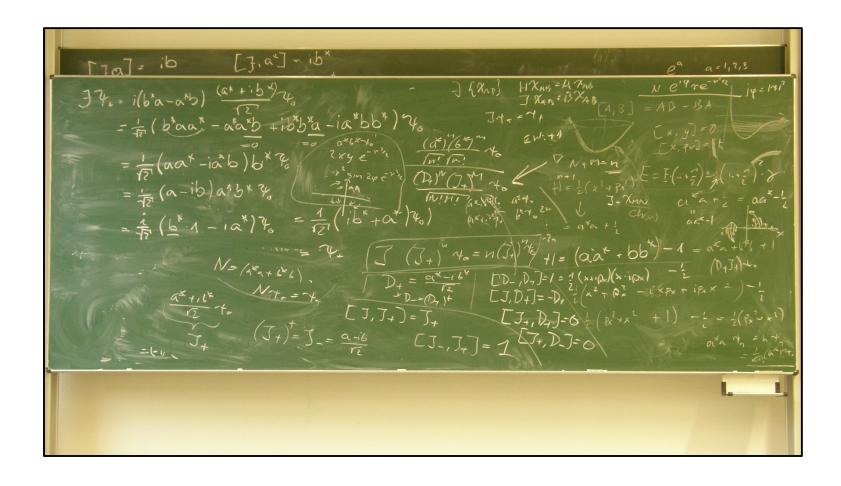


Moderne Experimentalphysik III: Teilchenphysik (Physik VI)


Thomas Müller, Roger Wolf

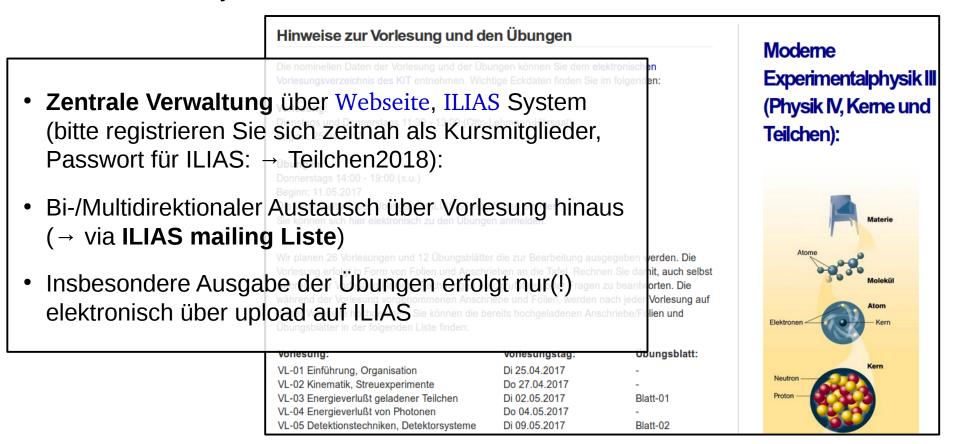
17. April 2018

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) - PHYSICS FACULTY

1 Einführung

1.1 Kursoganisation

Dozenten


- Dozenten: Prof. Dr. Thomas Müller / Priv. Doz. Dr. Roger Wolf (IETP)
 - Bevorzugte Kontaktaufnahme persönlich nach der Vorlesung oder per mail (zur Terminabsprache)
 - Nutzen Sie die besondere Betreuungssituation in der Physik, gehen Sie bei Fragen/Problemen aktiv auf ihre Dozenten/Betreuer zu

Vorraussetzungen

- Keine formalen Vorraussetzungen oder Bedingungen
- Empfehlenswert:
 - Kenntnisse aus den Modulen "Moderne Experimentalphysik I (Atomphysik)" und "Modernde Theoretische Physik I/II (v.a. Quantenmechanik)"

Vorlesung (Termine & Form)

- 4 SWS, 19(!) Termine (11 Wochen, flexibel wenn nötig):
 - Lehrveranstaltungsnummer 4010061
 - Di 11:30 13:00, Do 11:30 13:00 (Beginn: 17.04. voraus. Ende: 28.06.)
 - Geb 30.22 Physik-Flachbau, Raum 022 Otto Lehmann-Hörsaal

Tutorien zur Vorlesung

- 2 SWS, 8 Termine (2x kein Tutorium wegen Feiertag, 7-9 Übungsblätter geplant):
 - Lehrveranstaltungsnummer 4010062
 - 11 Gruppen, donnerstags 14:00, 15:45, 17:30, (→ erster Termin 26.04.2018, zum Kennenlernen und für Fragen zur Vorlesung)
 - Geb 30.23 Physik-Hochhaus, Seminarräume im 2. Stock (→ nächste Folie)
 - Vorlesung/Übung fällt aus:
 - Dienstag 01.05.2018 (→ Tag der Arbeit)
 - Donnertag 10.05.2018 (→ Christi Himmelfahrt)
 - Donnertag 31.06.2018 (→ Fronleichnam)
 - **Anmeldung** zu den Übungen elektronisch hier (freigeschaltet seit 16.04., bitte melden Sie sich zeitnah zu den Tutorien an)

Tutorien: Termine & Tutoren

Zeitfenster:	Raum:	Übungsgruppe:
14:00 - 15:30	229.3	(1) - Valentin Hermann
14:00 - 15:30	229.4	(2) - Thomas Moch
14:00 - 15:30	2/0	(3) - Martin Obermair
14:00 - 15:30	2/11	(4) - Patrick Müller
15:45 - 17:15	229.4	(5) - Jan van den Linden
15:45 - 17:15	2/0	(6) - Sebastian Wieland
15:45 - 17:15	2/1	(7) - Claudius Zimmermann
15:45 - 17:15	2/11	(8) - Martin Schimassek
15:45 - 17:15	2/17	(9) - Marc Beutter
17:30 - 19:00	2/0	(10) - Markus Nowak
17:30 - 19:00	2/11	(11) - Yi Yao

- Koordination: Dr. Roger Wolf (IETP)
 - roger.wolf@cern.ch
 - Physik-Hochhaus 30.23, Raum 9-11, Tel.: (0)721 608 43591

