

Moderne Experimentalphysik III: Hadronen und Teilchen (Physik VI)

Thomas Müller, Roger Wolf

28. Juni 2018

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IETP) – PHYSICS FACULTY

Wie kann eine Symmetrie zur gleichen Zeit erhalten und gebrochen sein?

Spontane Symmetriebrechung: $f(x,y) = x^2 + y^2$ $x = r \cos \varphi$ $y = r \sin \varphi$ $\left| f(x,y) \right|_{r,\varphi} = r^2 \left(\cos \varphi^2 + \sin \varphi^2 \right) = r^2$ $\tilde{f}(x,y) = (x-1)^2 + (y-1)^2$ $\tilde{f}(x,y)\Big|_{r,\varphi} = r^2 + 2\left(1 - r\left(\sin\varphi + \cos\varphi\right)\right)$ ("hidden symmetry")

> Führe Potential ein das den Grundzustand des Universums aus der Symmetrieachse der Bewegungsgleichungen zwingt.

> → Teilchenmasse als Kopplung an nicht verschwindenden Vakuumerwartungswert.

2/33	Wie kann eine Symmetrie zur gleichen Zeit erhalten und gebrochen sein?
SM	Spontane Symmetrie- brechung: $f(x,y) = x^2 + y^2$ $x = r \cos \varphi$ $y = r \sin \varphi$
Problem: lokale Eichsymmet Lagrangedichte sind durch m Teilchen explizit gebrochen	trien in nassive $\begin{aligned} f(x,y) _{r,\varphi} &= r^2 \left(\cos \varphi^2 + \sin \varphi^2\right) = r^2 \\ \tilde{f}(x,y) &= (x-1)^2 + (y-1)^2 \end{aligned}$
opeda 2 17 18 Eri	innerung: $ \tilde{ }(x,y) _{r,\varphi} = r^2 + 2\left(1 - r\left(\sin\varphi + \cos\varphi\right)\right) $
$f_{H \to ff} = i \frac{m_f}{v}$ (Fermions)	("hidden symmetry")
$f_{H \to VV} = i \frac{2m_V^2}{v}$ (Heavy Boso	ons trilinear)
$f_{HH\to VV} = i \frac{2m_V^2}{v^2} \qquad \text{(Heavy Boson}$	ns quartic) Führe Potential ein das den Grundzustand des Universums aus der Symmetrieachse der Bewegungsgleichungen zwingt.
$\begin{vmatrix} f_{H \to HH} &= i \frac{\delta m_H}{v} \qquad (H \text{ Boson trian}) \\ 2m^2 \end{cases}$	ilinear) → Teilchenmasse als Kopplung an nicht verschwindenden Vakuumerwartungswert.
$f_{HH \to HH} = i \frac{\delta m_{H}}{v^2}$ (H Boson qu	iartic)

I

Higgs sector in the light of (tree-level) unitarity

• Unitarity problem demonstrated for $W^+W^+ \rightarrow W^+W^+$ scattering:

$$\mathcal{M}_{gauge} = -g^2 \frac{s}{4m_W^2} + \mathcal{O}(s^0)$$

constraint

Higgs sector in the light of (tree-level) unitarity

• Unitarity problem demonstrated for $W^+W^+ \rightarrow W^+W^+$ scattering:

$$\mathcal{M}_{gauge} = -g^2 \underbrace{\frac{s}{4m_W^2}}_{W} + \mathcal{O}(s^0)$$

constraint

Exact cancellation of **divergent behavior** only if scalar exchange particle has coupling of type $\propto m_W^2$.

 $\mathcal{M}_H = g_{HWW}^2 \frac{s}{m_W^4} + \mathcal{O}(s^0)$ $g_{HWW} = \frac{2m_W^2}{v} = g \cdot m_W$ with: $v = \frac{2m_W}{q}$

• Any additional contribution to this process should preserve this cancellation.

Higher orders and precision observables

• Particles, which cannot be directly observed at lower energy scales, still have influence on observables, due to higher order corrections in loops.

• Introduce direct dependencies of (measurable) effective vector boson masses and couplings on $m_H \& m_t$.

Higher order corrections to m_W

• Higher order corrections to m_W :

$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - 4\frac{\alpha \pi}{\sqrt{2}G_F m_Z^2} \cdot \frac{1}{1 - \Delta r}} \right) \qquad \Delta r = \Delta \alpha + \Delta r_W$$

$$\Delta \alpha = \Delta \alpha_{\rm lep} + \Delta \alpha_{\rm top} + \Delta \alpha_{\rm had}^{(5)}$$

$$\Delta r_W(m_t, m_H) \simeq \frac{\alpha}{\pi \sin^2 \theta_W} \left(-\frac{3}{16} \frac{\cos^2 \theta_W}{\sin^2 \theta_W} \frac{m_t^2}{m_W^2} + \frac{11}{24} \log \left(\frac{m_H}{m_Z} \right) \right) \qquad (1-\text{loop precision})$$

$$\propto m_t^2$$

$$\propto \log (m_H)$$

• Effects set in at $\mathcal{O}(\alpha^2) \approx \mathcal{O}(10^{-4}) \rightarrow \text{high precision needed on observables and theoretical prediction!}$

