

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Günter Quast, Roger Wolf, Pablo Goldenzweig

18. Juli 2017

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

Kapitel 10: Moderne Teilchenphysik

Kapitel 10.1: Schlüsselexperimente der elektroschwachen WW an Collidern

... durch Z-Boson Austausch

3/25

- In elastischer Elektron-Elektron Streuung überlagert durch elektromagnetische WW
 → wähle elastische Neutrino-Elektron Streuung für Nachweis
- Erzeugung eines Strahls aus $\nu_{\mu}/\bar{\nu}_{\mu}$ durch Reaktion $p + X \rightarrow \pi^{\pm}(\mu\nu_{\mu})/K^{\pm}(\mu\nu_{\mu}) + X'$

Geladener Strom:

Neutraler Strom:

Experimentelles Layout (1964 – 74**)**

• Fokussierung Neutrinostrahl (soweit möglich) durch magnetisches Horn (Simon van der Meer; fokussiere π^{\pm}/K^{\pm} -Strahl von bestimmer Energie)

Gargamelle Blasenkammer

- Erfasse *v*-Wechselwirkung in 12m³ schwerer Flüssigkeit unter Druck (→ überkritisch)
- Magnetfeld (2T) zur Ablenkung geladener Teilchen
- Ionisationsenergie geladener Teilchen → Kondensationskeime für Blasen (vgl VL-04 Folie 5, Größe einige mm)
- Datennahme: 8 Kameras, mehr als eine Millionen detaillierte Photons (aus kompletter Datennahme)

Nachweis: Neutrino-Elektron Streuung (1974)

Ausgeschlagenes Elektron in $\bar{\nu}_{\mu}$ -Strahlrichtung

Erwarteter Untergrund aus $\nu_e + e^- \rightarrow \nu_e + e^$ mit $E_e > 300 \text{ MeV}$ und $\theta_e < 5^\circ \rightarrow 0.03 \pm 0.02$ während Beobachtungszeit

Direkter Nachweis W- und Z-Bosonen (1981)

- Aus "Stärke" der schwachen WW (vgl VL-20 Folie 11) \rightarrow untere Schranke auf $m_{W/Z} > 60 \text{ GeV} (@ 95\% \text{ CL})$
- In e⁺e⁻-Kollisionen nötige Schwerpunktsenergie zur Erzeugung von W- und Z-Bosonen zur damaligen Zeit nicht erreichbar
- Erzeugung in $p\bar{p}$ -Kollisionen am CERN SppS (\rightarrow bis zu 400 GeV Strahlenergie)

• NB: Quarks tragen nur Impulsbruchteil x an (Anti-)proton (vgl VL-19 Folie 11ff)

• Quarks tragen nur Impulsbruchteil x an (Anti-)proton (vgl VL-19 Folie 11ff)

Bei 300 GeV pp-Kollisionen (head-on) beträgt die Schwerpunktsenergie 600 GeV. Mittlerer Impulsbruchteil für Valenzquarks: $\langle x \rangle_V \approx 0.12$; mittlerer Impulsbruchteil für Seequarks: $\langle x \rangle_{see} \approx 0.04$

Berechnen Sie die mittlere Schwerpunktsenergie auf Partonlevel für pp-Kollisionen

• Quarks tragen nur Impulsbruchteil x an (Anti-)proton (vgl VL-19 Folie 11ff)

Bei 300 GeV pp-Kollisionen (head-on) beträgt die Schwerpunktsenergie 600 GeV. Mittlerer Impulsbruchteil für Valenzquarks: $\langle x \rangle_V \approx 0.12$; mittlerer Impulsbruchteil für Seequarks: $\langle x \rangle_{see} \approx 0.04$

Berechnen Sie die mittlere Schwerpunktsenergie auf Partonlevel für pp-Kollisionen

 $\sqrt{\langle s \rangle} \approx 600 \ {\rm GeV} \sqrt{0.12 \cdot 0.04} \approx 41.6 \ {\rm GeV}$

