

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Günter Quast, Roger Wolf, Pablo Goldenzweig

20. Juli 2017

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Direkte Higgs Suchen und Entdeckung

Higgs Boson...

2/33

Google-Suche

Auf gut Glück!

Google.de angeboten auf: English

3/33

- Higgs Boson koppelt an Masse.
- Kopplung am stärksten für schwerste Objekte.

3/33

Higgs Boson koppelt an Masse.

 $E_{\rm CM}$ nominal [GeV]

Year

• Kopplung am stärksten für schwerste Objekte.

1996

172

161

1997

183

Ergebnis LEP-II

• p-Wert (Untergrundkompatibilität) :

• Limit auf Masse (@ 95% CL):

- Kein Signal beobachtet
- Untere Schranke auf Masse: $m_H > 114.4 \text{ GeV} (@ 95\% \text{ CL})$

Direkte Suche am Tevatron (FNAL)

• Auch am Tevatron wurden Suchen durchgeführt ($\sqrt{s} = 1.96$ TeV)

Welchen mittleren Impulsbruchteil benötigen die Partonen im Proton, um ein Higgs Boson bei 125 GeV erzeugen zu können?

Direkte Suche am Tevatron (FNAL)

x

 $O^2 = 10 \text{ GeV}^2$

Produktion und Zerfall

Wichtigste Zerfallskanäle am LHC

X		Channel	Resolution	S/B
5		$H \to \gamma \gamma$	1- $2%$	$\mathcal{O}(0.1)$
	$\kappa_{\rm max} = \frac{2m_V^2}{2m_V^2} \int$	$H \to ZZ$	1- $2%$	$\mathcal{O}(>1)$
	$v_{HVV} = \frac{v}{v}$	$H \to WW$	20%	$\mathcal{O}(1)$
	$\kappa_{med} = \frac{m_f}{\int}$	$H \to b\overline{b}$	10%	$\mathcal{O}(0.1)$
	$v_{Hff} = v$	$H \to \tau \tau$	15%	$\mathcal{O}(0.1)$

```
10/33 10^{11} \sigma_{incl}(pp)
```

Die Herausforderung

Verlauf der Suche bis Mitte 2012

Anm: ausgeschlossen sind alle Bereiche oberhalb der Kurven

- Ausschluß des SM bis auf engen Massenbereich des Higgs Bosons
- Erwartete (Ausschluß-)Sensitivität:

• Beobachteter Massenausschluß:

Verlauf bis Mitte 2012

- Ausschluß des SM bis auf engen Massenbereich des Higgs Bosons
- Erwartete (Ausschluß-)Sensitivität:

Beobachteter Massenausschluß: ٠

Signalstärke aus

68% CL band L = 4.6-4.8 fb⁻¹ Anpassung an Daten Best : 1.5 120 125 130 135 140 14 Higgs boson mass (GeV)

Die Entdeckung

Mass

ATLAS+CMS LHC run-1 combination:

Coupling structure

• Event categories : 574

• Nuisance parameters: 4268

 $\mu = \sigma/\sigma_{SM} = 1.09 \pm 0.11$

-PAS-HIG-15-002

ATLAS+CMS LHC run-1 combination:

"Money plot"

CP-Verletzung

18/33

M.C. Escher - C.P. Escher

CP-Verletzung

$$^{(1)}\mathcal{A}(\cdot)$$
: Amplitude

• Betrachte Übergang
$$X \to Y$$
. CP-Verletzung bedeutet:

$$\begin{bmatrix} C \text{ und P-Operation fur} \\ \text{Fermionen im SM:} \\ \psi^P = \gamma^0 \psi \qquad \psi^C = i\gamma^2 \psi^* \end{bmatrix}$$
(1)