High precision measurements @ LEP & SLAC

High precision observables @ LEP

• High precision measurements made at $\sqrt{s} = m_Z$ during LEP-I run period:

Typical $Z \rightarrow qq$ event @ LEP

Z-pole electroweak precision observables

Pseudo-Observable	Measured Value			
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02758	±	0.00034	
$m_Z \; [\text{GeV}]$	91.1875	±	0.0021	
$\Gamma_Z [\text{GeV}]$	2.4952	\pm	0.0023	
$\sigma_{\rm had}^0 [{\rm nb}]$	41.540	\pm	0.037	
R_l^0	20.767	\pm	0.025	
R_b^{0}	0.21629	\pm	0.00066	
R_c^{0}	0.1721	\pm	0.0030	
$A^{0,l}_{FB}$	0.0171	\pm	0.0010	
$A^{0,b}_{FB}$	0.0992	\pm	0.0016	
$A^{0,c}_{FB}$	0.0707	\pm	0.0035	
$\sin^2 \theta_{\rm eff}^{\rm lep}$	0.2324	\pm	0.0012	
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.1465	\pm	0.0033	
$ $ \mathcal{A}_b	0.923	\pm	0.020	
$ $ \mathcal{A}_c	0.670	\pm	0.027	
$\mathcal{A}_l(\mathrm{SLD})$	0.1513	\pm	0.0021	

(as of hep-ex/0509008)

- 14(+1) observables.
- Precision between $\mathcal{O}(10^{-5})$ for m_Z & $\mathcal{O}(10^{-2})$ for $\mathcal{A}_l(\mathrm{SLD})$ (including theoretical uncertainties).
- Exploit dependencies $\propto m_t^2$ and $\propto \log(m_H)$ of higher orders via relations in m_W and $\sin \theta_{\rm eff}$.

NB: Using similar relations with the same dependencies as shown for m_W .

.

Five parameter χ^2 fit:			Measurement	Fit	O ^{meas} - 0 1	−O ^{fit} /σ ^{me} 2	eas 3
Five parameter χ^2 fit: Parameter χ^2 fit: Parameter $\Lambda_{as}^{(5)}(m_Z)$ Best Fit Value $\Delta \alpha_{as}^{(5)}(m_Z)$ 0.02759\pm0.00035 1.0 m_Z 0.1190\pm 0.0027 -0.04 m_Z M_t 173± 11.5 -0.03 0.19 -0.29 0.25 -0.25	Fit of Z-pole observables only: ⁽¹⁾ $\chi^2/ndof = \frac{16}{10}$ $\mathcal{P}(\chi^2) = 9.9\%$ (2005) Fit of Z-pole observables + m_W , Γ_W , m_t : ⁽²⁾ $\chi^2/ndof = \frac{16.9}{13}$ $\mathcal{P}(\chi^2) = 20.2\%$ (2012)	$\Delta \alpha_{had}^{(5)}(m_{z})$ $m_{z} [GeV]$ $\Gamma_{z} [GeV]$ $\sigma_{had}^{0} [nb]$ R_{l} $A_{fb}^{0,l}$ $A_{l}(P_{z})$ R_{b} R_{c} $A_{fb}^{0,c}$ A_{b} A_{c} $A_{l}(SLD)$ $sin^{2}\theta_{e}^{lept}(Q_{c})$	Measurement 0.02750 \pm 0.00033 91.1875 \pm 0.0021 2.4952 \pm 0.0023 41.540 \pm 0.037 20.767 \pm 0.025 0.01714 \pm 0.0095 0.1465 \pm 0.0032 0.21629 \pm 0.00066 0.1721 \pm 0.0030 0.0992 \pm 0.0016 0.0707 \pm 0.0035 0.923 \pm 0.020 0.670 \pm 0.027 0.1513 \pm 0.0021 0.2324 \pm 0.0012	Fit 0.02759 91.1874 2.4959 41.478 20.742 0.01645 0.1481 0.21579 0.1723 0.1038 0.0742 0.935 0.668 0.1481 0.2314	O ^{meas}	-O ^{fit} /σ ^{me} 2	∍as 3
$m_Z = \frac{1.0}{0.02}$		m _W [GeV] Γ _W [GeV]	80.385 ± 0.015 2.085 ± 0.042 172.20 ± 0.000	80.377 2.092	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		m _t [GeV]	173.20 ± 0.90	173.26			
\odot $\log(^{m_H}/\text{GeV})$		March 2012			0 1	2	3

(1) (as of hep-ex/0509008)
 (2) http://lepewwg.web.cern.ch/LEPEWWG/winter12_results

Main result

Direkte Higgs Suchen und Entdeckung

Higgs Boson...

11/33

Google-Suche

Auf gut Glück!