• Quarks tragen nur Impulsbruchteil x an (Anti-)proton (vgl VL-19 Folie 11ff)

Bei 300 GeV pp-Kollisionen (head-on) beträgt die Schwerpunktsenergie 600 GeV. Mittlerer Impulsbruchteil für Valenzquarks: $\langle x \rangle_V \approx 0.12$; mittlerer Impulsbruchteil für Seequarks: $\langle x \rangle_{see} \approx 0.04$

Berechnen Sie die mittlere Schwerpunktsenergie auf Partonlevel für $p\bar{p}$ - Kollisionen

• Quarks tragen nur Impulsbruchteil x an (Anti-)proton (vgl VL-19 Folie 11ff)

Bei 300 GeV pp-Kollisionen (head-on) beträgt die Schwerpunktsenergie 600 GeV. Mittlerer Impulsbruchteil für Valenzquarks: $\langle x \rangle_V \approx 0.12$; mittlerer Impulsbruchteil für Seequarks: $\langle x \rangle_{see} \approx 0.04$

Berechnen Sie die mittlere Schwerpunktsenergie auf Partonlevel für $p\bar{p}$ - Kollisionen

 $\sqrt{\langle s \rangle} \approx 600 \ {\rm GeV} \sqrt{0.12 \cdot 0.12} \approx 72 \ {\rm GeV}$

Erzeugung mono-energetischer Antiprotonen

- Beschuß Cu-Target mit 26 GeV Protonen \rightarrow 1 Antiproton/1Mio Kollisionen
- Antiprotonen müssen gesammelt und "gekühlt" werden → stochastische Kühlung (Simon van der Meer)

Stochastische Kühlung:

- Lokalisiere Phasenraumposition von Teilchen in "Transverse Pick-Up"
- Versuche Teilchen strahlabwärts mit Hilfe elektromagnetischer Einstrahlung in Mitte des Phasenraumvolumens zu bewegen ("Transverse Kicker").
- Ermöglicht Sammlung und Fokussierung von bis zu 10¹¹ Antiprotonen pro Tag

Erzeugung mono-energetischer Antiprotonen

- Beschuß Cu-Target mit 26 GeV Protonen \rightarrow 1 Antiproton/1Mio Kollisionen
- Antiprotonen müssen gesammelt und "gekühlt" werden → stochastische Kühlung (Simon van der Meer)

Stochastische Kühlung:

- Lokalisiere Phasenraumposition von Teilchen in "Transverse Pick-Up"
- Versuche Teilchen strahlabwärts mit Hilfe elektromagnetischer Einstrahlung in Mitte des Phasenraumvolumens zu bewegen ("Transverse Kicker").
- Ermöglicht Sammlung und Fokussierung von bis zu 10¹¹ Antiprotonen pro Tag

• Mit den Experimenten UA1 und UA2 am SppS

- Klar identifiziertes und isoliertes Elektron im Detektor (→ 55 aus 150'000 Ereignissen)

Mit den Experimenten UA1 und UA2 am SppS • 12 55 EVENTS 10 Events / 4 GeV UA 1 -tevv **43 Events** 10 vents/4Ge/ Missir 0 16 32 48 Electron E. (GeV) $\not\!\!E_T \approx m_W/2$

• Elektromagnetischer Schauer vollständig in ECAL enthalten

$$p_T(e) \approx \frac{m_W}{2} \cdot \sin \theta$$
$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_T} = \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \cdot \frac{\mathrm{d}\cos\theta}{\mathrm{d}p_T} = ?$$

Zeigen Sie, dass bei einem in Ruhe zerfallenden W-Boson der WQ bei $\not{E}_T \approx m_W/2$ ein Maximum aufweist

Mit den Experimenten UA1 und UA2 am SppS 12 55 EVENTS 10 Events / 4 GeV 8 UA 1 -+evv 43 Events 10 Events/4GeV 5 Missir 0 16 32 48 Electron E. (GeV) $\mathcal{E}_T \approx m_W/2$

