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Exercise 1: Masses for the Gauge Bosons
In the Standard Model, the mass terms for the gauge bosons W± and Z emerge
dynamically from their coupling to the Higgs field via the covariant derivative. We
want to study this in the following.

The Higgs field φ of the Standard Model is a weak-isospin doublet, and its covariant
derivative is

Dµφ =
[
∂µ + ig

2
τaW

a
µ + ig

′

2
YφBµ

]
φ

with the three SU(2)L gauge bosons Wa, the U(1)Y gauge boson B, the three Pauli
matrices τa, and the weak hypercharge Yφ = +1 of the Higgs field. After electroweak
symmetry breaking, the ground state φ0 of the Higgs field can be chosen as

φ0 = 1√
2

(
0
v

)
, v =

√
−µ2

λ
. (1)

As a first step, the Higgs field is expanded around its ground state by a small
perturbation H(x) ≡ H, identified with the Higgs boson, such that φ becomes

φ = 1√
2

(
0

v + H

)
. (2)

(Note that φ has two components because it is an isospin doublet.)

Show that, with Eq. (2), the covariant derivative and its conjugate of the Higgs field
become

Dµφ = 1√
2

 0

∂µH

 + i√
8

 g(W1
µ − iW2

µ)

−gW3
µ + g′Bµ

 (v + H)

Dµφ† = 1√
2

(0 ∂µH)− i√
8

(
g(W1,µ + iW2,µ) − gW3,µ + g′Bµ

)
(v + H)
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and that the dynamic term in the Higgs Lagrangian becomes

Dµφ†Dµφ = 1
2
∂µH∂µH + 1

8
g2
(
|W1|2 + |W2|2

)
(v+ H)2 + 1

8

(
−gW3

µ + g′Bµ

)2
(v+ H)2 .

(3)
With the definition of the W± bosons,

W±
µ = 1√

2

(
W1

µ ∓ iW2
µ

)
,

and with the defintion of the Z boson as a superposition of W3 and B (Weinberg
rotation), show then that Eq. (3) can be written in terms of the physical gauge
bosons as

Dµφ†Dµφ = 1
2
∂µH∂µH+ 1

2
g2

4
(v + H)2

(
W+

µW+µ + W−
µW−µ)+ 1

2
g2+g

′2

4
(v + H)2 ZµZµ .

What are the resulting gauge boson masses?

This approach results in addition into coupling terms between the gauge bosons and
the Higgs boson H. Express the terms by the gauge boson masses and the vacuum
expectation value v of the Higgs field. How does the coupling depend on the gauge
boson masses?

Exercise 2: Masses for the Fermions
In the Standard Model, the Higgs doublet can also be used to generate mass terms
for the fermions. They emerge dynamically from additionally introduced Yukawa
coupling terms

LYukawa = −yf
(
ψLφψR + ψRφ

†ψL
)

(4)

between the Higgs field φ and the fermion fields ψ. Here, ψL denotes a weak isospin
doublet of left-handed fermions, and ψR denotes the corresponding singlet of right-
handed fermions, e. g. in case of the first generation leptons

ψL =

(
νe
e

)
L

, ψR = eR .

Show that LYukawa Eq. (4) is invariant under both U(1)Y transformations AY and
SU(2)L transformations BL, where

AY : FL/R→ exp[ig
′

2
YFα(x)]FL/R

BL : FL → exp[ig
2
τaαa(x)]FL

BL : FR → FR .

and FL represents the isospin doublets spinor ψL and Higgs field φL, and FR the
isospin singlet spinor ψR. Note that AY depends on the weak hypercharge YF of the
field F it acts on, and that the weak hypercharge of the Higgs field is Yφ = +1.
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Now, work out the fermion mass terms resulting from LYukawa Eq. (4). Demonstrate
this for the case of the first generation leptons and assume neutrinos to be massless.
Start with expanding the Higgs field around its ground state φ0 Eq. (1) by a small
perturbation H, identified with the Higgs boson, as in Eq. (2). Show that this leads
to

LYukawa = − ye√
2

[eL(v + H)eR + eR(v + H)eL] ,

and derive the electron mass term from this. The approach results in addition
into coupling terms between the electron and the Higgs boson. Show explicitly the
proportionality of the coupling to the fermion mass.

As part of the calculation, you will need to show that

ee = eLeR + eReL .