Übungsblätter

- **7-9 Übungsblätter** geplant (falls 9
 - → dann 4 "halbe" Blätter)
- Ausgabe: online, dienstags zur Vorlesung (upload auf Webseite, ILIAS, Bekanntgabe per mail)
- Bearbeitung: in Gruppen von 2 Studierenden möglich. Abgabe als Gruppe in Papierform → s. rechts), abweichende Einreichungen werden NICHT akzeptiert
- Rückgabe: montags in der darauf folgenden Woche bis 13:30 in den Briefkasten der Vorlesung in Geb 30.23

- Erstes Blatt des Aufgabenblattes als Deckblatt verwenden
- Tackern
- Gruppe und Tutor klar vermerken
- Namen der Bearbeitenden klar vermerken

Übungsblatt 1

Name des Übungsgruppenleiters und Gruppenbuchstabe:

(1) Valentin Hermann

Namen der bearbeitenden Gruppe:

Ernie & Bert

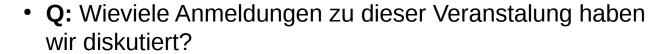
Ausgabe: Di, 02.05.2018 (09:45)

Abgabe: Mo, 07.05.2018 (13:30) Briefkasten Geb. 30.23

- Pflichtveranstaltung im Bachelorstudium Physik (6 LP-Punkte):
 - Leistungsnachweis über "Vorleistung" (= erfolgreiche Teilnahme an Übungen)
 - Teilleistung als Voraussetzung für mündliche Prüfung "Moderne Experimentalphysik"
 - **Anmeldung** zur Vorleistung elektronisch hier (Anmeldung: 16.04. 20.07. Abmeldung: 16.04. 20.07., jeweils 12:00)
- Sie erfüllen die Vorleistung wenn Sie…
 - ... nicht mehr als zwei Übungsblätter (ohne Entschuldigung und/oder triftigen Grund) leer abgeben, von den letzten dreien nicht mehr als eins.

- Pflichtveranstaltung im Bachelorstudium Physik (6 LP-Punkte):
 - Leistungsnachweis über "Vorleistung" (= erfolgreiche Teilnahme an Übungen)
 - Teilleistung als Voraussetzung für mündliche Prüfung "Moderne Experimentalphysik"
 - Anmeldung zur Vorleistung elektronisch hier (Anmeldung: 16.04. 20.07. Abmeldung: 16.04. – 20.07., jeweils 12:00)
- Sie erfüllen die Vorleistung wenn Sie…
 - ... nicht mehr als zwei Übungsblätter (ohne Entschuldigung und/oder triftigen Grund) leer abgeben, von den letzten dreien nicht mehr als eins.
 - ... mindestens 50% der maximal erreichbaren Punkte in Übungsblättern erzielen

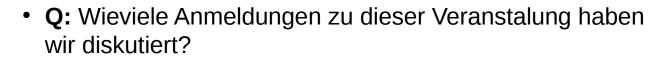
- Pflichtveranstaltung im Bachelorstudium Physik (6 LP-Punkte):
 - Leistungsnachweis über "Vorleistung" (= erfolgreiche Teilnahme an Übungen)
 - Teilleistung als Voraussetzung für mündliche Prüfung "Moderne Experimentalphysik"
 - Anmeldung zur Vorleistung elektronisch hier (Anmeldung: 16.04. 20.07. Abmeldung: 16.04. – 20.07., jeweils 12:00)
- Sie erfüllen die Vorleistung wenn Sie...
 - ... nicht mehr als zwei Übungsblätter (ohne Entschuldigung und/oder triftigen Grund) leer abgeben, von den letzten dreien nicht mehr als eins.
 - ... mindestens **50% der maximal erreichbaren Punkte** in Übungsblättern erzielen
 - ... mindestens 50% der maximal erreichbaren Punkte in den letzten 3 Übungsblättern erzielen


- Pflichtveranstaltung im Bachelorstudium Physik (6 LP-Punkte):
 - Leistungsnachweis über "Vorleistung" (= erfolgreiche Teilnahme an Übungen)
 - Teilleistung als Voraussetzung für mündliche Prüfung "Moderne Experimentalphysik"
 - **Anmeldung** zur Vorleistung elektronisch hier (Anmeldung: 16.04. 20.07. Abmeldung: 16.04. 20.07., jeweils 12:00)
- Sie erfüllen die Vorleistung wenn Sie…
 - ... nicht mehr als zwei Übungsblätter (ohne Entschuldigung und/oder triftigen Grund) leer abgeben, von den letzten dreien nicht mehr als eins.
 - … mindestens 50% der maximal erreichbaren Punkte in Übungsblättern erzielen
 - ... mindestens 50% der maximal erreichbaren Punkte in den letzten 3 Übungsblättern erzielen
 - ... aktiv an den Tutorien teilnehmen (nach Ermessen des Tutoren)

Anmeldungen zu dieser Veranstaltung?

• **Q:** Wieviele Anmeldungen zu dieser Veranstalung haben wir diskutiert?

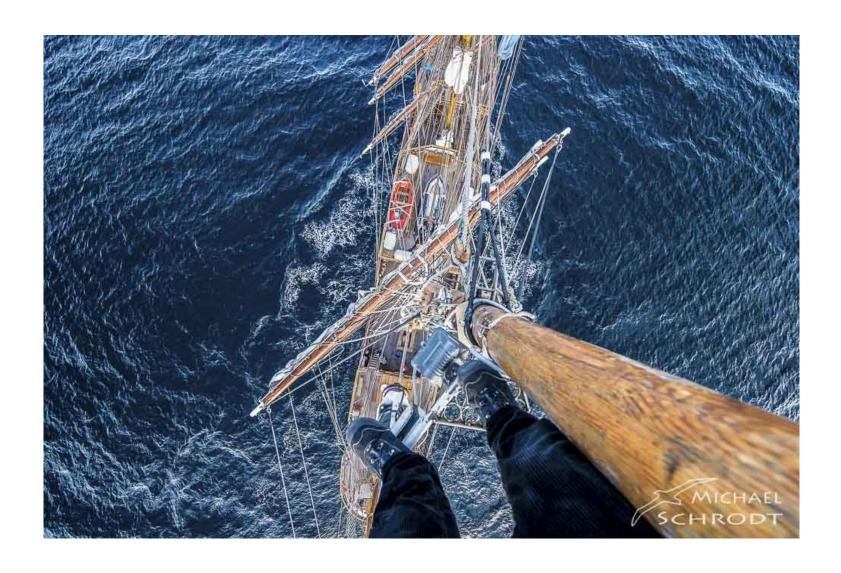
Anmeldungen zu dieser Veranstaltung?