 Elektromagnetischer Schauer vollständig in ECAL enthalten

•
$$\not\!\!\!E_T > 15 \,\,\mathrm{GeV}$$

$$p_T(e) \approx \frac{m_W}{2} \cdot \sin \theta$$
$$\frac{d\sigma}{dp_T} = \frac{d\sigma}{d\cos\theta} \cdot \frac{d\cos\theta}{dp_T} =$$
$$= \frac{d\sigma}{d\cos\theta} \cdot \frac{2 p_T / m_W}{\sqrt{\left(\frac{m_W}{2}\right)^2 - p_T^2}}$$

•

Rekonstruktion von \mathcal{E}_T :

9/25

- Mit den Experimenten UA1 und UA2 am SppS
- Zwei klar identifizierte isoliert im Detektor auftretende Leptonen (Elektron oder Myon)

• Mit den Experimenten UA1 und UA2 am SppS

• Mit den Experimenten UA1 und UA2 am SppS

Präzisionsmessungen auf der Z-Resonanz

Präzisionsmessungen auf der Z-Resonanz

• e^+e^- -Kollisionen bei $\sqrt{s} \approx m_Z$ (während LEP-I Datennahmeperiode):

Typisches $Z \rightarrow qq$ Ereignis bei LEP

Anzahl aktiver Neutrino Flavor

• Bestimmt aus Wirkungsquerschnitt (WQ) für $Z \rightarrow qq$ in peak Region:

$$BR(Z \to qq) = \frac{\Gamma_{had}}{\sum \Gamma_i}$$
$$i = \{q_j\}, \{\ell_k\}, \{\nu_{\ell,k}\}$$

- Mehr unsichtbare Zerfälle (z.B. in ν) \rightarrow geringeres Verzweigungs-verhältnis $BR(Z \rightarrow qq)$
- σ_{had} um 13% niedriger f
 ür vier statt drei Neutrino-Generationen
- Ergebnis aus Anpassung an Daten:

 $N_{\nu} = 2.984 \pm 0.008$ (2001)

Effekte höherer Ordnung

15/25

• Teilchen die (bei niedrigen Skalen) nicht direkt beobachtet werden können haben immer noch **Einfluß auf Meßgrößen durch Effekte höherer Ordnung**

Top-Quark in "Vertex-Schleifen":

Higgs/Top in "Propagator Schleifen":

 Indirekte Abhängigkeiten der effektiven W/Z-Masse und der Kopplung an Quarks von Top-Quark und Higgs-Boson Masse

Korrekturen höherer Ordnung auf m_W

16/25

$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - 4\frac{\alpha \pi}{\sqrt{2}G_F m_Z^2}} \cdot \frac{1}{1 - \Delta r} \right) \quad \Delta r = \Delta \alpha + \Delta r_W$$

$$\Delta \alpha = \Delta \alpha_{\rm lep} + \Delta \alpha_{\rm top} + \Delta \alpha_{\rm had}^{(5)}$$

$$\Delta r_W(m_t, m_H) \simeq \frac{\alpha}{\pi \sin^2 \theta_W} \left(-\frac{3}{16} \frac{\cos^2 \theta_W}{\sin^2 \theta_W} \frac{m_t^2}{m_W^2} + \frac{11}{24} \log \left(\frac{m_H}{m_Z} \right) \right)$$
(1-loop precision)
$$\propto m_t^2$$

$$\propto \log (m_H)$$

Effekte setzen ein bei O(α) (Amplituden-Niveau) → O(α²) ≈ O(10⁻⁴) (Cross-Section Niveau) → höchste Präzision erforderlich bei Observablen aber auch theoretischer Vorhersage

