkarte.svg, CC BY-SA 3.0

Kapitel 5.1

Zerfallsgesetz

Zerfallsgesetz und Aktivität

- Betrachte Ensemble von N instabilen Kernen:
 - Zerfallsrate proportional zu Zahl der Kerne

$$\frac{\mathsf{d}N(t)}{\mathsf{d}t} = -\lambda N(t) \equiv -A(t)$$

- Lösung der Differenzialgleichung: **Zerfallsgesetz** $N(t) = N_0 \exp[-\lambda t]$
- Aktivität A des Ensembles:
 - **2** Zeitabhängigkeit der Aktivität: $A(t) = \lambda N_0 \exp[-\lambda t]$
 - SI-Einheit Becquerel, 1 Bq = 1/s (ein radioaktiver Zerfall pro Sekunde)
 - Manchmal noch alte Einheit Curie, 1 Ci = 3.7 GBq, angelehnt an Aktivität von 1 g ²²⁶Ra
 - Typische Größenordnungen von Aktivitäten:

Menschlicher Körper	kBq
Radioaktive Quelle im Praktikum	MBq
⁶⁰ Co-Quelle zur Sterilisation von Lebensmitteln	PBq

Lebensdauer und Breite

Charakteristisches Zeitintervall: mittlere Lebensdauer τ

$$\tau = \frac{1}{N_0} \int_0^\infty t \, A(t) \, \mathrm{d}t = \dots = \frac{1}{\lambda}$$

- Nach $t = \tau$: nur noch 1/e = 36.8% der Kerne vorhanden
- Typische Werte von Lebensdauern:

Zerfall Top-Quark (t → Wb)	5·10 ⁻²⁵ s
Betazerfall Tritium	17.7 a
Alphazerfall natürliches Uran (238U)	6.4·10 ⁹ a
Zerfall des Protons	>2·10 ²⁹ a

- \blacksquare Unschärferelation: instabile Zustände mit mittlerer Lebensdauer τ
 - → charakteristische Breite Γ der Energieverteilung

$$\Gamma = \frac{\hbar}{\tau}$$

Halbwertszeit

Alternatives charakteristisches Zeitintervall: Halbwertszeit t_{1/2}

$$N(t_{1/2}) = \frac{1}{2}N_0 \rightarrow t_{1/2} = \frac{\ln 2}{\lambda} = \tau \cdot \ln 2 \approx 0.693 \cdot \tau$$

■ Nach t = t_{1/2}: nur noch **50%** der Kerne vorhanden

Zerfallsbreite

- Zerfallsbreite = Energieunschärfe eines instabilen Teilchenzustands ("Resonanz")
- Beispiel Z-Boson:
 - Zerfallsbreite: Γ = 2.4952(23) GeV
 - Lebensdauer: $\tau \approx 2.6 \cdot 10^{-25}$ s
- Beschreibung mit Breit-Wigner-Verteilung (vgl. Rechnernutzung)

$$f(E; E_0, \Gamma) = \frac{1}{\pi} \frac{\Gamma/2}{(E - E_0)^2 + (\Gamma/2)^2}$$

Γ entspricht voller Breite bei halber Höhe (full width at half maximum, FWHM)

Breite der Z-Resonanz

Phys. Rep. 427 (2006) 257

Zerfälle mit Verzweigung

- Gleichzeitige (konkurrierende) Zerfälle in unterschiedliche Zerfallskanäle, z. B.
 - ²¹²Bi: β-Zerfall in ²¹²Po (64%) und α-Zerfall in ²⁰⁸TI (36%)
 - \blacksquare π^+ : schwache Zerfälle in $\mu^+ v_\mu$ (99.99%) und $e^+ v_e$ (0.01%)
- Zerfallsgesetz für Zerfälle mit Verzweigung:

$$\frac{dN(t)}{dt} = -\sum \lambda_i N(t) \quad \rightarrow \quad N(t) = N_0 \exp\left[-\sum \lambda_i t\right] \equiv N_0 \exp\left[-\lambda_{\text{tot}} t\right]$$

Totale Breite Γtot: Summe der **Partialbreiten** $\Gamma_i = \hbar \lambda_i$

Moderne Experimentalphysik III (4010061) – 10. Vorlesung

$$\Gamma_{\text{tot}} = \frac{\hbar}{\tau} = \hbar \lambda_{\text{tot}} = \sum (\hbar \lambda_i) = \sum \Gamma_i$$