• A: drei! – Anmeldung zur Vorleistung, Anmeldung in ILIAS, Anmeldung zu den Tutorien

• Q: Wann sollten Sie diese Anmeldungen vornehmen?

Anmeldungen zu dieser Veranstaltung?



• A: drei! – Anmeldung zur Vorleistung, Anmeldung in ILIAS, Anmeldung zu den Tutorien

- **Q:** Wann sollten Sie diese Anmeldungen vornehmen?
- A: am besten gleich nach(!) der Vorlesung... (Ausnahme: QUISPOS wird noch gesondert – per mailing Liste – bekannt gegeben)

1.2 Kursübersicht und Literatur

Gliederung der Vorlesung

Vorlesung:	Vorlesungstag:	Übungsbla
VL-01 Einheiten, Relativistische Kinematik	Di 17.04.2018	- /
VL-02 Teilchenstreuung	Do 19.04 2018	
VL-03 Wirkungsquerschnitt	Di 24.04.2018	Blatt-01
VL-04 Teilchenbeschleunigung	Do 26.04.2018	-
Vorlesung fällt aus	Di 01.05.2018	Blatt-02
VL-05 Teilchennachweis durch Ionisation	Do 03.05.2018	-
VL-06 Elektromag. WW und Schauer	Di 08.05.2018	Blatt-03
Vorlesung fällt aus	Do 10.05.2018	-
VL-07 Detektoren der Teilchenphysik	Di 15.05.2018	Blatt-04
VL-08 Symmetrien und Erhaltunsästze	Do 17.05.2018	-
VL-09 Fundamentale Teilchen und Kräfte im S	SM Di 22.05.2018	Blatt-05
VL-10 Diskrete Symmetrien des SM	Do 24.05.2018	-
VL-11 Teilchenzoo: vom Hadron zum Quark	Di 29.05.2018	Blatt-06
Vorlesung fällt aus	Do 31.05.2018	-
VL-12 Farbladung und QCD	Di 05.06.2018	Blatt-07
VL-13 Phänomenologie der schwachen WW	Do 07.06.2018	-
VL-14 Theorie der elektroschwachen WW	Di 12.06.2018	Blatt-08
VL-15 Higgs Mechanismus	Do 14.06.2018	-
VL-16 SM: Quarksektor	Di 19.06.2018	Blatt-09
VL-17 Top: Entdeckung und Eigenschaften	Do 21.06.2018	-
VL-18 Higgs: Entdeckung und Eigenschaften	Di 26.06.2018	-
VL-19 Neutrinophysik	Do 28.06.2018	-

Lehrbücher: Kerne und Teilchen

- B. Povh, K. Rith, Ch.Scholz, f. Zetsche, W.
 Rodejohann: Teilchen und Kerne, Springer (2014)
- C. Amsler: Kern- und Teilchenphysik, UTB/vdf (2007)
- W. Demtröder: Experimentalphysik 4, Kern- Teilchen und Astroteilchenphysik, Springer (2010)
- J. Bleck-Neuhaus: Elementare Teilchen, Springer (2013)

Lehrbücher: Teilchenphysik

- M. Thompson: Modern Particle Physics, Cambridge Univ. Press (2013)
- D. Griffith: Introduction to Elementary Particles, Wiley (2008)
- C. Berger: Elementarteilchenphysik, Springer (2006)
- A. Bettini: Introduction to Elementary Particle Physics, Cambridge Univ. Press (2008)
- D. Perkins: Introduction to High Energy Physics, Cambridge Univ. Press (2016)
- R. N. Cahn, G. Goldhaber: The Experimental Foundations of Particle Physics, Cambridge Univ. Press (2000)

Lehrbücher: Technologie

- K. Wille: Physik der Beschleuniger und Synchrotronstrahlungsquellen, Springer (1992)
- F. Hinterberger: Physik der Teilchenbeschleuniger und Ionenoptik, Sprigner (2008)
- K. Kleinknecht: Detektoren für Teilchenstrahlung, Springer (2005)
- H. Kolanoski, N. Wermes: Teilchendetektoren, Springer-Spektrum (2016)
- C. Grupen: Particle Detectors, Cambridge Univ. Press (2008)

Recherche

- Review of Particle Physics (PDG):
 - Teilcheneigenschaften, Übersichtsartikel (alle 2 Jahre aktualisiert)
- Server für Vorabdrucke (arXiv):
 - Themen: Physik, Mathematik, Informatik, Systembiologie, Finanzmathematik, Statistik
- Literaturdatenbank für Teilchenphysik (INSPIRE):
 - Preprints und Publikationen in wissenschaftlichen Zeitschriften.