Elektroschwache Präzisions Observablen bei LEP

Pseudo-Observable	Measured Value				
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	0.00034			
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021		
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023		
$\sigma_{\rm had}^0 \; [{\rm nb}]$	41.540	\pm	0.037		
R_l^0	20.767 ± 0.025				
R_b^0	0.21629	\pm	0.00066		
R_c^{0}	0.1721	\pm	0.0030		
$A^{0,l}_{FB}$	0.0171	\pm	0.0010		
$A^{0,b}_{FB}$	0.0992	\pm	0.0016		
$A^{0,c}_{FB}$	0.0707	\pm	0.0035		
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012		
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033		
$ $ \mathcal{A}_b	0.923	\pm	0.020		
$ $ \mathcal{A}_c	0.670	\pm	0.027		
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	±	0.0021		

- 14(+1) Observablen
- Präzision zwischen $\mathcal{O}(10^{-5})$ für m_Z und $\mathcal{O}(10^{-2})$ für $\mathcal{A}_l(\mathrm{SLD})$ (incl. theoretischer Unsicherheiten).
- Nutze $\propto m_t^2$ und $\propto \log(m_H)$ -Abhängigkeiten aufgrund höherer Ordnungen für m_W und $\sin \theta_{\rm eff}$ zur Vorhersage für m_t und m_H

$\Delta lpha_{ m had}^5(m_Z)$ as additional "observable"

		-	TTTT
Pseudo-Observable	Measured Value		
$\Delta lpha_{ m had}^{(5)}(m_Z)$	0.02758	±	0.00034
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{\rm had}^0 \; [{\rm nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^{0}	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{0,c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
$ $ \mathcal{A}_b	0.923	\pm	0.020
$ $ \mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	±	0.0021

• $\Delta \alpha_{had}^5(m_Z)$ as obtained from independent measurements at lower energies.

Z-pole observables

Pseudo-Observable	Measured Value			
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	\pm	0.00034	
$m_Z \; [\text{GeV}]$	91.1875	±	0.0021	
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023	
$\sigma_{ m had}^0 \; [{ m nb}]$	41.540	\pm	0.037	
R_l^0	20.767	\pm	0.025	
R_b^0	0.21629	\pm	0.00066	
R_c^{0}	0.1721	\pm	0.0030	
$A^{0,l}_{FB}$	0.0171	\pm	0.0010	
$A^{0,b}_{FB}$	0.0992	\pm	0.0016	
$A^{0,c}_{FB}$	0.0707	\pm	0.0035	
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012	
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033	
$ \mathcal{A}_b $	0.923	\pm	0.020	
$ $ \mathcal{A}_c	0.670	\pm	0.027	
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021	

Z-pole observables

Partial decay widths

Pseudo-Observable	Measured Value		
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	\pm	0.00034
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{\rm had}^0 [{\rm nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
$R_c^{\check{0}}$	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{0,c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
$ $ \mathcal{A}_b	0.923	\pm	0.020
$ $ \mathcal{A}_c	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021

$$\begin{split} R^0_{\ell} &= \frac{\Gamma^0_{\rm had}}{\Gamma_{\ell\ell}} \quad R^0_c = \frac{\Gamma_{cc}}{\Gamma^0_{\rm had}} \quad R^0_b = \frac{\Gamma_{bb}}{\Gamma^0_{\rm had}} \\ \Gamma^0_{\rm had} &= \frac{\sigma^0_{\rm had} m_Z^2}{12\pi} \cdot \frac{\Gamma^2_Z}{\Gamma_{ee}} \end{split}$$

Asymmetries (\rightarrow sensitive to $\sin \theta_{\rm eff}$)

Pseudo-Observable	Measured Value		
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	0.00034	
$m_Z \; [\text{GeV}]$	91.1875	±	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{\rm had}^0 \; [{\rm nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^{0}	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{0,c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033
\mathcal{A}_b	0.923	\pm	0.020
\mathcal{A}_{c}	0.670	\pm	0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021

- Z boson has different coupling to left- and right-handed fermions.
- Leads to:
 - net polarization in final states.
 - different rates on polarized beams.