Google.de angeboten auf: English

Direkte Suche bei LEP-II

- Higgs Boson koppelt an Masse.
- Kopplung am stärksten für schwerste Objekte.

Direkte Suche bei LEP-II

12/33

• Higgs Boson koppelt an Masse.

 $E_{\rm CM}$ nominal [GeV]

Year

• Kopplung am stärksten für schwerste Objekte.

1996

172

161

1997

183

Direkte Suche bei LEP-II

Direkte Suche bei LEP-II

Models in counting experiments

From one to many...

Model building (likelihood functions)

16/33

Model building (likelihood functions)

Example: test statistics (LEP ~2000)

• Test signal (H_1 , for fixed mass, m, and fixed signal strength, μ) vs. background-only (H_0).

17/33

Ergebnis LEP-II

- Kein Signal beobachtet
- Untere Schranke auf Masse: $m_H > 114.4 \text{ GeV} (@ 95\% \text{ CL})$

Produktion und Zerfall

Wichtigste Zerfallskanäle am LHC

V	Channel	Resolution	S/B
	$H \to \gamma \gamma$	1- $2%$	$\mathcal{O}(0.1)$
$\sum \frac{2m_V^2}{2m_V}$	$H \to ZZ$	1-2%	$\mathcal{O}(>1)$
$\kappa_{HVV} = \frac{1}{v}$	$H \to WW$	20%	$\mathcal{O}(1)$
$\kappa_{HLC} = \frac{m_f}{\int}$	$H \to b\overline{b}$	10%	$\mathcal{O}(0.1)$
v = 1	$H \to \tau \tau$	15%	$\mathcal{O}(0.1)$

```
23/33 10^{11}~\sigma_{incl}(pp)
```

Die Herausforderung

 10^8

Verlauf der Suche bis Mitte 2012

Anm: ausgeschlossen sind alle Bereiche oberhalb der Kurven

- Ausschluß des SM bis auf engen Massenbereich des Higgs Bosons
- Erwartete (Ausschluß-)Sensitivität:

• Beobachteter Massenausschluß:

Verlauf bis Mitte 2012

25/33

- Ausschluß des SM bis auf engen Massenbereich des Higgs Bosons
- Erwartete (Ausschluß-)Sensitivität:

Beobachteter Massenausschluß: ٠

Signalstärke aus

Die Entdeckung

Mass

ATLAS+CMS LHC run-1 combination:

Coupling structure

• Event categories : 574

• Nuisance parameters: 4268

 $\mu = \sigma/\sigma_{SM} = 1.09 \pm 0.11$

-PAS-HIG-15-002

ATLAS+CMS LHC run-1 combination:

"Money plot"

Why the Higgs boson still is not THE Higgs boson⁽¹⁾

- Gravity is not included in the SM.
- The SM suffers from the hierarchy problem.
- Dark matter is not included in the SM.
- Neutrino masses are not included in the SM.
- There are known deviations from the SM expectation in $a_{\mu} \equiv \frac{g_{\mu}-2}{2}$ (3.6 σ unresolved).

- There must be physics beyond the SM!
- At what scale does it set in?
- (How) Does it influence the Higgs sector?

Gliederung der Vorlesung

Vorlesung:	Vorlesungstag:	Übungsblatt:
VL-01 Einheiten, Relativistische Kinematik	Di 17.04.2018	-
VL-02 Teilchenstreuung	Do 19.04.2018	-
VL-03 Wirkungsguerschnitt	Di 24.04.2018	Blatt-01
VL-04 Teilchenbeschleunigung	Do 26.04.2018	-
Vorlesung fällt aus	Di 01.05.2018	Blatt-02
VL-05 Teilchennachweis durch Ionisation	Do 03.05.2018	- /
VL-06 Elektromag. WW und Schauer	Di 08.05.2018	Blatt-03
Vorlesung fällt aus	Do 10.05.2018	- /
VL-07 Detektoren der Teilchenphysik	Di 15.05.2018	Blatt-04
VL-08 Symmetrien und Erhaltunsästze	Do 17.05.2018	- /
VL-09 Fundamentale Teilchen und Kräfte im SM	Di 22.05.2018	Blatt-05
VL-10 Diskrete Symmetrien des SM	Do 24.05.2018	- /
VL-11 Teilchenzoo: vom Hadron zum Quark	Di 29.05.2018	Blatt 06
Vorlesung fällt aus	Do 31.05.2018	- /
VL-12 Farbladung und QCD	Di 05.06.2018	Blatt-07
VL-13 Phänomenologie der schwachen WW	Do 07.06.2018	<i>F</i>
VL-14 Theorie der elektroschwachen WW	Di 12.06.2018	Blatt-08
VL-15 Higgs Mechanismus	Do 14.06.2018	-
VL-16 SM: Quarksektor	Di 19.06.2018	Blatt-09
VL-17 Top: Entdeckung und Eigenschaften	Do 21.06.2018	-
VL-18 Higgs: Entdeckung und Eigenschaften_	Di 26.06.2018	-
VL-19 Neutrinophysik	Do 28.06.2018	-