The Review of Particle Physics (2016)

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

pdgLive - Interactive Listings

Summary Tables

Reviews, Tables, Plots

Particle Listings

Search

Data Listings

History book

Order: Book & Booklet

Download or Print: Book, Booklet, Website, Figures & more

Previous Editions (& Errata) 1957-2016	Physical Constants
Errata in current edition	Astrophysical Constants
Figures in reviews	Atomic & Nuclear Properties
Mirror Sites	Astrophysics & Cosmology

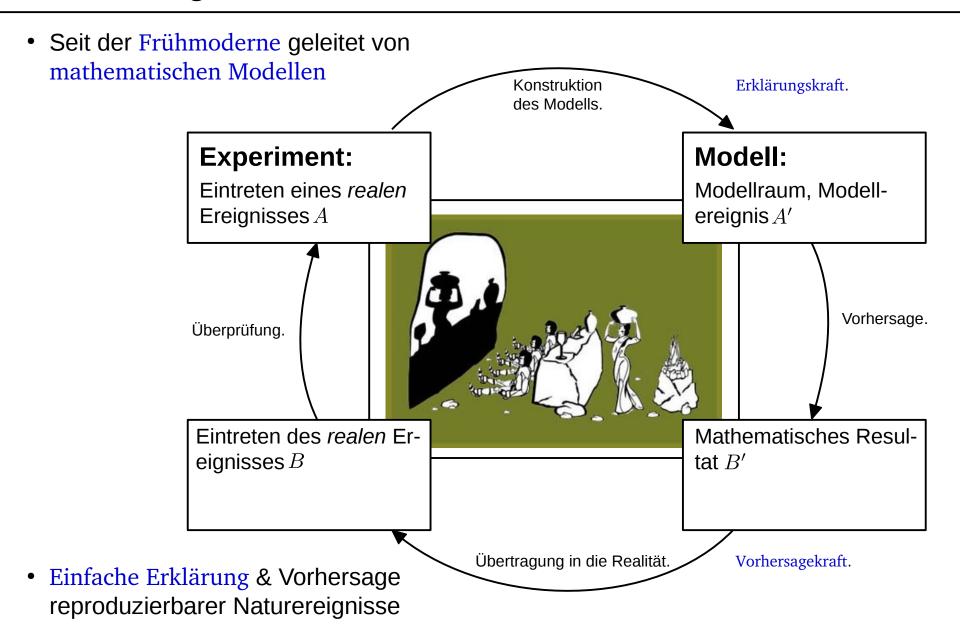
Most Popular

Reviews

Particle Adventure & Apps

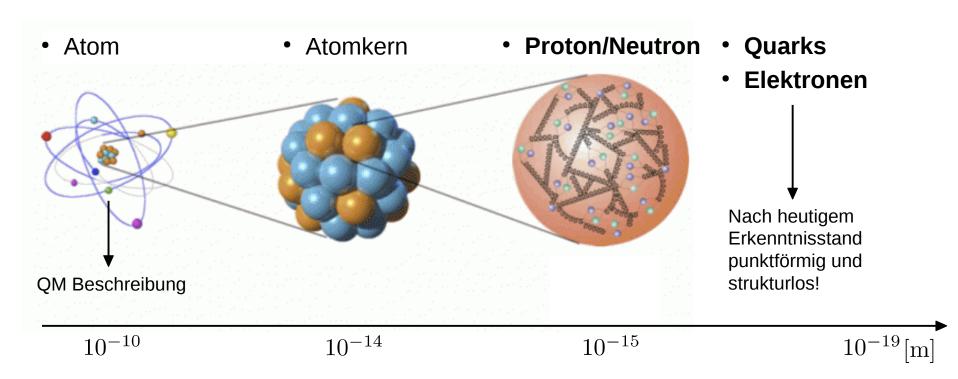
PDG Outreach

CPEP Charts


Funded by:

US DOE, CERN, MEXT (Japan), IHEP-CAS (China), INFN (Italy), MINECO (Spain), IHEP (Russia)

1.3 Erkenntnisgewinn bei kleinsten Skalen



Erkenntnisgewinn im Wandel der Zeit

Größenskalen dieses Kurses

- Siehe auch http://htwins.net/scale2/
- $10^{-6}m$ Feinmechanik
- $10^{-9}m$ Nanotechnologie

Erkenntnisgewinn jenseits unserer Sinneswahrnehmung (→ modellbehaftet)!

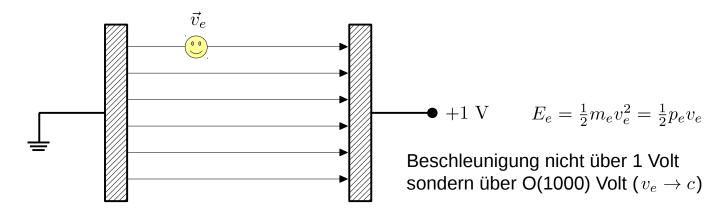
Einheiten in der Teilchenphysik vs SI-Einheiten

• Skalen jenseits unseres Alltagsempfindens (→ flexible Verwendung von Einheiten):

• Beispiel-1:

Ladung des Elektrons: $e = 1.6 \times 10^{-19} C$

Üblicherweise setzen wir die Ladung des Elektrons zu 1


• Beispiel-2:

Energie des Elektrons: $eV = 1.6 \times 10^{-19} J$

Impuls des Elektrons:

Masse des Elektrons:

Oft betrachten wir Ladungen, die durch Spannungen beschleunigt werden. Die dabei gewonnene Energie betrachten wir in Vielfachen von "Elektronenvolt"

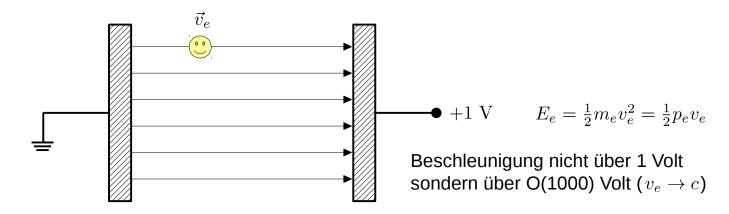
Einheiten in der Teilchenphysik vs SI-Einheiten

• Skalen jenseits unseres Alltagsempfindens (→ flexible Verwendung von Einheiten):

• Beispiel-1:

Ladung des Elektrons: $e = 1.6 \times 10^{-19} C$

Üblicherweise setzen wir die Ladung des Elektrons zu 1


• Beispiel-2:

Energie des Elektrons: $eV = 1.6 \times 10^{-19} J$

Impuls des Elektrons: eV/c

Masse des Elektrons: eV/c^2

Oft betrachten wir Ladungen, die durch Spannungen beschleunigt werden. Die dabei gewonnene Energie betrachten wir in Vielfachen von "Elektronenvolt"

Nützliche Umrechnungen

• Manchmal sind Sie gezwungen **eV in SI Einheiten** umzurechnen:

Größe	Kern-/Teilchenphysik	SI-einheiten
Länge	1 fm	10^{-15} m
Energie	$1~{ m GeV}$	$1.602 \times 10^{-10} \text{J}$
Masse	1 GeV/c^2	$1.78 \times 10^{-27} \mathrm{kg}$
\hbar	$6.626 \times 10^{-25} \text{ GeV s}$	$1.055 \times 10^{-34} \text{J s}$
$\hbar c$	$197.3~\mathrm{MeV}~\mathrm{fm}$	$3.162 \times 10^{-26} \text{J m}$

• Q: Die Masse des Elektrons beträgt 511 keV/c². Das entspricht wieviel kg?