$$\mathcal{A}_{f} = \frac{g_{L}^{2} - g_{R}^{2}}{g_{L}^{2} + g_{R}^{2}} \Big|_{f} = \frac{2g_{V}g_{A}}{g_{V}^{2} + g_{A}^{2}} \Big|_{f}$$
$$\frac{g_{V}}{g_{A}} \Big|_{f} = 1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}$$
$$A_{FB}^{0,f} = \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{f}$$
$$\langle \mathcal{P}_{\tau}^{0} \rangle = -\mathcal{A}_{\tau}$$

Asymmetries (\rightarrow sensitive to $\sin \theta_{\rm eff}$)

Pseudo-Observable	Measured Value			
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	0.00034		
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021	
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023	
$\sigma_{ m had}^0 \; [{ m nb}]$	41.540	\pm	0.037	
R_l^0	20.767	\pm	0.025	
R_b^0	0.21629	\pm	0.00066	
R_c^0	0.1721	\pm	0.0030	
$\begin{array}{c}A_{FB}^{0,l}\\A_{FB}^{0,b}\\A_{FB}^{0,c}\end{array}$	Forward-Backward Asymmetry			
$A_{FB}^{\circ,\circ}$	0.0707		0.0035	
$\cdot 2 \text{ dep}$	0.0004		0.0000	
$\sin^2 heta_{ ext{eff}}^{ ext{lep}}$	0.2324		0.0012	
$rac{\sin^2 heta_{ ext{eff}}^{ ext{lep}}}{\mathcal{A}_l(\mathcal{P}_{ au})}$	$0.2324 \\ 0.1465$	±	0.0033	
$egin{aligned} & \sin^2 heta_{ ext{eff}}^{ ext{lep}} \ & \mathcal{A}_l(\mathcal{P}_{ au}) \ & \mathcal{A}_b \end{aligned}$	0.2324 0.1465 0.923	± ±	0.0033 0.020	
$egin{aligned} \sin^2 heta_{ ext{eff}}^{ ext{lep}} \ \mathcal{A}_l(\mathcal{P}_{ au}) \ \mathcal{A}_b \ \mathcal{A}_c \end{aligned}$	$\begin{array}{r} 0.2324 \\ 0.1465 \\ 0.923 \\ 0.670 \end{array}$	± ± ±	0.0033 0.020 0.027	

- Z boson has different coupling to left- and right-handed fermions.
- Leads to:
 - net polarization in final states.
 - different rates on polarized beams.

$$\mathcal{A}_{f} = \frac{g_{L}^{2} - g_{R}^{2}}{g_{L}^{2} + g_{R}^{2}} \Big|_{f} = \frac{2g_{V}g_{A}}{g_{V}^{2} + g_{A}^{2}} \Big|_{f}$$
$$\frac{g_{V}}{g_{A}} \Big|_{f} = 1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}$$
$$A_{FB}^{0,f} = \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{f}$$
$$\langle \mathcal{P}_{\tau}^{0} \rangle = -\mathcal{A}_{\tau}$$

Asymmetries (\rightarrow sensitive to $\sin \theta_{\text{eff}}$)

Pseudo-Observable	Measured Value		
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	\pm	0.00034
$m_Z \; [\text{GeV}]$	91.1875	\pm	0.0021
$\Gamma_Z \; [\text{GeV}]$	2.4952	\pm	0.0023
$\sigma_{ m had}^0 \; [{ m nb}]$	41.540	\pm	0.037
R_l^0	20.767	\pm	0.025
R_b^0	0.21629	\pm	0.00066
R_c^0	0.1721	\pm	0.0030
$A^{0,l}_{FB}$	0.0171	\pm	0.0010
$A^{0,b}_{FB}$	0.0992	\pm	0.0016
$A^{0,c}_{FB}$	0.0707	\pm	0.0035
$\sin^2 heta_{ m eff}^{ m lep}$	0.2324	\pm	0.0012
$egin{array}{c} \mathcal{A}_l(\mathcal{P}_{ au}) \ \mathcal{A}_b \ \mathcal{A}_c \end{array}$	Left-Right Asymmetry		0.0033 0.020 0.027
$\mathcal{A}_l(\mathrm{SLD})$	0.1513		0.0021