■ Verzweigungsverhältnis B_i (engl.: branching fraction, branching ratio): Anteil der Partialbreite für einen Zerfall an der totalen Breite

$$B_i = \frac{\Gamma_i}{\Gamma_{\text{tot}}}$$

Weitere Strahlungseinheiten

- Energiedosis D = deponierte Energie pro Masse
 - SI-Einheit Gray, 1 Gy = 1 J/kg (alte Einheit: 1 rad = 0.01 Gy)
- **Aquivalentdosis H**: gewichtete Energiedosis $H = w_R \cdot D$
 - SI-Einheit Sievert, 1 Sv = 1 J/kg (alte Einheit: 1 rem = 0.01 Sv)
 - w_R: Strahlungswichtungsfaktor (früher: Qualitätsfaktor)
 - → Berücksichtigung von Strahlungsart, Energiebereich, zeitlicher Verteilung

Strahlenart und Energiebereich	Strahlungs-	3rupen,
	Wichtungsfaktor w_R	pen
Photonen, alle Energien	1	
Elektronen und Myonen ⁷ , alle Energien	1	Sp
Neutronen $E_n < 10 \mathrm{keV}$	5	Grundkurs Springer
$10 \mathrm{keV} \leq E_n \leq 100 \mathrm{keV}$	10	urs ger
$100 \mathrm{keV} < E_n \leq 2 \mathrm{MeV}$	20	Str 20
$2 \mathrm{MeV} < E_n \leq 20 \mathrm{MeV}$	10	78 28
$E_n > 20 \mathrm{MeV}$	5	ens
Protonen, außer Rückstoßprotonen, $E > 2 \mathrm{MeV}$	5	sch
α-Teilchen, Spaltfragmente, schwere Kerne	20	Strahlenschutz 2008

Weitere Strahlungseinheiten

- **Effektive Dosis H**_{eff}: gewichtete Äquivalentdosis $H_{\text{eff}} = \sum_{T} w_T \cdot H_T$
 - SI-Einheit Sievert
 - H_T: Äquivalentdosis in Gewebeart T (engl.: tissue)
 - w⊤: Gewebe-Wichungsfaktor

Organ oder Gewebe	Gewebe-Wichtungsfaktor w _T
Keimdrüsen	0,20
rotes Knochenmark	0,12
Dickdarm	0,12
Lunge	0,12
Magen	0,12
Blase	0,05
Brust	0,05
Leber	0,05
Speiseröhre	0,05
Schilddrüse	0,05
Haut	0,01
Knochenoberfläche	0,01
andere Organe oder Gewebe	0,05

Dosisleistung: Dosis pro Zeit (in Gy/s bzw. Sv/s)

Moderne Experimentalphysik III (4010061) – 10. Vorlesung

Strahlenbelastung

Strahlenbelastung in Deutschland 2011 (effektive Dosis)

Datenquelle: www.bfs.de

- Mittlere Strahlenbelastung in Deutschland: ca. 4 mSv/Jahr
 - Wichtigster natürlicher Beitrag: Einatmen von Radonfolgeprodukten
 - Wichtigster zivilisatorischer Beitrag: Medizin
- Berufliche Strahlenexposition: ALARA-Prinzip ("as low as reasonably achievable")
 - Grenzwert für berufliche Exposition: 20 mSv/Jahr
 - Grenzwert für Allgemeinbevölkerung: 1 mSv/Jahr

Kurze Zusammenfassung

- Radioaktive Zerfälle: **exponentielles Zerfallsgesetz** $N(t) = N_0 \exp[-\lambda t]$ mit charakteristischen Größen
 - Nach mittlerer Lebensdauer $\tau = 1/\lambda$: nur noch 1/e der Kerne vorhanden
 - Nach Halbwertszeit $t_{1/2} = \tau \ln 2$: nur noch 1/2 der Kerne vorhanden
 - (Energie-)Breite instabiler Zustände: Γ = ħ/τ
 - Zerfälle mit Verzweigung: Verzweigungsverhältnis Β_i = Γ_i/Γ_{tot}
- Strahlungseinheiten:
 - Aktivität einer Quelle: A(t) = λN(t), Einheit Becquerel (1 Bq = 1/s)
 - Energiedosis, Einheit Gray (1 Gy = 1 J/kg)
 - Äquivalentdosis (→ Gewichtung Energiedosis mit Strahlungsart), Einheit Sievert (1 Sv = 1 J/kg)
 - Effektive Dosis (→ Gewichtung Äquivalentdosis mit bestrahltem Gewebe), Einheit Sievert (1 Sv = 1 J/kg)