Nützliche Umrechnungen

• Manchmal sind Sie gezwungen **eV in SI Einheiten** umzurechnen:

Größe	Kern-/Teilchenphysik	SI-einheiten
Länge	1 fm	10^{-15} m
Energie	$1~{ m GeV}$	$1.602 \times 10^{-10} \text{J}$
Masse	1 GeV/c^2	$1.78 \times 10^{-27} \mathrm{kg}$
\hbar	$6.626 \times 10^{-25} \text{ GeV s}$	$1.055 \times 10^{-34} \text{J s}$
\hbarc	197.3 MeV fm	$3.162 \times 10^{-26} \text{J m}$

- Q: Die Masse des Elektrons beträgt 511 keV/c². Das entspricht wieviel kg?
- A: $511 \text{ keV/c}^2 = 511\,000 \cdot 1.6 \times 10^{-19} \text{C V / } (3 \times 10^8 \text{m/s})^2 = 9.1 \times 10^{-31} \text{kg}$

Natürliche Einheiten

- Statt $c = 3 \times 10^8 \mathrm{m/s}$ immer in den Einheiten mitzuschleppen setzen wir oft $c \equiv 1$
- Weiter empfiehlt es sich $\hbar \equiv 1$ (und außerdem $k_B \equiv 1$) zu setzen (v.a. in Theorie)

Natürliche Einheiten:

Größe	Kern-/Teilchenphysik	Natürliche Einheiten
$\overline{\hbar}$	${ m GeV}{\cdot}{ m s}$	1
c	[m/s]	1
Energie	${ m GeV}$	${ m GeV}$
Masse	${ m GeV/c^2}$	${ m GeV}$
Temperatur	K	${ m GeV}$
Zeit	\mathbf{S}	
Länge	m	

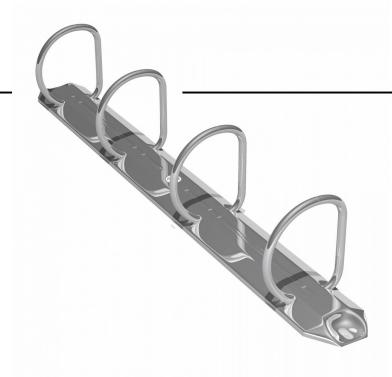
Q: Welche Einheiten haben in diesem System Länge und Zeit?

Natürliche Einheiten

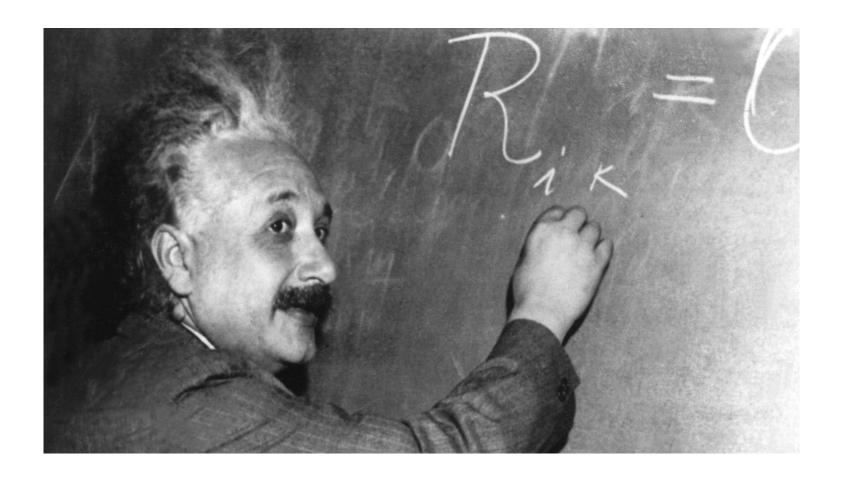
- Statt $c = 3 \times 10^8 \mathrm{m/s}$ immer in den Einheiten mitzuschleppen setzen wir oft $c \equiv 1$
- Weiter empfiehlt es sich $\hbar \equiv 1$ (und außerdem $k_B \equiv 1$) zu setzen (v.a. in Theorie)

Natürliche Einheiten:

Größe	Kern-/Teilchenphysik	Natürliche Einheiten
$\overline{}\hbar$	${ m GeV}{\cdot}{ m s}$	1
c	[m/s]	1
Energie	${ m GeV}$	${ m GeV}$
Masse	${ m GeV/c^2}$	${ m GeV}$
Temperatur	K	${ m GeV}$
Zeit	\mathbf{S}	$ m GeV^{-1}$ $ m GeV^{-1}$
Länge	m	GeV^{-1}

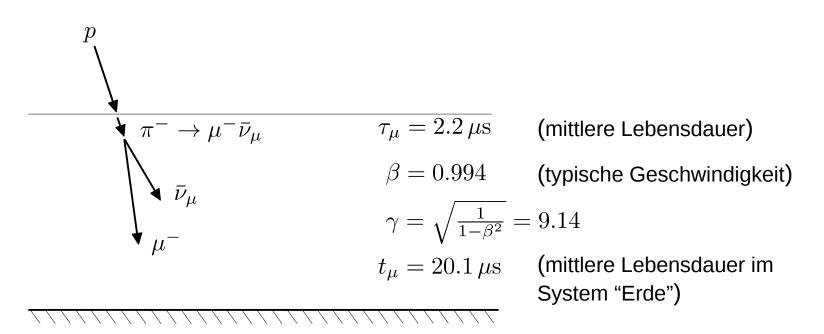

- Q: Welche Einheiten haben in diesem System Länge und Zeit?
- A: Leite aus Heisenberg'scher Unschärferelation her:

$$\Delta p \cdot \Delta x \gtrsim \hbar$$
 , $\Delta E \cdot \Delta t \gtrsim \hbar$



