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Exercise 1: Quark Mixing

In the most general case, the Yukawa coupling terms for quarks can be written
as

Lquarks
Yukawa = −Gd

ijQ
′
L,iφd

′
R,j −Gu

i,jQ̄
′
L,iφ

cu′R,j − h.c.
with complex matrices Gij, where the i, j denote the generation, and with the Q′L
denoting an SU(2)L iso-spin doublet of quarks, e. g. (u d)′, and the q′R denoting
the corresponding singlets, e. g. u′R, d′R. The quark states are written in the SU(2)-
interaction base as denoted by the prime. The corresponding electroweak Lagrangian
can be written in the same notation as

LEWK = iQ
′
Lγ

µ
[
∂µ + ig

2
Wa

µτ
a + ig

′

2
YLBµ

]
Q′L + iq′Rγ

µ
[
∂µ + ig

′

2
YRBµ

]
q′R ,

where only the terms involving fermions, i. e. the covariant derivatives, are considered
here. The τa, a = 1, 2, 3, represent the generators of the SU(2) gauge group and can
be written as the Pauli matrices τa = σa.

Show that the charged-current interaction (W± boson exchange) part follows to

LCC = Q
′
Lγ

µW±
µ τ
±Q′L = (u d)

′
L,iγ

µW±
µ τ
±
(
u
d

)′
L,i

, (1)

where uL,i and dL,i denote the up- and down-type quarks of generation i, the W±
µ

fields are defined as W±
µ = 1√

2
(W1

µ ∓ iW2
µ), and the τ± = 1

2
(τ 1 ± iτ 2) are the ladder

operators in SU(2) iso-spin space.

Equation (1) is still written in the SU(2) interaction base, as indicated by the primed
spinors. Express LCC in terms of the quark mass eigenstates uL,i etc. and show that
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the W± bosons can be exchanged between quarks of different families, i. e. that
quark mixing appears in the charged-current interaction.

Why does quark mixing not occur for the neutral current interactions?

Exercise 2: Theoretical Bounds on the Higgs-Boson Mass
Even though the Higgs-boson mass is not predicted within the Standard Model,
upper and lower bounds can be derived from internal consistency considerations.

Investigate the running of the Higgs self-coupling parameter λ = λ(Q2) with the
energy scale Q2. The running is driven by contributions from Higgs-boson, top-
quark, and gauge-boson loops as depicted below:

In the following, consider only the Higgs-boson and top-quark contributions and
neglect gauge-boson contributions. Study the two limits of very large and very small
Higgs-boson masses m2

H = 2λ(Q2 = v2)v2 at the electroweak scale Q = v = 246 GeV.
The two limits may correspond λ� yt and λ� yt, respectively, where yt denotes the
top-Higgs Yukawa coupling constant. Use the approximate solutions to the one-loop
renormalisation group equation in these two cases as given in the lecture to relate
the value of λ at the electroweak scale to its value at a higher scale Q = Λ� v.

Requiring that the Higgs self-coupling remains finite at all scales Q up to Λ, i. e.
requiring that λ(Λ2) <∞, derive an upper limit for λ(v2) at the electroweak scale
(triviality bound). Similarly, requiring that the Higgs potential develops a defined
minimum for all scales up to Λ, derive a lower limit for λ(v2) (stability bound).

Use the results to compute bounds on the Higgs-boson mass m2
H = 2λ(v2)v2 at the

electroweak scale, depending on the scale Λ up to which the Standard Model is
extrapolated.

Calculate the bounds on mH explicitly for Λ = 10 TeV and Λ = 1019 GeV. What do
you notice?
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Solutions

Useful definitions:
A† ≡ (A∗)T , A ≡ A†γ0 .

Useful identities of γµ matrices:

{γµ, γν} = 2gµν , γ0 = (γ0)† , γa = −(γa)† ,

and of γ5:
γ5 = (γ5)† , (γ5)2 = 1 , {γ5, γµ} = 0 .

It is further
(A ·B)† = B† · A† .

Solution to Exercise 1
The charged-current interaction follows from the terms involving the W1

µ and W2
µ

fields (see lecture 2), i.e.

LCC = −g
2
Q
′
Lγ

µ(W1
µτ

1 + W2
µτ

2)Q′L ,

and with

W1
µτ

1 + W2
µτ

2 =
√

2
(
W+

µ τ
+ + W−

µ τ
−) (see lecture 2)

one obtains

LCC = − g√
2
Q
′
Lγ

µ
[
W+

µ τ
+ + W−

µ τ
−]Q′L = − g√

2
(u d)

′
L,iγ

µ
[
W+

µ τ
+ + W−

µ τ
−](u

d

)′
L,i

.

