

Kapitel 4.4

Struktur der Kernkräfte

Kernpotenzial

Kernpotenzial für ¹S₀-Zustand

Anforderungen an phänomenologisches Kernpotenzial (Einteilchennäherung) durch experimentelle Befunde

- Starke anziehende Kraft mit kurzer Reichweite (1.5 fm)
- Abstoßung bei kleinen Abständen (<0.8 fm)
- Absättigung der Kernkräfte: Wechselwirkung fast nur zwischen benachbarten Nukleonen \rightarrow fast konstante Bindungsenergie
- Starke Spin-Bahn-Kopplung \rightarrow magische Zahlen

Quadrupolmomente \rightarrow kein reines Zentralpotenzial

Parametrisierung Kernpotenzial

- Allgemeiner phänomenologischer Ansatz für Kernkräfte
 - **Zentralkraft** (Deuteron: 96% ³S₁-Zustand)
 - **Spinabhängige** Zentralkraft (Spin-Spin-Wechselwirkung)
 - **Spin-Bahn**-Kopplung (vgl. Schalenmodell)
 - Nichtzentrale Tensorkraft (Deuteron: 4% ³D₁-Zustand)
- Potenzial zwischen zwei Nukleonen mit relativem Abstand r, relativem Impuls p, Spins s₁ und s₂, Bahndrehimpuls L = L₁ + L₂:

$$V(r) = V_0(r)$$

+
$$V_{ss}(r) \frac{\mathbf{s}_1 \cdot \mathbf{s}_2}{\hbar^2}$$
 Spin-Spin
+ $V_{Ls}(r)(\mathbf{s}_1 + \mathbf{s}_2) \frac{\mathbf{L}}{\hbar^2}$ Spin-Bahn
+ $V_T(r) \left(\frac{3(\mathbf{s}_1 \cdot \mathbf{r})(\mathbf{s}_2 \cdot \mathbf{r})}{r^2 \hbar^2} - \frac{\mathbf{s}_1 \cdot \mathbf{s}_2}{\hbar^2} \right)$ Tensor

(+ weitere Terme aus Symmetriegründen \rightarrow vernachlässigbar)

abgeschirmtes Coulombpotenzial

$$V_0(r) = -g^2 \frac{\exp[-r/\lambda]}{r}$$

Ansatz für Kernpotenzial (Yukawa, 1935):

Interpretation: begrenzte Reichweite λ durch Austausch massiver skalarer virtueller Teilchen \rightarrow Vorhersage von "Mesonen"

ħ

Reichweite = reduzierte Compton-Wellenlänge des Mesons

$$\lambda = \frac{m}{m_{\text{Meson}}c}$$

- Vorhersage des **Pions**: Reichweite $\lambda \approx 1.5$ fm $\rightarrow m_{Meson} \approx 130$ MeV/c²
- 1947: Entdeckung des geladenen Pions in kosmischer Strahlung, heute experimentell: m(π[±]) = 139.57018 (35) MeV/c²

Yukawa-Potenzial

Mesonenaustausch

Austausch einzelner Pionen:

- Anziehende Wechselwirkung zwischen Nukleonen für Abstände
 1–2 fm
- Tensorkraft (→ später)
- Genauere Modellierung der Kernkräfte: weitere Prozesse benötigt
 - Austausch von ≥1 skalaren
 Mesonen (π, η, f₀ = σ):
 Anziehung bei mittleren
 Abständen
 - Austausch von Vektormesonen (ρ, ω): Abstoßung bei kleinen Abständen

Feynman-Diagramm Pionenaustausch

Mesonenaustausch

Pionenaustausch und Tensorkraft

- Erklärung des Quadrupolmoments im Deuteron durch Kraft abhängig von Orientierung der Spins relativ zu Verbindungslinie der Nukleonen
- Beschreibung: **Tensorkraft** mit Potential

$$V\sim 3rac{(old s_1\cdotold r)(old s_2\cdotold r)}{|old r|^2}-old s_1\cdotold s_2$$