Zusammenfassung

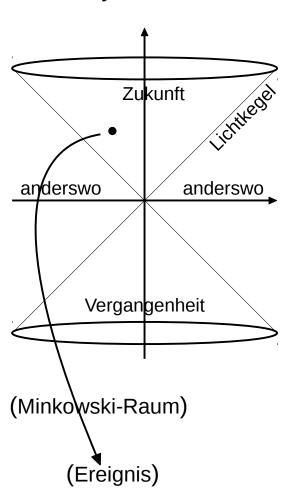
- Größenskalen in der Teilchenphysik
- Natürliche Einheiten und SI-Einheiten
- Nützliche Umrechnungen


1.4 Relativistische Kinematik

Ereigniskinematik im relativistischen Regime

- In der (Astro-)Teilchenphysik bewegen wir uns i.A. in den kinematischen Bereichen der Relativitätstheorie
- Beispiel:

Erzeugung von Myonen in der kosmischen Höhenstrahlung:


 $\ell_{\mu} = 660 \; \mathrm{m}$ (mittlere Weglänge ohne Relativitätstheorie)

 $\ell_{\mu} = 6 \; \mathrm{km}$ (mittlere Weglänge mit Relativitätstheorie)

Vierervektorkalkül

Konstantheit der Lichtgeschwindigkeit:

Die spezielle Relativitätstheorie fußt auf der Beobachtung $c=const\,$ in allen Inertialsystemen

$$ds^2 = c^2 dt^2 - d\vec{x}^2 \stackrel{\text{(1)}}{=} dt^2 - d\vec{x}^2 = const \qquad \text{(Abstand)}$$

Ort und Zeit lassen sich zu einem Lorentzvektor gruppieren:

$$x_{\mu} = \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} \qquad g_{\mu\nu} = g^{\mu\nu} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

(Lorentzvektor)

(beachte außergewöhnliche Metrik)

$$\mathrm{d}s^2 = \mathrm{d}x_\mu \mathrm{d}x^\mu = \mathrm{d}x_\mu g^{\mu\nu} \mathrm{d}x_\nu$$

Lorentz-Transformation

Lorentz-Transformation:

Lorentzvektoren transformieren sich nach der Lorentz-Transformation, beim Wechsel von einem in ein anderes Inertialsystem, Bsp.:

$$\begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta\gamma & 0 & 0 & \gamma \end{pmatrix} \cdot \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \gamma t - \gamma\beta z \\ x \\ y \\ \gamma z - \gamma\beta t \end{pmatrix}$$

(boost entlang der z-Achse)

Der Abstand ist invariant unter Lorentz-Transformationen:

(hier am Beispiel eines boosts entlang der z-Achse)

Lorentz-Transformation

Lorentz-Transformation:

Lorentzvektoren transformieren sich nach der Lorentz-Transformation, beim Wechsel von einem in ein anderes Inertialsystem, Bsp.:

$$\begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta\gamma & 0 & 0 & \gamma \end{pmatrix} \cdot \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \gamma t - \gamma\beta z \\ x \\ y \\ \gamma z - \gamma\beta t \end{pmatrix}$$

(boost entlang der z-Achse)

Der Abstand ist invariant unter Lorentz-Transformationen:

$$x'_{\mu}x^{\mu\prime} = \gamma^{2} (t - \beta z)^{2} - x^{2} - y^{2} - \gamma^{2} (z - \beta t)^{2}$$

$$= \gamma^{2} (t^{2} - 2t \beta z + \beta^{2} z^{2}) - x^{2} - y^{2} - \gamma^{2} (z^{2} - 2t \beta z + \beta^{2} t^{2})$$

$$= \gamma^{2} (1 - \beta^{2}) (t^{2} - z^{2}) - x^{2} - y^{2} = t^{2} - x^{2} - y^{2} - z^{2}$$

$$= x_{\mu}x^{\mu}$$

(hier am Beispiel eines boosts entlang der z-Achse)

Weitere Invarianten und Lorentzvektoren

Lorentz-Skalar:

Eigenzeit:

$$d\tau = \frac{|ds'|}{c} = \sqrt{dt'^2 - \frac{d\vec{x}'^2}{c^2}} = \frac{dt'}{\gamma}$$

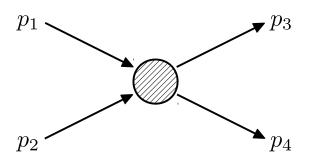
Lorentzvektor:

Geschwindigkeit:

$$u_{\mu} = \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} = \gamma \begin{pmatrix} c \\ v_{x} \\ v_{y} \\ v_{z} \end{pmatrix}$$

Eigenmasse:

$$p'_{\mu}p^{\mu\prime} = \gamma^2 \left(m^2c^2 - \vec{p}^2\right) \stackrel{\text{(1)}}{=} E^2 - p^2$$


Für ein ruhendes Teilchen:

$$p'_{\mu}p^{\mu\prime} = E^2 - p^2 = m^2$$

Impuls:
$$p_{\mu} = m \, u_{\mu} = \gamma \left(\begin{array}{c} m \, c \\ p_x \\ p_y \\ p_z \end{array} \right)$$

Invarianten in elastischen Stößen

Betrachte elastischen Stoß zweier Teilchen im Minkowski-Raum:

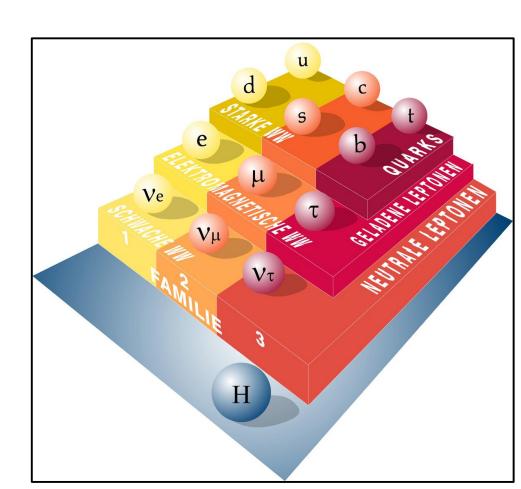
Der Stoß ist durch drei unabhängige Variablen eindeutig bestimmt: z.B. Schwerpunktsenergie, polarer & azimuthaler Streuwinkel im Schwerpunktsystem

