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Exercise 1: Masses for the Gauge Bosons

In the Standard Model, the mass terms for the gauge bosons W* and Z emerge
dynamically from their coupling to the Higgs field via the covariant derivative. We
want to study this in the following.

The Higgs field ¢ of the Standard Model is a weak-isospin doublet, and its covariant
derivative is
Db = [au +igr, W + i%Y¢BM} &

with the three SU(2);, gauge bosons W, the U(1)y gauge boson B, the three Pauli
matrices 7%, and the weak hypercharge Y; = +1 of the Higgs field. After electroweak
symmetry breaking, the ground state ¢, of the Higgs field can be chosen as

w=%(1) v=y% 0

As a first step, the Higgs field is expanded around its ground state by a small
perturbation H(z) = H, identified with the Higgs boson, such that ¢ becomes

¢:¢%<UEH>' 2)

(Note that ¢ has two components because it is an isospin doublet.)
Show that, with Eq. , the covariant derivative and its conjugate of the Higgs field

become

.0 L[ 9(W, —iWy)
Duo = + 7 s,
o,H —gW, + ¢'B,,

Dot =75 (0 0"H) — 2 (g(WH' +iW™H)  — gW + ¢'B*) (v + H)

(v+H)



and that the dynamic term in the Higgs Lagrangian becomes

2

D*¢'Dy¢ = 20"HO,H+ Lg* (IW'? + [W?*) (v+ H)? 4+ & (—gW; + ¢'B,.)”" (v+H)*.
(3)

With the definition of the W* bosons,

+ 1 - w2
Wu - \/Li (Wu :szu) )

and with the defintion of the Z boson as a superposition of W* and B (Weinberg

rotation), show then that Eq. can be written in terms of the physical gauge

bosons as

D6 Dy = L0MHO, HA 12 (v 4 H)? (WHWH 4 W, W) L2502 (4 H)2 7,70

What are the resulting gauge boson masses?

This approach results in addition into coupling terms between the gauge bosons and
the Higgs boson H. Express the terms by the gauge boson masses and the vacuum
expectation value v of the Higgs field. How does the coupling depend on the gauge
boson masses?

Exercise 2: Masses for the Fermions

In the Standard Model, the Higgs doublet can also be used to generate mass terms
for the fermions. They emerge dynamically from additionally introduced Yukawa
coupling terms

Lyukawa = —Yr (EL(wa + ERQﬁTwL) (4)

between the Higgs field ¢ and the fermion fields . Here, 11, denotes a weak isospin
doublet of left-handed fermions, and ¥ g denotes the corresponding singlet of right-
handed fermions, e. g. in case of the first generation leptons

v = (V;)L , Yr=c¢R.

Show that Lyukawa Eq. is invariant under both U(1)y transformations Ay and
SU(2), transformations By, where

.AY : FL/R — eXp[i%Ypa(x)]FL/R

By : Fr —expli§ma.(z)|Fy

B : Fr — Fg.
and Fj represents the isospin doublets spinor v, and Higgs field ¢, and Fg the

isospin singlet spinor 5. Note that Ay depends on the weak hypercharge Yy of the
field F it acts on, and that the weak hypercharge of the Higgs field is Yy = +1.



Now, work out the fermion mass terms resulting from Lyiyawa Eq. . Demonstrate
this for the case of the first generation leptons and assume neutrinos to be massless.
Start with expanding the Higgs field around its ground state ¢ Eq. by a small
perturbation H, identified with the Higgs boson, as in Eq. . Show that this leads
to

Lyukawa = =35 [eL(v + H)er +€r(v + H)er]

and derive the electron mass term from this. The approach results in addition
into coupling terms between the electron and the Higgs boson. Show explicitly the
proportionality of the coupling to the fermion mass.

As part of the calculation, you will need to show that

€e = eérer + egrer, .

Consider decays of the Higgs boson into pairs of 777~ and putu~ leptons. What is
the relative frequency of the decays?



Solutions

Useful definitions:
Al = (AT A= AT,

Useful identities of v* matrices:
" r=20", =00 =0T,

and of 5

It is further

Solution to Exercise 1

Using Eq. ([2) and Y, = +1, it is

Dy = [au +igr, WO+ i%Y¢BH] &

0 4
1 ) a !
= + = [g7W + ¢'B,]
gv+H)) SRR <

S

With the Pauli matrices

/01 (0 (10
= 10 ) Ty = ZO ) T3 = 0_1 i

the sum 7, W}, becomes

0 Wt 0 —iW? W30
a __ % % Iz
awvi= (o) (a7 07)+ (0 2w

With this and since 9,v = 0, it is

D= o). g Wy W, —iW;, 0, B, 0
o,H W, +iW2 W v+H v+ H
a0 L g(W}, —iW?) (v + H) N 0
Plom) Y Wi+ m) S\ ¢B.(v + 1)
=% " NG g(W’l‘g_ Wi (v+H).
0,H —gW,, +¢'B,,



For convenience, this can be rearranged into real and imaginary parts as

1 2 1
—=gW?7(v+H 1 gW
Dup= | V* ot ) i —= g (v+H),
Lo,H VB \ —gW? 4 ¢B,
A B

from which one can see that
D*¢ D¢ = (A" —iB")(A+iB) = |A]® + |B|?
and thus
D*6'Dyp = 10" HO,H 4 Lg? (W2 4+ [W22) (v + H)?+ L (—gW? + ¢'B,)” (v + H)?.