Tensorkraft

Pionenaustausch auf Quarkebene

Abstoßung im Quarkmodell

Abstoßung bei kleinen Abständen: Spin-Spin-Wechselwirkung der Quarks

- Kleine Abstände zwischen zwei Nukleonen: Wellenfunktionen der sechs Quarks überlappen
- Drehimpuls ℓ = 0 für alle Quarks: Energieerhöhung durch parallel ausgerichtete Spins oder durch Drehimpulsänderung für ≥2 Quarks

Fazit: Mesonenaustausch

- Mesonenaustausch: gutes Modell aber keine vollständige Theorie der Wechselwirkung zwischen Nukleonen
- Sehr erfolgreich bis in 1980er Jahre
- Neuere theoretische Entwicklungen: effektive Feldtheorie (chirale Störungstheorie) und Gittereichtheorie (engl.: lattice gauge theory)

Kurze Zusammenfassung

Kern = komplexes Vielteilchensystem

- Starke Kraft = Restwechselwirkung der QCD
- Reichhaltige Struktur der Kernkräfte: abstoßende und anziehende Kräfte, Richtungsabhängigkeit, Korrelationen zwischen ≥2 Teilchen, kollektive Kernanregungen, Halo-Kerne, …
- Bis heute keine vollständige Theorie der Kernkräfte \rightarrow Modelle
- Modellierung der Kernkräfte:
 - Phänomenologische Parametrisierung des Kernpotenzials: Zentralkraft, Spin-Spin- und Spin-Bahn-Kopplung, Tensorkraft
 - Modell f
 ür Beitr
 äge zum Kernpotenzial: Austausch eines oder mehrerer virtueller Mesonen

Kapitel 5

Instabile Kerne

Überblick

Farbcode: stabil β⁻-Zerfall β⁺-Zerfall α-Zerfall

- Nur sehr wenige stabile Kerne, alle anderen **zerfallen spontan** (vgl. Nuklidkarte), wichtigste Mechanismen:
 - **Uberschuss an Neutronen:** β -Zerfall (n \rightarrow p + e⁻ + \overline{v}_e)
 - **Uberschuss an Protonen:** β^+ -Zerfall (p \rightarrow n + e⁺ + v_e)
 - Schwerer Kern mit genug Energie zur Bildung von zwei Tochterkernen, einer davon meist Heliumkern: α-Zerfall
- Angeregte Kernzustände: Zerfall unter Emission von Gammastrahlung
- Sehr schwere Kerne: (induzierte) Kernspaltung

Reaktionen in Nuklidkarte

Radioaktive Zerfälle:

- $\ \, \blacksquare \ \, \beta^{-} \text{Zerfall}: \quad {}^{A}_{Z}X \ \rightarrow \ \, {}^{A}_{Z+1}Y + e^{-} + \overline{\nu}_{e} \quad (\Delta N = -1, \Delta Z = +1)$
- α -Zerfall: $^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}$ He ($\Delta N = \Delta Z = -2$)

Weitere Prozesse:

- Elektroneneinfang (engl.: electron capture, EC): $A_Z X + e^- \rightarrow A_{Z-1} Y + \nu_e$
- **Gammastrahlung:** ${}^{A}_{Z}X^{*} \rightarrow {}^{A}_{Z}X + \gamma$

Weitere Kernreaktionen, z. B. Beispiel (n,p)-Prozess: ${}^{14}N + n \rightarrow {}^{14}C + p$

$${}^{14}N(n,p){}^{14}C$$

Kurzschreibweise: Ausgangskern (Projektil, Ejektil) Endkern

Cepheiden, <u>Radioaktive_Zerfallsarten_in_der_Nuklidkarte.svg</u>, CC BY-SA 3.0

Kapitel 5.1

Zerfallsgesetz

Zerfallsgesetz und Aktivität

Betrachte Ensemble von N instabilen Kernen:

Zerfallsrate proportional zu Zahl der Kerne

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -\lambda N(t) \equiv -A(t)$$

Lösung der Differenzialgleichung: **Zerfallsgesetz** $N(t) = N_0 \exp[-\lambda t]$