 Der elastische Stoß läßt sich auch durch lorentzinvariante Größen unabhängig vom Bezugssystem beschreiben:

$$p_1^\mu+p_2^\mu=p_3^\mu+p_4^\mu$$
 (Viererimpulserhaltung)
$$s=(p_1^\mu+p_2^\mu)^2=(p_3^\mu+p_4^\mu)^2$$
 (Quadrat der Schwerpunktsenergie)
$$t=(p_1^\mu-p_3^\mu)^2=(p_4^\mu-p_2^\mu)^2$$
 (Quadrat des Viererimpulsübertrags)
$$u=(p_1^\mu-p_4^\mu)^2=(p_3^\mu-p_2^\mu)^2$$

Mandelstam-Variablen

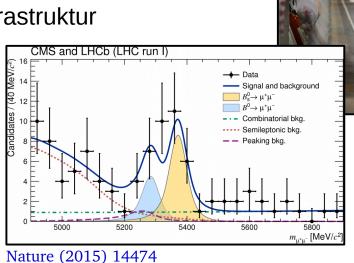
Gliederung der Vorlesung


Vorlesung:	Vorlesungstag:	Übungsblatt:/
VL-01 Einheiten, Relativistische Kinematik 🚤	Di 17.04.2018	-
VL-02 Teilchenstreuung	Do 19.04.2018	-
VL-03 Wirkungsquerschnitt	Di 24.04.2018	Blatt-01
VL-04 Teilchenbeschleunigung	Do 26.04.2018	-
Vorlesung fällt aus	Di 01.05.2018	Blatt-02
VL-05 Teilchennachweis durch Ionisation	Do 03.05.2018	-
VL-06 Elektromag. WW und Schauer	Di 08.05.2018	Blatt-03
Vorlesung fällt aus	Do 10.05.2018	-
VL-07 Detektoren der Teilchenphysik	Di 15.05.2018	Blatt-04
VL-08 Symmetrien und Erhaltunsästze	Do 17.05.2018	-
VL-09 Fundamentale Teilchen und Kräfte im SM	Di 22.05.2018	Blatt-05
VL-10 Diskrete Symmetrien des SM	Do 24.05.2018	-
VL-11 Teilchenzoo: vom Hadron zum Quark	Di 29.05.2018	Blatt-06
Vorlesung fällt aus	Do 31.05.2018	-
VL-12 Farbladung und QCD	Di 05.06.2018	Blatt-07
VL-13 Phänomenologie der schwachen WW	Do 07.06.2018	-
VL-14 Theorie der elektroschwachen WW	Di 12.06.2018	Blatt-08
VL-15 Higgs Mechanismus	Do 14.06.2018	-
VL-16 SM: Quarksektor	Di 19.06.2018	Blatt-09
VL-17 Top: Entdeckung und Eigenschaften	Do 21.06.2018	-
VL-18 Higgs: Entdeckung und Eigenschaften	Di 26.06.2018	-
VL-19 Neutrinophysik	Do 28.06.2018	-

Backup

Was ist moderne Teilchenphysik?

- Fundamentale Materie und ihre Eigenschaften
 - Materieteilchen (→ Fermionen)
 - Wechselwirkungsteilchen (→ Bosonen)
- Fundamentale Wechselwirkungen
 - Elektroschwache Wechselwirkung
 - Starke Wechselwirkung
- Zusammengesetzte Teilchen
 - Mesonen und Baryonen
- Offene Fragen:
 - Anspruch "from first principles" ungelöste Fragen des SM

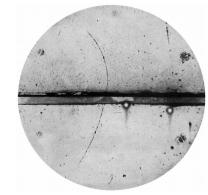

Übergreifende Themen

Symmetrien/Erhaltungssätze

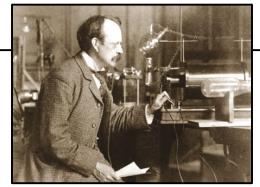
- Kontinuierliche Symmetrien: Translation, Drehungen im Raum
- Diskrete Symmetrien: Parität, Ladungskonjugation, Zeitumkehr

Verwendung von Hochtechnologie

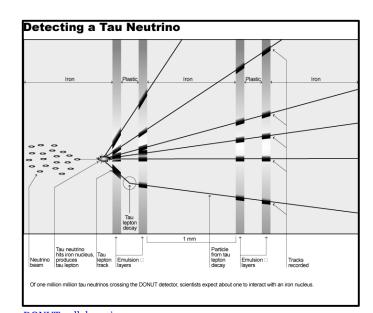
- Beschleuniger
- Detektoren zum Teilchennachweis
- Computing Infrastruktur
- Statistische Datenanalyse


Discovery of the electron (1897)