With the defintion Wiy = 25 (W), FiW}), it is

W=7 (Wi +W,.)
W=7 (Wy —=W,) .

and thus
[WH2 4+ W22 = L ([WF 2+ [W 2+ 2W W
+ [WH2+ W2 — 2WIW_“)
=W WP,
The Z boson is defined by the Weinberg rotation as

Z,, = cos GWWEL —sin 0w B,

with

sin @y = T cos Oy,
and thus it is
_ 92 +g/2 Z,u — _ng +gIBH,

such that D*¢'D,¢ can be expressed in terms of the physical gauge bosons as
DH6'D,p = S0MHO,H + g* ([W'2 + [W2[2) (v+H)? + L (—=gW3 + ¢'B,)” (v+H)2.

Expanding the (v+H)? terms yields, looking only at the terms involving W bosons,

'
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The identification of the W-boson mass as

N

mwy = 50U

is motivated by the fact that in the Lagrangian that yields the Proca equation for
massive vector bosons A¥, the mass enters as a term

1,2 7
S A AN

Rewriting the above in terms of myy yields

1 (v + H)P WHW
2 2
=1myy WIWH 4 DWW W 4 LT PW W
The last two terms can be interpreted as three-point and four-point interaction terms
between a Higgs boson and two W bosons or two Higgs bosons and two W bosons,

respectively.

Interpretation of the terms with W™ and Z works in complete analogy.

Solution to Exercise 2

For the U(1)y transformations, it is

(V16r)" = ((Av,v1)) (Av, ) (Avir)
= (VAL (Av,9) (Avar)
= Al Ay, Ay, (V,00R)
= exp [i5(=YL + Yy + Ye)ale)| (¥1000)
= exp [i%(~(=1) + (+1) + (~2))a(@)] (Frova)
= (EL¢¢R) )

where we have used that

(AY) = (Ap)Ty°
=t A0
= ¢T70AT
= At

and that the weak hypercharges for the first-generation leptons are Y, = —1 and
Yr = —2 and for the Higgs field Yy = +1.



For the SU(2), transformations, it is

(Vovr) = ((Brw)) (Bro) (Buig)
= (¢.B}) (Bro) (¢r)
= (@L % ¢"¢R)

=1

= (EquwR)

Analogously, one shows invariance for the (ER(NQ/JL) terms.

Expanding around ¢, leads to

EYukawa = —Ye (ELgm/}R + ER¢T¢L)
7 | | Jentango vrm |’
e v e)lLs ErR T ER—F%= v
V2 v+ H V2 e

<

L

=~ [ec(v+H)er +er(v + Hey]

<5

e

= — [?JéLGR -+ UERGL + HELGR + HéReL]

SES

= —=Z (ELQR +ER€L> —\y/—%H (ELeR + EReL) ,
—— —— ——— ———

ee ee

where the identity in the last step is proven further below. Comparison to the Dirac
mass term

_maw )

i.e. the mass term in the Lagrangian that leads to the Dirac equation for massive
fermions, reveals

Mme = \y/—%v .
Rewriting in terms of m, leads to
Lyuiawa = —meee — =<Hee.

The last term can be interpreted as interaction between the Higgs boson and two
electrons with a coupling strength gpee o me/v. Compare this to the coupling
strength ggyy oc m% /v of the respective three-point interaction HVV between the
Higgs boson and the gauge bosons V.

With the coupling strength gusr o< my/v of the Higgs boson to fermions f, the
decay width follows from Fermi’s Golden rule as

_ 2
I(H— ff) ox oo [MP o gy o (%) :



Thus, assuming my > m,, m,,, one can assume the factors of proportionality (phase-
space) to be the same for 7 and u, and hence

T(H— 7t77) (m7>2

my

(138 GeV
~ \0.1GeV

2
=182 =324.
I'(H— ptp) )

It remains to be shown that
€ee = eérer + egrer, .
Each spinor can be decomposed into its left- and right-handed component as
e=erter
with the projection operators
Pr/r:erL/r = Prjre = %(1 + 75)€~
Thus, it is
e = M(e,; +er) =€rer +€reg +€rer + erey .

We now first show that

€L/R ZW
= (31 F~7)e)" A0
=3el(1F7°)1°
=3¢ (1F79°)°  since (1°)T =1°
= %ewo(l +~5) since {7",7°} =0
=ze(l+9°)
Thus, it is
€L/RCL/R = %E(l + ~5) %e(l F75)
= el £ )1 F e
=161 = (v"))e
=0 since (v°)? =1.