- Bei schwacher WW wird bei CP-Operation Amplitude komplex konjugiert → komplexe CKM-Matrix = CP-Verletzung (vgl VL-22 Folie 18)
- Beispiel CC im Quarksector nach Andwendung von CP:

$$-\frac{e}{\sqrt{2}\sin\theta_{W}}\left(W_{\mu}^{+}\left(\begin{array}{ccc}\bar{d} & \bar{s} & \bar{b}\end{array}\right)_{L}\mathcal{M}_{CKM}^{\dagger}\gamma^{\mu}\left(\begin{array}{ccc}u\\c\\t\end{array}\right)_{L}\right) + W_{\mu}^{-}\left(\begin{array}{ccc}\bar{u} & \bar{c} & \bar{t}\end{array}\right)_{L}\gamma^{\mu}\mathcal{M}_{CKM}\left(\begin{array}{ccc}d\\s\\b\end{array}\right)_{L}$$

$$\mathcal{M}_{CKM} \neq \mathcal{M}_{CKM}^{*}$$

$$\mathcal{M}_{CKM} = \frac{e}{\sqrt{2}\sin\theta_{W}} \left(\mathcal{M}_{\mu}^{-}\left(\begin{array}{ccc}\bar{d} & \bar{s} & \bar{b}\end{array}\right)_{L} \mathcal{M}_{CKM}^{*}\gamma^{\mu} \left(\begin{array}{ccc}u\\c\\t\end{array}\right)_{L}\right) + \mathcal{M}_{\mu}^{+}\left(\begin{array}{ccc}\bar{u} & \bar{c} & \bar{t}\end{array}\right)_{L} \gamma^{\mu} \mathcal{M}_{CKM}^{*} \left(\begin{array}{ccc}d\\s\\b\end{array}\right)_{L}$$

CP-Verletzung im $K^0 \bar{K}^0$ -System

• Betrachte $|K^0\rangle = |d\bar{s}\rangle$ $|\bar{K}^0\rangle = |\bar{ds}\rangle$ (vgl VL-17 Folie 8 \rightarrow EZ der starken WW)

Erinnerung: VL-16 Folie 5ff

CP-Verletzung im $K^0 \bar{K}^0$ -System

• Betrachte $|K^0\rangle = |d\bar{s}\rangle$ $|\bar{K}^0\rangle = |\bar{ds}\rangle$ (vgl VL-17 Folie 8 \rightarrow EZ der starken WW)

Erinnerung: VL-16 Folie 5ff

CP-Verletzung im $K^0 \overline{K}^0$ -System

• Betrachte $|K^0\rangle = |d\bar{s}\rangle$ $|\bar{K}^0\rangle = |\bar{ds}\rangle$ (vgl VL-17 Folie 8 \rightarrow EZ der starken WW)

Erinnerung: VL-16 Folie 5ff

CP-Eigenzustände \rightarrow Linearkombinationen aus $|K^0\rangle$ und $|\bar{K}^0\rangle$

CP-Verletzung im $K^0 \bar{K}^0$ -System

• Betrachte $|K^0\rangle = |d\bar{s}\rangle$ $|\bar{K}^0\rangle = |\bar{ds}\rangle$ (vgl VL-17 Folie 8 \rightarrow EZ der starken WW)

Erinnerung: VL-16 Folie 5ff

CP-Eigenzustände ightarrow Linearkombinationen aus $\left|K^{0}
ight
angle$ und $\left|ar{K}^{0}
ight
angle$

$$|K_{+}^{0}\rangle = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle - |\bar{K}^{0}\rangle \right) \qquad \hat{CP} |K_{+}^{0}\rangle = + |K_{+}^{0}\rangle$$
$$|K_{-}^{0}\rangle = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle + |\bar{K}^{0}\rangle \right) \qquad \hat{CP} |K_{-}^{0}\rangle = - |K_{-}^{0}\rangle$$

Übergang von K^0 nach \bar{K}^0

• In schwacher WW Übergang K^0 - \bar{K}^0 möglich

Short range Übergang:

Long range Übergang:

- Spielt eine Rolle für Massendifferenz Δm der physikalischen Zustände
- Virtueller W-Boson Austausch

- Spielt eine Rolle für Differenz der Zerfallsbreite $\Delta\Gamma$ der physikalischen Zustände
- "on-shell" Austausch

22/33

Produktion und Zerfall neutraler Kaonen

• Kette von Produktion bis Zerfall:

Paarweise Produktion von Strangeness durch starke WW Propagation durch elektroschwache WW (in EZ der WW) Zerfall durch elektroschwache WW