Geschichte der Teilchenphysik


- Relativistic QM (→ Dirac-Equation 1928)
- Theory of weak IA (→ E. Fermi 1933 34)
- Discovery µ^{+/-}(→ C. D. Anderson 1937)
- Discovery $\pi^{+/-}$ (\rightarrow C. Powel/G. Occhialini 1947)
- Discovery π^0 (\rightarrow R. Bjorklund et al 1950)
- Discovery K^{+/−}(→ "V"-particles 1947 49)
- Discovery K^0 , Λ^0 (\rightarrow "V"-particles 1947)
- Discovery Σ's, Ξ's (→ 1950's)
- Discovery Δ^{++} , Δ^{+} , Δ^{0} , Δ^{-} (\rightarrow 1952)
- Invention of bubble chamber (→ D. Glaser 1952)
- Observation of ν_e (\rightarrow C. Cowan, F. Reines 1956)
- Observation P violation of weak IA (→ C. Wu, R. Garwin 1956)
- Gauge field theory of weak IA (→ S. Glashow, S. Weinberg 1961)
- Observation of $\nu_{\mu}(\rightarrow$ L. Lederman, M. Schwartz, J. Steinberger 1962)
- Observation CP violation of weak IA (→ J. Cronin, V. Fitch 1964)
- Discovery J/ψ's (→ B. Richter, S.Thing, 1974)
- Discovery Υ's (→ L. Lederman, E288 collaboration, 1977)
- Discovery 1 S(> E. Ecderman, E200 collaboration, 1977
- Discovery of $W, Z (\rightarrow \mathsf{UA1} \& \mathsf{UA2} \ \mathsf{collaboration}, 1983)$
- Observation of t (→ CDF & D0 collaboration 1995)
- Observation of ν_{τ} (\rightarrow DONUT collaboration 2000)
- Discovery of H (\rightarrow ATLAS & CMS collaboration 2012)

discovered in airshower experiments discovered in collider experiments


Discovery of the positron (1932)

C. D. Anderson (1905 – 1991)

J. J. Thomson (1856 – 1940)

DONUT collaboration

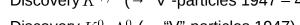
Discovery of the electron (1897)

Geschichte der Teilchenphysik

Relativistic QM (→ Dirac-Equation 1928)

Theory of weak IA (\rightarrow E. Fermi 1933 – 34)

Discovery $\mu^{+/-}$ (\rightarrow C. D. Anderson 1937)


Discovery $\pi^{+/-}(\rightarrow C. \text{ Powel/G. Occhialini 1947})$

Discovery π^0 (\rightarrow R. Bjorklund et al 1950)

Discovery $K^{+/-}$ (\rightarrow "V"-particles 1947 – 49)

Discovery K^0 , Λ^0 (\rightarrow "V"-particles 1947)

Discovery Σ 's, Ξ 's (\rightarrow 1950's)

Discovery Δ^{++} , Δ^{+} , Δ^{0} , Δ^{-} (\rightarrow 1952)

Invention of bubble chamber (→ D. Glaser 1952)

Observation of ν_e (\rightarrow C. Cowan, F. Reines 1956)

Observation P violation of weak IA (→ C. Wu, R. Garwin 1956)

Gauge field theory of weak IA (→ S. Glashow, S. Weinberg 1961)

Observation of $\nu_{\mu}(\rightarrow L. \text{ Lederman, M. Schwartz, J. Steinberger 1962})$

Observation CP violation of weak IA (→ J. Cronin, V. Fitch 1964)

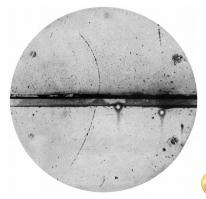
Discovery J/ψ 's (\rightarrow B. Richter, S.Thing, 1974)

Discovery Υ 's (\rightarrow L. Lederman, E288 collaboration, 1977)

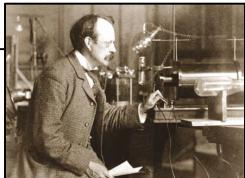
Discovery of $W, Z (\rightarrow UA1 \& UA2 collaboration, 1983)$

Observation of $t \rightarrow CDF \& D0$ collaboration 1995)

Observation of ν_{τ} (\rightarrow DONUT collaboration 2000)

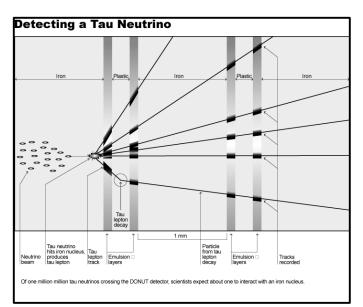


Discovery of H (\rightarrow ATLAS & CMS collaboration 2012)

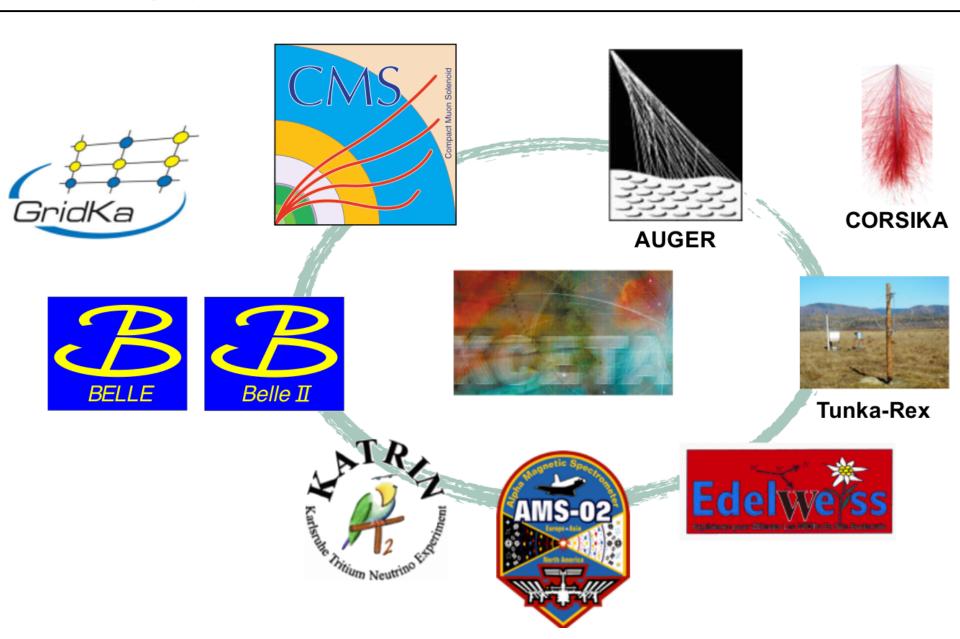


discovered in airshower experiments discovered in collider experiments

Discovery of the positron (1932)



C. D. Anderson (1905 – 1991)


J. J. Thomson (1856 - 1940)

Overall $\mathcal{O}(30)$ Nobel prizes in physics went to directly to particle physics related topics.

DONUT collaboration

Teilchenphysik @ KIT