- Z boson has different coupling to left- and right-handed fermions.
- Leads to:
 - net polarization in final states.
 - different rates on polarized beams.

$$\mathcal{A}_{f} = \frac{g_{L}^{2} - g_{R}^{2}}{g_{L}^{2} + g_{R}^{2}} \Big|_{f} = \frac{2g_{V}g_{A}}{g_{V}^{2} + g_{A}^{2}} \Big|_{f}$$
$$\frac{g_{V}}{g_{A}} \Big|_{f} = 1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}$$
$$A_{FB}^{0,f} = \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{f}$$
$$\langle \mathcal{P}_{\tau}^{0} \rangle = -\mathcal{A}_{\tau}$$

Parameter estimate

• Five parameter χ^2 fit:			Measurement	Fit	O ^{mea}	^{ıs} −O ^{fit}	/σ ^{meas} 2 3
Δ_{s} P m_{m}	Fit of Z-pole	$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02750 ± 0.00033	0.02759	-		
$\frac{\text{ar ar }}{(m_z)^{(5)}}$	observables	m _z [GeV]	91.1875 ± 0.0021	91.1874			
$\frac{\text{met}}{m}$	only: ⁽¹⁾	Γ _z [GeV]	2.4952 ± 0.0023	2.4959			
v)	$\chi^2/ndof = \frac{16}{10}$	σ_{had}^0 [nb]	41.540 ± 0.037	41.478	-		
91.0.C	$\mathcal{P}(\gamma^2) = 9.9\%$	R	20.767 ± 0.025	20.742		•	
est 119 187 2.0		A ^{0,I}	0.01714 ± 0.00095	0.01645	-		
Fit 3±	(2005)	Α ₁ (Ρ _τ)	0.1465 ± 0.0032	0.1481	-		
0.0 0.0		R _b	0.21629 ± 0.00066	0.21579			
ue 035 027 385	Fit of Z-pole	R _c	0.1721 ± 0.0030	0.1723			
	observables +	A ^{0,b} _{fb}	0.0992 ± 0.0016	0.1038	-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	m_W , Γ_W , m_t : (2)	A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742		•	
$\circ \circ + + \circ$	$\chi^2/ndof = \frac{16.9}{13}$	A _b	0.923 ± 0.020	0.935	-		
0.0.0	$\mathcal{D}(\chi^2) = 20.20\%$	A _c	0.670 ± 0.027	0.668	9		
22 19 $\frac{10}{25}$ $\alpha_s(m_Z)$	$\frac{P(\chi) = 20.270}{2000}$	A _I (SLD)	0.1513 ± 0.0021	0.1481	_		
	(2012)	$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	-		
$1.02 m_Z$		m _w [GeV]	80.385 ± 0.015	80.377			
0		Г _w [GeV]	2.085 ± 0.042	2.092			
$\frac{100}{100}$ m_t		m _t [GeV]	173.20 ± 0.90	173.26			
$\log(m_H/\text{GeV})$		March 2012			0	1 :	2 3

(1) (as of hep-ex/0509008)
 (2) http://lepewwg.web.cern.ch/LEPEWWG/winter12_results

23/25

Main fit results

Pre-discovery constraints on m_t & m_H

25/25		
28	9	Elektroschwache Physik
		9.1 Eigenschaften der elektroschwachen Wechselwirkung
۲ې		9.2 Theorie der elektroschwachen Wechselwirkung
Ň		9.3 Quarkmischung und CP-Verletzung
Ϋ́,	>	
6	10	0 Moderne Teilchenphysik
50		10.1 Schlüsselexperimente der elektroschwachen Wechselwirkung an Collidern
\leq		10.2 Neutrinophysik
X		10.3 Astroteilchenphysik
I.	>	
30	1	1 Offene Fragen der Teilchenphysik
		11.1 Grenzen des SM \ldots
\mathbf{S}		11.2 Teilchenphysik und Kosmologie
<u> </u>		