- Aktivität A des Ensembles:
 - **Z**eitabhängigkeit der Aktivität: $A(t) = \lambda N_0 \exp[-\lambda t]$
 - SI-Einheit Becquerel, 1 Bq = 1/s (ein radioaktiver Zerfall pro Sekunde)
 - Manchmal noch alte Einheit Curie, 1 Ci = 3.7 GBq, angelehnt an Aktivität von 1 g²²⁶Ra
 - Typische Größenordnungen von Aktivitäten:

Menschlicher Körper	kBq
Radioaktive Quelle im Praktikum	MBq
⁶⁰ Co-Quelle zur Sterilisation von Lebensmitteln	PBq

Lebensdauer und Breite

Charakteristisches Zeitintervall: mittlere Lebensdauer τ

$$\tau = \frac{1}{N_0} \int_0^\infty t A(t) \, \mathrm{d}t = \cdots = \frac{1}{\lambda}$$

Nach t = τ : nur noch **1/e = 36.8%** der Kerne vorhanden

Typische Werte von Lebensdauern:

Zerfall Top-Quark (t \rightarrow Wb)	5·10 ⁻²⁵ s
Betazerfall Tritium	17.7 a
Alphazerfall natürliches Uran (238U)	6.4·10 ⁹ a
Zerfall des Protons	>2·10 ²⁹ a

Unschärferelation: instabile Zustände mit mittlerer Lebensdauer τ \rightarrow charakteristische Breite Γ der Energieverteilung

$$=\frac{\hbar}{\tau}$$

Halbwertszeit

Alternatives charakteristisches Zeitintervall: Halbwertszeit t_{1/2}

$$N(t_{1/2}) = \frac{1}{2}N_0 \quad \rightarrow \quad t_{1/2} = \frac{\ln 2}{\lambda} = \tau \cdot \ln 2 \approx 0.693 \cdot \tau$$

Nach t = t_{1/2}: nur noch 50% der Kerne vorhanden

E_{cm} [GeV]

Zerfallsbreite

- Zerfallsbreite = Energieunschärfe eines instabilen Teilchenzustands ("Resonanz")
- **Beispiel Z-Boson:**
 - Zerfallsbreite: Γ = 2.4952(23) GeV
 - Lebensdauer: $\tau \approx 2.6 \cdot 10^{-25}$ s
- Beschreibung mit **Breit-Wigner-**Verteilung (vgl. Rechnernutzung)

$$f(E; E_0, \Gamma) = \frac{1}{\pi} \frac{\Gamma/2}{(E - E_0)^2 + (\Gamma/2)^2}$$

Γ entspricht voller Breite bei halber Höhe (full width at half maximum, FWHM)

Zerfälle mit Verzweigung

- Gleichzeitige (konkurrierende) Zerfälle in unterschiedliche Zerfallskanäle, z. B.
 - ²¹²Bi: β-Zerfall in ²¹²Po (64%) und α-Zerfall in ²⁰⁸TI (36%)
 - **α**⁺: schwache Zerfälle in $\mu^+ v_\mu$ (99.99%) und e⁺ v_e (0.01%)

Zerfallsgesetz für Zerfälle mit Verzweigung:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -\sum \lambda_i N(t) \quad \rightarrow \quad N(t) = N_0 \exp\left[-\sum \lambda_i t\right] \equiv N_0 \exp\left[-\lambda_{\mathrm{tot}} t\right]$$

Totale Breite Γ_{tot} : Summe der **Partialbreiten** $\Gamma_i = \hbar \lambda_i$ $\Gamma_{tot} = \frac{\hbar}{\tau} = \hbar \lambda_{tot} = \sum (\hbar \lambda_i) = \sum \Gamma_i$

Verzweigungsverhältnis B_i (engl.: branching fraction, branching ratio): Anteil der Partialbreite f
ür einen Zerfall an der totalen Breite

$$B_i = \frac{\Gamma_i}{\Gamma_{\rm tot}}$$

Weitere Strahlungseinheiten

- Energiedosis D = deponierte Energie pro Masse
 - SI-Einheit Gray, 1 Gy = 1 J/kg (alte Einheit: 1 rad = 0.01 Gy)
- **Äquivalentdosis H**: gewichtete Energiedosis $H = w_R \cdot D$
 - SI-Einheit Sievert, 1 Sv = 1 J/kg (alte Einheit: 1 rem = 0.01 Sv)
 - w_R: Strahlungswichtungsfaktor (früher: Qualitätsfaktor)
 → Berücksichtigung von Strahlungsart, Energiebereich, zeitlicher Verteilung