Kapitel 5.2

Gammastrahlung

Angeregte Kerne

- Gammastrahlung = Photonenemission angeregter Kerne:
 - ≥1 monoenergetische Photonen, Energiebereich 100 keV bis 10 MeV
 - gg-Kerne: große Anregungsenergie (Trennung gepaarter Nukleonen), alle anderen Kerne: "erreichbare" Energieniveaus (Abstand einige 100 keV)
 - Typische Halbwertszeiten angeregter Kerne: 10⁻¹⁵ s bis 10⁻⁰ s (Ausnahme Kernisomere: längere Lebensdauer, t₁/2 > 10⁻⁰ s)
 - Gammaspektroskopie: Spektrallinien (→ Photonenenergie) und Winkelverteilung relativ zum Kernspin (→ Quantenzahlen: Spin, Parität)
- Abregung angeregter Kerne ohne Photonenemission:
 - Innere Konversion: Übertragung der Photonenenergie auf Hüllenelektron
 - \rightarrow diskretes Spektrum von **Konversionselektronen** mit $E_{kin,e} = E_V E_{B,e}$
 - → Auffüllen der Leerstelle: Röntgenübergänge, Emission Auger-Elektronen
 - Innere e⁺e⁻-Paarbildung im Kernfeld falls Q = E_γ > 2m_e

Gammaspektrum von Uranerz

Multipolarität

- Klassifikation elektromagnetischer Übergänge in Kernen nach Multipolordnung (vgl. Atomphysik)
- Ansatz: Multipolentwicklung der Wechselwirkung mit elektromagnetischen Feldern
 - Fermis Goldene Regel: Zerfallskonstante aus Matrixelement & Phasenraum

$$\lambda = \frac{1}{\tau} = \frac{2\pi}{\hbar} \left| \langle \psi_f | \mathcal{M}_{fi} | i \rangle \right|^2 \rho(E_f)$$

- Matrixelement: elektromagnetische Wechselwirkung $\sim \frac{e}{m} \, \mathbf{p} \cdot \mathbf{A}$
- Niedrigste Multipolmomente: elektrischer Dipol (E1) und magnetischer Dipol (M1) mit Zerfallskonstanten

$$\lambda_{E1} = \frac{e^2}{3\pi\epsilon_0\hbar^4c^3}E_{\gamma}^3\left|\langle\psi_f|\mathbf{r}|\psi_i\rangle\right|^2$$
 Wechselwirkung mit elektrischem Dipol er

$$\lambda_{M1} = \frac{\mu_0}{3\pi\hbar^4c^3} E_{\gamma}^3 \left| \langle \psi_f | \boldsymbol{\mu} | \psi_i \rangle \right|^2 \qquad \text{mit } \boldsymbol{\mu} = \frac{e}{2m} (\mathbf{L} + g\mathbf{s}) \text{ magnetisches Moment}$$
 (L Drehimpuls, **s** Spin, g Landé-Faktor)

Auswahlregeln

- Auswahlregeln für Gammastrahlung: Paritätserhaltung und Drehimpulserhaltung in elektromagnetischer Wechselwirkung
 - Paritätsoperation **P**: Punktspiegelung am Ursprung, $\mathbf{x} \rightarrow -\mathbf{x}$ (\rightarrow später)

 - Charakterisierung des Anfangs- und Endzustands: Eigenwerte des Paritätsoperators P_{i,f} und Gesamtdrehimpulsoperators J_{i,f}
- Elektromagnetische Wechselwirkung: dieselbe Physik nach Paritätsoperation → Paritätssymmetrie erhalten
 - Multipolentwicklung: Kugelflächenfunktionen mit definierter Parität → Auswahlregel aufgrund der Paritätserhaltung
 - lacktriang Multipolordnung gegeben durch Eigenwert von ${\mathscr C}$
 - Elektrische Übergänge E ℓ : $P_f P_i = (-1)^{\ell}$
 - Magnetische Übergänge M ℓ : $P_f P_i = (-1)(-1)\ell = (-1)^{(\ell+1)}$