Consider decays of the Higgs boson into pairs of τ+τ− and µ+µ− leptons. What is
the relative frequency of the decays?
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Solutions

Useful definitions:
A† ≡ (A∗)T , A ≡ A†γ0 .

Useful identities of γµ matrices:

{γµ, γν} = 2gµν , γ0 = (γ0)† , γa = −(γa)† ,

and of γ5:
γ5 = (γ5)† , (γ5)2 = 1 , {γ5, γµ} = 0 .

It is further
(A ·B)† = B† · A† .

Solution to Exercise 1

Using Eq. (2) and Yφ = +1, it is

Dµφ =
[
∂µ + ig

2
τaW

a
µ + ig

′

2
YφBµ

]
φ

= 1√
2

 0

∂µ(v + H)

+ i√
8

[
gτaW

a
µ + g′Bµ

] 0

v + H

 .

With the Pauli matrices

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
,

the sum τaW
a
µ becomes

τaW
a
µ =

(
0 W1

µ

W1
µ 0

)
+

(
0 −iW2

µ

iW2
µ 0

)
+

(
W3

µ 0
0 −W3

µ

)
.

With this and since ∂µv = 0, it is

Dµφ = 1√
2

 0

∂µH

+ i√
8
g

 W3
µ W1

µ − iW2
µ

W1
µ + iW2

µ −W3
µ

 0

v + H

+ i√
8
g′Bµ

 0

v + H


= 1√

2

 0

∂µH

+ i√
8

g(W1
µ − iW2

µ)(v + H)

−gW3
µ(v + H)

+ i√
8

 0

g′Bµ(v + H)


= 1√

2

 0

∂µH

+ i√
8

 g(W1
µ − iW2

µ)

−gW3
µ + g′Bµ

 (v + H) .
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For convenience, this can be rearranged into real and imaginary parts as

Dµφ =

 1√
8
gW2

µ(v + H)

1√
2
∂µH


︸ ︷︷ ︸

A

+i
1√
8

 gW1
µ

−gW3
µ + g′Bµ

 (v + H)

︸ ︷︷ ︸
B

,

from which one can see that

Dµφ†Dµφ = (AT − iBT )(A+ iB) = |A|2 + |B|2

and thus

Dµφ†Dµφ = 1
2
∂µH∂µH + 1

8
g2
(
|W1|2 + |W2|2

)
(v+ H)2 + 1

8

(
−gW3

µ + g′Bµ

)2
(v+ H)2 .

With the defintion W±
µ = 1√

2

(
W1

µ ∓ iW2
µ

)
, it is

W1
µ = 1√

2

(
W+

µ + W−
µ

)
W2

µ = i√
2

(
W+

µ −W−
µ

)
,

and thus

|W1|2 + |W2|2 = 1
2

(
|W+|2 + |W−|2 + 2W+

µW−µ

+ |W+|2 + |W−|2 − 2W+
µW−µ)

= |W+|2 + |W−|2 .

The Z boson is defined by the Weinberg rotation as

Zµ = cos θWW3
µ − sin θWBµ

with
sin θW ≡ g′√

g2+g′2
, cos θW ≡ g√

g2+g′2
,

and thus it is
−
√
g2 + g′2 Zµ = −gW3

µ + g′Bµ ,

such that Dµφ†Dµφ can be expressed in terms of the physical gauge bosons as

Dµφ†Dµφ = 1
2
∂µH∂µH + 1

8
g2
(
|W1|2 + |W2|2

)
(v+ H)2 + 1

8

(
−gW3

µ + g′Bµ

)2
(v+ H)2 .

Expanding the (v+H)2 terms yields, looking only at the terms involving W+ bosons,

1
2
g2

4
(v + H)2 W+

µW+µ

=1
2
g2

4
v2︸︷︷︸

≡m2
W

W+
µW+µ + g2

4
vHW+

µW+µ + 1
2
g2

4
H2W+

µW+µ .
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The identification of the W-boson mass as

mW = g
2
v

is motivated by the fact that in the Lagrangian that yields the Proca equation for
massive vector bosons Aµ, the mass enters as a term

1
2
m2

AAµAµ .

Rewriting the above in terms of mW yields

1
2
g2

4
(v + H)2 W+

µW+µ

=1
2
m2

WW+
µW+µ +

m2
W

v
HW+

µW+µ + 1
2

m2
W

v2
H2W+

µW+µ .