- Bis hierhin nehme an CP sei in schwacher WW erhalten \to EZ der schwachen WW $\left|K^0_+\right\rangle$ und $\left|K^0_-\right\rangle$

CP-Eigenzustände des Zerfalls

- Annahme CP erhalten $\rightarrow |K^0_+\rangle$ und $|K^0_-\rangle$ zerfallen in unterschiedliche CP-Eigenzustände in Endzustand (vgl VL-16 Folie 11 und VL-17 Folie 8)
- Zerfall: $\left|K^{0}_{+}\right\rangle$ CP=+1 Zerfall: $\left|K^{0}_{-}\right\rangle$ CP=-1
 - $K^0_+ \to \pi^+ \pi^- / \pi^0 \pi^0 \qquad \qquad K^0_- \to \pi^+ \pi^- \pi^0 / \pi^0 \pi^0 \pi^0$

 $\hat{C}\hat{P}(\pi\pi) = (-1)^{\ell+1}(-1)^{\ell+1} = +1$

$$\hat{C}\hat{P}(\pi\pi\pi) = (-1)^{\ell}(-1)^{\ell+1} = -1$$

- Diese Zerfälle werden in der Tat beobachtet
- Geringere Zerfallsbreite für Zerfall in $\pi\pi\pi$ ($\Gamma_{\pi\pi\pi} < \Gamma_{\pi\pi}$, \rightarrow läuft lansamer ab)
- Bezeichnung:

$$\left| K_{+}^{0} \right\rangle = \left| K_{S}^{0} \right\rangle$$
 ("K-short") $au_{K_{S}^{0}} = 0.9 \cdot 10^{-10} \text{ s}$

 $\left|K_{-}^{0}
ight
angle=\left|K_{L}^{0}
ight
angle$ ("K-long") $au_{K_{L}^{0}}=5.1\cdot10^{-8}~{
m s}$

CP-Eigenzustände des Zerfalls

- Annahme CP erhalten $\rightarrow |K^0_+\rangle$ und $|K^0_-\rangle$ zerfallen in unterschiedliche CP-Eigenzustände in Endzustand (vgl VL-16 Folie 11 und VL-17 Folie 8)
- Zerfall: $\left|K^{0}_{+}\right\rangle$ CP=+1 Zerfall: $\left|K^{0}_{-}\right\rangle$ CP=-1
 - $K^0_+ \to \pi^+ \pi^- / \pi^0 \pi^0 \qquad \qquad K^0_- \to \pi^+ \pi^- \pi^0 / \pi^0 \pi^0 \pi^0$

 $\hat{C}\hat{P}(\pi\pi) = (-1)^{\ell+1}(-1)^{\ell+1} = +1$

$$\hat{C}\hat{P}(\pi\pi\pi) = (-1)^{\ell}(-1)^{\ell+1} = -1$$

- Diese Zerfälle werden in der Tat beobachtet
- Geringere Zerfallsbreite für Zerfall in $\pi\pi\pi$ ($\Gamma_{\pi\pi\pi} < \Gamma_{\pi\pi}$, \rightarrow läuft lansamer ab)
- Bezeichnung:

$$|K_{+}^{0}\rangle = |K_{S}^{0}\rangle$$
 ("K-short") $\tau_{K_{S}^{0}} = 0.9 \cdot 10^{-10} \text{ s}$

$$\left| K_{-}^{0} \right\rangle = \left| K_{L}^{0} \right\rangle$$
 ("K-long") $au_{K_{L}^{0}} = 5.1 \cdot 10^{-8} \text{ s}$

Warum ist das der Fall?

Experiment von Cronin & Fitch

- Erzeuge Strahl neutraler Kaonen aus starker WW: 30 GeV Protonen auf Beryllium-Target
- Kaonenstrahl mit Impuls p = 1.1 GeV

Berechnen Sie die mittlere Flugstrecke für K_S^0 $\tau_{K_S^0} = 0.9 \cdot 10^{-10}$ s $m_K = 497$ MeV

25/33

Experiment von Cronin & Fitch

- Erzeuge Strahl neutraler Kaonen aus starker WW: 30 GeV Protonen auf Beryllium-Target
- Kaonenstrahl mit Impuls p = 1.1 GeV
- Nach Laufstrecke von ~20 cm nur noch K⁰_L