Auswahlregeln

- Austauschteilchen: einzelnes Photon
 - **Drehimpulserhaltung** ($\mathscr{E} = L + s$):
 - J_f = J_i + ℓ → |J_f J_i| ≤ ℓ ≤ J_f + J_i Photon = masseloses Spin-1-Teilchen: s = 1, zwei Polarisationen m_s = ±1 → kein Multipolübergang J_i = 0 → J_f = 0
 - Photon kann zusätzlich relativen Drehimpuls L forttragen
- Zusammenfassung: Auswahlregeln
 - Dipolübergänge E1, M1: $\Delta J = 0, \pm 1$
 - Quadrupolübergänge E2, M2: ΔJ = 0, ±1, ±2
 - Multipolübergänge E ℓ , M ℓ : $\Delta J = 0, ..., \pm \ell$
 - Übergänge mit $J_i = 0 \rightarrow J_f = 0$ verboten
 - Parität: $E\mathscr{E} \to P_f P_i = (-1)\mathscr{E}, M\mathscr{E} \to P_f P_i = (-1)$

Beispiele (nach Bethke):

$$J^{p} = 1^{+}$$

$$\ell = 1, P_{f}P_{i} = 1$$

$$M1-Übergang$$

$$J^{p} = 0^{+}$$

 $1 \le \ell \le 2$, $P_fP_i = 1$ gemischter M1und E2-Übergang

Zerfallskonstante

- Gesamter Gammazerfall: Überlagerung erlaubter Übergänge
 - Wichtigkeit der Übergänge über Zerfallskonstante λ
 - Für dieselbe Multipolordnung: Zerfallskonstante für Mℓ kleiner als für Eℓ (zusätzlicher Faktor v/c), höhere Multipolordnungen stark unterdrückt
 - Beispiel 3⁺ → 1⁺-Übergang:
 E2, M3, E4 erlaubt, E2 dominant
 - Beispiel ^{110m}Ag: erster erlaubter
 Übergang 6⁺ → 2⁻ (M4)
 → metastabiles Isomer mit t_{1/2} = 249.8 d

Mößbauer-Effekt

Kernresonanzfluoreszenz

- Resonante Absorption von Photonen in Atomkern: $E_V = E_f - E_i = E^* - E_0$
- Zu beachten: Auswahlregeln und Kinematik
- Impulsübertrag auf Kern → Photon kann nicht von freien Kernen emittiert und wieder absorbiert werden (trotz endlicher Breite der Energieniveaus)

Bethge, Walter, Wiedemann R. Mößbauer

www.nobelprize.org

- Mößbauer (1958)
 - Kerne in Kristallgitter: Impulsübertrag auf gesamtes Gitter
 → Resonanzbedingung durch langsame Bewegung des Kristalls erfüllt
 - Quantenmechanik: endliche Wahrscheinlichkeit, bei Stoß keine Energie auf Gitter zu übertragen (Debye-Waller-Faktor)
 - Anwendung: extrem genaue Frequenzmessung, z. B. Linienaufspaltung im Magnetfeld (→ lokale B-Felder)

Kurze Zusammenfassung

- Gammastrahlung durch Photonenemission angeregter Kerne
 - Monoenergetische Photonen, 100 keV bis einige MeV
 - Überlagerung von Multipolübergängen verschiedener Ordnung
 - Auswahlregeln für **Parität**: $P_f P_i = (-1)^{\ell}$ für elektrische Übergänge E_{ℓ} , $P_f P_i = (-1)^{(\ell+1)}$ für magnetische Übergänge M_{ℓ}
 - Auswahlregeln für **Drehimpuls**: $J_f = J_i + \ell$ $\rightarrow |J_f - J_i| \le \ell \le J_f + J_i$ und $0 \rightarrow 0$ -Übergänge verboten
 - Vergleich der Zerfallskonstanten für dasselbe ℓ: λ_Eℓ > λ_Mℓ
 - Vergleich der Zerfallskonstanten für ℓ und ℓ +1: $\lambda_{E}\ell \gg \lambda_{E(\ell+1)}$, $\lambda_{M}\ell \gg \lambda_{M(\ell+1)}$
- Anwendung: Gammaspektroskopie