Strahlenart und Energiebereich	Strahlungs-	
	Wichtungsfaktor w _R	
Photonen, alle Energien	1	
Elektronen und Myonen ⁷ , alle Energien	1	
Neutronen $E_n < 10 \mathrm{keV}$	5	
$10 \mathrm{keV} \leq E_n \leq 100 \mathrm{keV}$	10	
$100 \mathrm{keV} < E_n \leq 2 \mathrm{MeV}$	20	
$2 \mathrm{MeV} < E_n \leq 20 \mathrm{MeV}$	10	
$E_n > 20 \mathrm{MeV}$	5	
Protonen, außer Rückstoßprotonen, $E > 2 \text{ MeV}$	5	
α -Teilchen, Spaltfragmente, schwere Kerne	20	

Weitere Strahlungseinheiten

Effektive Dosis H_{eff}: gewichtete Äquivalentdosis $H_{eff} = \sum w_T \cdot H_T$

- SI-Einheit Sievert
- H_T: Äquivalentdosis in Gewebeart T (engl.: tissue)
- wT: Gewebe-Wichungsfaktor

Organ oder Gewebe	Gewebe-Wichtungsfaktor w_T	
Keimdrüsen	0,20	
rotes Knochenmark	0,12	
Dickdarm	0,12	
Lunge	0,12	
Magen	0,12	
Blase	0,05	
Brust	0,05	
Leber	0,05	
Speiseröhre	0,05	
Schilddrüse	0,05	
Haut	0,01	
Knochenoberfläche	0,01	
andere Organe oder Gewebe	0,05	

Dosisleistung: Dosis pro Zeit (in Gy/s bzw. Sv/s)

Strahlenbelastung

Strahlenbelastung in Deutschland 2011 (effektive Dosis)

- Mittlere Strahlenbelastung in Deutschland: ca. 4 mSv/Jahr
 - Wichtigster natürlicher Beitrag: Einatmen von Radonfolgeprodukten
 - Wichtigster zivilisatorischer Beitrag: Medizin
- Berufliche Strahlenexposition: ALARA-Prinzip ("as low as reasonably achievable")
 - Grenzwert f
 ür berufliche Exposition: 20 mSv/Jahr
 - Grenzwert f
 ür Allgemeinbevölkerung: 1 mSv/Jahr

Kurze Zusammenfassung

- Radioaktive Zerfälle: **exponentielles Zerfallsgesetz** $N(t) = N_0 \exp[-\lambda t]$ mit charakteristischen Größen
 - Nach mittlerer Lebensdauer $\tau = 1/\lambda$: nur noch 1/e der Kerne vorhanden
 - Nach Halbwertszeit $t_{1/2} = \tau \ln 2$: nur noch 1/2 der Kerne vorhanden
 - **(Energie-)Breite** instabiler Zustände: $\Gamma = \hbar/\tau$
 - Zerfälle mit Verzweigung: Verzweigungsverhältnis B_i = Γ_i/Γ_{tot}
- Strahlungseinheiten:
 - Aktivität einer Quelle: A(t) = λN(t), Einheit Becquerel (1 Bq = 1/s)
 - **Energiedosis**, Einheit **Gray** (1 Gy = 1 J/kg)
 - Äquivalentdosis (→ Gewichtung Energiedosis mit Strahlungsart), Einheit Sievert (1 Sv = 1 J/kg)
 - Effektive Dosis (→ Gewichtung Äquivalentdosis mit bestrahltem Gewebe), Einheit Sievert (1 Sv = 1 J/kg)

Kapitel 5.2

Gammastrahlung

Angeregte Kerne

Gammastrahlung = Photonenemission angeregter Kerne:

- ≥1 monoenergetische Photonen, Energiebereich 100 keV bis 10 MeV
- gg-Kerne: große Anregungsenergie (Trennung gepaarter Nukleonen), alle anderen Kerne: "erreichbare" Energieniveaus (Abstand einige 100 keV)
- Typische Halbwertszeiten angeregter Kerne: 10⁻¹⁵ s bis 10⁻⁹ s (Ausnahme Kernisomere: längere Lebensdauer, t_{1/2} > 10⁻⁹ s)
- Gammaspektroskopie: Spektrallinien (→ Photonenenergie) und Winkelverteilung relativ zum Kernspin (→ Quantenzahlen: Spin, Parität)

Abregung angeregter Kerne ohne Photonenemission:

- Innere Konversion: Übertragung der Photonenenergie auf Hüllenelektron

 diskretes Spektrum von Konversionselektronen mit E_{kin,e} = E_γ E_{B,e}
 Auffüllen der Leerstelle: Röntgenübergänge, Emission Auger-Elektronen
- **Innere e⁺e⁻-Paarbildung** im Kernfeld falls $Q = E_{\gamma} > 2m_{e}$

Gammaspektrum von Uranerz

Multipolarität

- Klassifikation elektromagnetischer Übergänge in Kernen nach Multipolordnung (vgl. Atomphysik)
- Ansatz: Multipolentwicklung der Wechselwirkung mit elektromagnetischen Feldern
 - Fermis Goldene Regel: Zerfallskonstante aus Matrixelement & Phasenraum

$$\lambda = \frac{1}{\tau} = \frac{2\pi}{\hbar} \left| \langle \psi_f | \mathcal{M}_{fi} | i \rangle \right|^2 \rho(E_f)$$

- **A** Matrixelement: **elektromagnetische Wechselwirkung** $\sim \frac{e}{m}$ **p** · **A**
- Niedrigste Multipolmomente: elektrischer Dipol (E1) und magnetischer Dipol (M1) mit Zerfallskonstanten

$$\lambda_{E1} = \frac{e^2}{3\pi\epsilon_0\hbar^4c^3} E_{\gamma}^3 \left| \langle \psi_f | \mathbf{r} | \psi_i \rangle \right|^2$$

$$\lambda_{M1} = \frac{\mu_0}{3\pi\hbar^4 c^3} E_{\gamma}^3 \left| \langle \psi_f | \boldsymbol{\mu} | \psi_i \rangle \right|^2$$

mit
$$\mu = \frac{e}{2m}(\mathbf{L} + g\mathbf{s})$$
 magnetisches Moment
(**L** Drehimpuls, **s** Spin, g Landé-Faktor)

Auswahlregeln

- Auswahlregeln f
 ür Gammastrahlung: Paritätserhaltung und Drehimpulserhaltung in elektromagnetischer Wechselwirkung
 - Paritätsoperation **P**: Punktspiegelung am Ursprung, $\mathbf{x} \rightarrow -\mathbf{x}$ (\rightarrow später)
 - Drehimpulserhaltung: Änderung des Gesamtdrehimpulses J durch relativen Drehimpuls L und Spin s des emittierten Photons: *e* = L + s
 - Charakterisierung des Anfangs- und Endzustands: Eigenwerte des Paritätsoperators P_{i,f} und Gesamtdrehimpulsoperators J_{i,f}
- Elektromagnetische Wechselwirkung: dieselbe Physik nach Paritätsoperation → Paritätssymmetrie erhalten
 - Multipolentwicklung: Kugelflächenfunktionen mit definierter Parität → Auswahlregel aufgrund der Paritätserhaltung
 - Multipolordnung gegeben durch Eigenwert von ℓ
 - Elektrische Übergänge E leit
 - Magnetische Übergänge M*l*:

 $P_f P_i = (-1)^{\ell}$

$$\mathsf{P}_{\mathsf{f}}\,\mathsf{P}_{\mathsf{i}}\,{=}\,({-1})({-1})^{\ell}\,{=}\,({-1})^{(\ell+1)}$$

Auswahlregeln

Austauschteilchen: einzelnes Photon
 Drehimpulserhaltung (*l* = L + s):