The last two terms can be interpreted as three-point and four-point interaction terms
between a Higgs boson and two W bosons or two Higgs bosons and two W bosons,
respectively.

Interpretation of the terms with W− and Z works in complete analogy.

Solution to Exercise 2

For the U(1)Y transformations, it is(
ψLφψR

)′
=
(
(AYLψL)

)(
AYφφ

)(
AYRψR

)
=
(
ψLA

†
YL

)(
AYφφ

)(
AYRψR

)
=A†YLAYφAYR

(
ψLφψR

)
= exp

[
ig

′

2
(−YL + Yφ + YR)α(x)

] (
ψLφψR

)
= exp

[
ig

′

2
(−(−1) + (+1) + (−2))α(x)

] (
ψLφψR

)
=
(
ψLφψR

)
,

where we have used that

(Aψ) = (Aψ)†γ0

= ψ†A†γ0

= ψ†γ0A†

= ψA†

and that the weak hypercharges for the first-generation leptons are YL = −1 and
YR = −2 and for the Higgs field Yφ = +1.
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For the SU(2)L transformations, it is(
ψLφψR

)′
=
(
(BLψL)

)(
BLφ

)(
BLψR

)
=
(
ψLB

†
L

)(
BLφ

)(
ψR
)

=
(
ψL B

†
LBL︸ ︷︷ ︸
=1

φψR
)

=
(
ψLφψR

)
Analogously, one shows invariance for the

(
ψRφ

†ψL
)

terms.

Expanding around φ0 leads to

LYukawa =−ye
(
ψLφψR + ψRφ

†ψL
)

=−ye

(ν e)L
1√
2

 0

v + H

 eR + eR
1√
2
(0 v + H)

ν
e


L


=− ye√

2
[eL(v + H)eR + eR(v + H)eL]

=− ye√
2

[veLeR + veReL + HeLeR + HeReL]

=− ye√
2
v (eLeR + eReL)︸ ︷︷ ︸

ee

− ye√
2
H (eLeR + eReL)︸ ︷︷ ︸

ee

,

where the identity in the last step is proven further below. Comparison to the Dirac
mass term

−mψψ ,

i. e. the mass term in the Lagrangian that leads to the Dirac equation for massive
fermions, reveals

me = ye√
2
v .

Rewriting in terms of me leads to

LYukawa = −meee− me
v

Hee .

The last term can be interpreted as interaction between the Higgs boson and two
electrons with a coupling strength gHee ∝ me/v. Compare this to the coupling
strength gHVV ∝ m2

V/v of the respective three-point interaction HVV between the
Higgs boson and the gauge bosons V.

With the coupling strength gHff ∝ mf/v of the Higgs boson to fermions f , the
decay width follows from Fermi’s Golden rule as

Γ(H→ f̄f) ∝ σ ∝ |M|2 ∝ g2Hff ∝
(mf

v

)2
.
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Thus, assuming mH � mτ ,mµ, one can assume the factors of proportionality (phase-
space) to be the same for τ and µ, and hence

Γ(H→ τ+τ−)

Γ(H→ µ+µ−)
=

(
mτ

mµ

)2

=

(
1.8 GeV

0.1 GeV

)2

= 182 = 324 .

It remains to be shown that

ee = eLeR + eReL .

Each spinor can be decomposed into its left- and right-handed component as

e = eL + eR

with the projection operators

PL/R : eL/R = PL/Re = 1
2
(1∓ γ5)e .

Thus, it is

ee = (eL + eR)(eL + eR) = eLeL + eReR + eLeR + eReL .

We now first show that

eL/R = 1
2
(1∓ γ5)e

=
(
1
2
(1∓ γ5)e

)†
γ0

= 1
2
e†(1∓ γ5)†γ0

= 1
2
e†(1∓ γ5)γ0 since (γ5)† = γ5

= 1
2
e†γ0(1± γ5) since {γµ, γ5} = 0

= 1
2
e(1± γ5) .

Thus, it is

eL/ReL/R = 1
2
e(1± γ5) 1

2
e(1∓ γ5)

= 1
4
e(1± γ5)(1∓ γ5)e

= 1
4
e(1− (γ5)2)e

= 0 since (γ5)2 = 1 .
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