Berechnen Sie die mittlere Flugstrecke für K_S^0 $\tau_{K_S^0} = 0.9 \cdot 10^{-10} \text{ s}$ $m_K = 497 \text{ MeV}$ $\langle L \rangle_{K_S^0} = \beta \gamma c \tau_{K_S^0} = \frac{p}{m_K} \tau_{K_S^0} \approx 6 \text{ cm}$

Experiment von Cronin & Fitch

- Erzeuge Strahl neutraler Kaonen aus starker WW: 30 GeV Protonen auf Beryllium-Target
- Kaonenstrahl mit Impuls p = 1.1 GeV
- Nach Laufstrecke von ~20 cm nur noch K⁰_L
- In verbleibendem K_L^0 -Strahl immer noch $\pi\pi$ -Zerfälle \rightarrow CP-Verletzung

Berechnen Sie die mittlere Flugstrecke für K_S^0 $\tau_{K_S^0} = 0.9 \cdot 10^{-10} \text{ s}$ $m_K = 497 \text{ MeV}$ $\langle L \rangle_{K_S^0} = \beta \gamma c \tau_{K_S^0} = \frac{p}{m_K} \tau_{K_S^0} \approx 6 \text{ cm}$

Experimenteller Aufbau und Ergebnis

Mögliche Formen der CP-Verletzung (Mischung)

- $\mathcal{A}(K^0 \to \bar{K}^0) \neq \mathcal{A}(\bar{K}^0 \to K^0)$: ("indirekte") **CP-Verletzung in Mischung**
 - Physikalische Zustände keine reinen CP-Eigenzustände

$$\begin{split} \left| K_S^0 \right\rangle &= \frac{1}{\sqrt{1 + |\epsilon|^2}} \left(\left| K_+^0 \right\rangle + \epsilon \left| K_-^0 \right\rangle \right) \\ \left| K_L^0 \right\rangle &= \frac{1}{\sqrt{1 + |\epsilon|^2}} \left(\left| K_-^0 \right\rangle + \epsilon \left| K_+^0 \right\rangle \right) \end{split}$$

- Heute bekannt: ϵ komplexwertig $|\epsilon|=2.228(11)\cdot 10^{-3}$
- Relevante Prozesse (\rightarrow Box-Diagramme):

Mögliche Formen der CP-Verletzung (Zerfall)

- $\mathcal{A}(K^0 \to \pi\pi) \neq \mathcal{A}(\bar{K}^0 \to \pi\pi)$: ("direkte") CP-Verletzung in Zerfall
 - Beide Prozesse lassen sich aufschlüsseln durch

$$\frac{\Gamma(K_L^0 \to \pi^0 \pi^0) / \Gamma(K_S^0 \to \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^+ \pi^-) / \Gamma(K_S^0 \to \pi^+ \pi^-)} \approx 1 - 6 \operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right)$$

• Heute bekannt:
$$Re\left(\frac{\epsilon'}{\epsilon}\right) = 1.65(26) \cdot 10^{-3}$$

• Relevante Prozesse (\rightarrow Pinguine & Bäume):

Mögliche Formen der CP-Verletzung (Zerfall+Mischung)

- **CP-Verletzung in der Interferenz** zwischen Mischung und Zerfall
- Beispiel B-Fabriken (BaBar und Belle)
 - Schwerpunktsenergie auf $\Upsilon(4S)\mbox{-}{\rm Resonanz}$ nanz
 - Elektron-Positron Collider mit asymmetrischen Strahlenergien

Strahlenergien bei KEKB: $E_{e^-} = 8 \text{ GeV}$ $E_{e^+} = 3.5 \text{ GeV}$ berechnen Sie die Geschwindigkeit $\beta\gamma$ des Schwerpunktsystems relativ zum Laborsystem

Mögliche Formen der CP-Verletzung (Zerfall+Mischung)

- **CP-Verletzung in der Interferenz** zwischen Mischung und Zerfall
- Beispiel B-Fabriken (BaBar und Belle)
 - Schwerpunktsenergie auf $\Upsilon(4S)\mbox{-}{\rm Resonanz}$ nanz
 - Elektron-Positron Collider mit asymmetrischen Strahlenergien