 $\begin{array}{l} \textbf{J}_f = \textbf{J}_i + \ell & \rightarrow |J_f - J_i| \leq \ell \leq J_f + J_i \\ \textbf{Photon = masseloses Spin-1-Teilchen:} \\ \textbf{s = 1, zwei Polarisationen } \textbf{m}_{\textbf{s}} = \pm 1 \\ \rightarrow \textbf{kein Multipolübergang } \textbf{J}_i = 0 \rightarrow \textbf{J}_f = 0 \end{array}$

Photon kann zusätzlich relativen Drehimpuls L forttragen

Zusammenfassung: Auswahlregeln

- Dipolübergänge E1, M1: ΔJ = 0, ±1
- Quadrupolübergänge E2, M2: ΔJ = 0, ±1, ±2
- **Multipolübergänge** $E\ell$, $M\ell$: $\Delta J = 0, ..., \pm \ell$
- **Ubergänge mit** $J_i = 0 \rightarrow J_f = 0$ verboten
- Parität: $E \ell \rightarrow P_f P_i = (-1)^{\ell}$, $M \ell \rightarrow P_f P_i = (-1)^{\ell}$

28

Zerfallskonstante

- Gesamter Gammazerfall: Überlagerung erlaubter Übergänge
 - Wichtigkeit der Übergänge über Zerfallskonstante λ
 - Für dieselbe Multipolordnung: Zerfallskonstante für M*ℓ* kleiner als für Eℓ (zusätzlicher Faktor v/c), höhere Multipolordnungen stark unterdrückt
 - Beispiel 3⁺ → 1⁺-Übergang: E2, M3, E4 erlaubt, E2 dominant
 - Beispiel ^{110m}Ag: erster erlaubter
 Übergang 6⁺ → 2⁻ (M4)
 → metastabiles Isomer mit t_{1/2} = 249.8 d

Starke Energieabhängigkeit:

Mößbauer-Effekt

Kernresonanzfluoreszenz

- Resonante Absorption von Photonen in Atomkern: $E_{v} = E_{f} - E_{i} = E^{*} - E_{0}$
- Zu beachten: Auswahlregeln und Kinematik
- Impulsübertrag auf Kern \rightarrow Photon kann nicht von freien Kernen emittiert und wieder absorbiert werden (trotz endlicher Breite der Energieniveaus)

Mößbauer (1958)

- Kerne in Kristallgitter: Impulsübertrag auf gesamtes Gitter → Resonanzbedingung durch langsame Bewegung des Kristalls erfüllt
- Quantenmechanik: endliche Wahrscheinlichkeit, bei Stoß keine Energie auf Gitter zu übertragen (Debye-Waller-Faktor)
- Anwendung: extrem genaue **Frequenzmessung**, z. B. Linienaufspaltung im Magnetfeld (\rightarrow lokale B-Felder)

Bethge, Walter, Wiedemann

R. Mößbauer

www.nobelprize.org

Kurze Zusammenfassung

Gammastrahlung durch Photonenemission angeregter Kerne

- Monoenergetische Photonen, 100 keV bis einige MeV
- Überlagerung von Multipolübergängen verschiedener Ordnung
- Auswahlregeln für Parität:
 P_f P_i = (−1)^ℓ für elektrische Übergänge Eℓ,
 P_f P_i = (−1)^(ℓ+1) für magnetische Übergänge Mℓ
- Auswahlregeln für **Drehimpuls**: $J_f = J_i + \ell$ $\rightarrow |J_f - J_i| \le \ell \le J_f + J_i$ und 0 \rightarrow 0-Übergänge verboten
- Solution Vergleich der Zerfallskonstanten für dasselbe ℓ : $\lambda_{E^{\ell}} > \lambda_{M^{\ell}}$
- Vergleich der Zerfallskonstanten für ℓ und $\ell+1$: $\lambda_{E^{\ell}} \gg \lambda_{E(\ell+1)}$, $\lambda_{M^{\ell}} \gg \lambda_{M(\ell+1)}$
- Anwendung: Gammaspektroskopie