Strahlenergien bei KEKB: $E_{e^-} = 8 \text{ GeV}$ $E_{e^+} = 3.5 \text{ GeV}$ berechnen Sie die Geschwindigkeit $\beta\gamma$ des Schwerpunktsystems relativ zum Laborsystem

$$\beta \gamma = \frac{E_{e^-} - E_{e^+}}{\sqrt{s}} \approx 0.425$$

Mögliche Formen der CP-Verletzung (Zerfall+Mischung)

- **CP-Verletzung in der Interferenz** zwischen Mischung und Zerfall
- $BR(\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0) \approx 0.5 \rightarrow$ neutrale B-Mesonen propagieren als QM verschränktes System mit 42.5% Lichtgeschwindigkeit in Richtung des Elektronstrahls
- B^0 und \bar{B}^0 oszillieren

• Sowohl B^0 als auch \bar{B}^0 zerfallen u.a. in den Endzustand $B^0/\bar{B}^0 \rightarrow J/\psi K_s^0$

Messprinzip

• **CP-Verletzung in der Interferenz** zwischen Mischung und Zerfall

- Flavor Tag definiert Zustand des verschränkten Partners
- Bestimme Asymmetrie als Funktion der Zeit:

$$\mathcal{A}_{\Gamma}(t) = \frac{\Gamma(\bar{B}^0 \to J/\psi K^0_S) - \Gamma(B^0 \to J/\psi K^0_S)}{\Gamma(\bar{B}^0 \to J/\psi K^0_S) - +\Gamma(B^0 \to J/\psi K^0_S)} = -2\sin(2\beta)\sin(\Delta M t)$$

Ergebnis

• Asymmetrie aufgetragen als Funktion der Zeit

$$\mathcal{A}_{\Gamma}(t) = \frac{\Gamma(\bar{B}^0 \to J/\psi K^0_S) - \Gamma(B^0 \to J/\psi K^0_S)}{\Gamma(\bar{B}^0 \to J/\psi K^0_S) - +\Gamma(B^0 \to J/\psi K^0_S)}$$
$$= -2\sin(2\beta)\sin(\Delta M t)$$

 $sin(2\beta) = 0.710(11)$ (CKMfitter 2015)

33/33		
58	9 Elektroschwache Physik	0 11
	9.1 Eigenschaften der elektroschwachen Wechselwirkung	U U D E
ڳم ج	9.2 Theorie der elektroschwachen Wechselwirkung	FRF
\sim	9.3 Quarkmischung und CP-Verletzung	
Σ.		
6	10 Moderne Teilchenphysik	
50	10.1 Schlüsselexperimente der elektroschwachen Wechselwirkung an Collidern	
≤ 1	10.2 Neutrinophysik	
X	10.3 Astroteilchenphysik	
i.		
30	11 Offene Fragen der Teilchenphysik	
€-'	$\frac{11.1 \text{ Grenzen des SM}}{11.1 \text{ Grenzen des SM}}$	
\lesssim	11.2 Teilchenphysik und Kosmologie	
<u> </u>		

$\textbf{CP-Verletzung} \rightarrow \textbf{Vorraussetzungen}$

- Keine CP-Verletzung beobachtbar für Prozesse bei denen:
 - Nur eine Amplitude auftritt: $|\mathcal{A}|^2 = |\mathcal{A}^*|^2$
 - In einer Summe von zwei Amplituden eine reell ist: $|(\mathcal{A} + \mathcal{B})|^2 = (\mathcal{A} + \mathcal{B}) (\mathcal{A}^* + \mathcal{B}) = |(\mathcal{A}^* + \mathcal{B})|^2$
 - In einer Summe von zwei Amplituden beide beim Übergang von Teilchen zu Antiteilchen komplex konjugiert werden: $|(\mathcal{A} + \mathcal{B})|^2 = (\mathcal{A} + \mathcal{B}) (\mathcal{A}^* + \mathcal{B}^*) = |(\mathcal{A}^* + \mathcal{B}^*)|^2$
- Zwei komplexwertige Amplituden erforderlich von denen eine beim Übergang von Teilchen zu Antiteilchen komplex konjugiert wird, die andere nicht oder nur "teilweise"