With

τ+ = 1
2
(τ 1 + iτ 2) = 1

2

[(
0 1
1 0

)
+ i

(
0 −i
i 0

)]
=

(
0 1
0 0

)
follows for the W+ case

LCC+ =− g√
2
(u d)

′
L,iγ

µW+
µ

(
0 1

0 0

)(
u

d

)′
L,i

=− g√
2
(u d)

′
L,iγ

µW+
µ

(
d

0

)′
L,i

=− g√
2
u′L,iγ

µW+
µ d
′
L,i

=− g√
2
γµW+

µu
′
L,id

′
L,i

=− g√
2
γµW+

µuL,i (V
u
L V

d†
L )ij︸ ︷︷ ︸

VCKM,ij

dL,j
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because with the definition of the mass eigenstates

dL,i = (V d
L )ijd

′
L,j

uL,i = (V u
L )iju

′
L,j

follows
dL,i = (V d

L )ijd
′
L,j

(V d
L )†ijdL,i = (V d

L )†ij(V
d
L )ijd

′
L,j = d′L,j

and
uL,i = (V u

L )iju
′
L,j

uL,i = (V u
L )iju′L,j

= (u′L,j)
†(V u

L )†ijγ
0

= (u′L,j)
†γ0(V u

L )†ij

= u′L,j(V
u
L )†ij

uL,i(V
u
L )ij = u′L,j(V

u
L )†ij(V

u
L )ij = u′L,j

Analogously, one shows for W−

LCC- = − g√
2
γµW−

µ dL,i(V
d
LV

u†
L )ijuL,j .

For the Z boson exchange and the kinetic terms, there is not mixing. Since there is
no τ± matrix involved, the quark bilinear forms consist of quarks of the same isospin
only. Hence, the involved mixing matrix elements are of the form V d

LV
d†
L = 1.

Solution to Exercise 2
The running of the Higgs self-coupling constant λ is given by the renormalisation
group equation

dλ

d lnQ2
= β =

3

4π2

[
λ2︸︷︷︸

Higgs

+ 1
2
λy2

t − 1
4
y4
t︸ ︷︷ ︸

top quark

− 1
8
λ(3g2 + g′2)︸ ︷︷ ︸
W±,Z bosons

+ . . .
]
, (2)

given here at lowest order (one loop). It is driven by loop contributions from Higgs
bosons, top-quarks, and gauge bosons as depicted below:
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The value of λ at the electroweak scale v determines the value of the measured
Higgs-boson mass

m2
H = 2λv2 = 2λ(v)v2 ,

and hence, by investigating the running of λ, bounds on the Higgs boson mass can
be derived. For this, it is instructive to consider the limits of very small and very
large mH .

Large mH corresponding to λ� yt, g, g
′ In this case, the loop contributions

from Higgs bosons to the running of λ dominate and only the term ∝ λ2 in (2)
is of relevance. Then, a solution to (2) is given by (see lecture)

λ(Q2) =
λ(v2)

1− 3
4π2λ(v2) ln

(
Q2

v2

) , (3)

which relates the value of λ at the EWK scale v to its value at a higher scale Q.
Inspection of (3) reveals that λ increases as Q increases, until it hits a pole when
the denominator becomes 0. Requiring λ to be finite, i. e. λ <∞, for all scales up
to Q = Λ leads to the constraint

3

4π2
λ2(v2) ln

(
Λ2

v2

)
< 1 ⇒ λ(v2) <

4π2

3

1

ln
(

Λ2

v2

) .
This translates into an upper limit on the Higgs boson mass at the EWK scale of

mH =
√

2λ(v2)v2 <

√√√√ 8π2v2

3 ln
(

Λ2

v2

) .
NB: alternatively, one can apply a stronger constraint by requiring the theory to
remain perturbative, i. e. to require λ < 1 at all Q. This changes the numerical
result slightly, but the arguments stay the same.

Small mH corresponding to λ� yt, g, g
′ In this case, the loop contributions

from the top quark to the running of λ dominate, and therefore, one can neglect all
but the term ∝ y4

t in (2). Then, a solution to (2) is given by (see lecture)

λ(Q2) = λ(v2)− 3

4π2

m4
t

v4
ln

(
Q2

v2

)
, (4)

which relates the value of λ at the EWK scale v to its value at a higher scale Q.
Inspection of (4) reveals that λ decreases as Q increases. In order for the Higgs
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mechanism to work, i. e. in order for spontaneous symmetry breaking to occur, the
Higgs potential

V (φ) = µ2|φ|2 + λ|φ|4

needs to develop a stable minimum at a value |φ| 6= 0. Thus, it is necessary that
λ > 0 at all scales Q up to Λ. From this, it follows

λ(v2) >
3

4π2

m4
t

v4
ln

(
Λ2

v2

)
.

This translates into a lower limit on the Higgs boson mass at the EWK scale of

mH =
√

2λ(v2)v2 >

√
3

2π2
ln

(
Λ2

v2

)
m4
t

v2
.

Note the strong dependence on the top-quark mass!

Resulting boundaries The above approximations lead to the following bound-
aries at the example scales given in the exercise (all units in GeV):

Λ 104 1019

mup
H 463 144

mlow
H 130 419

This result does not make sense for the high-energy case where mlow
H > mup

H ! The
reason is in the approximations that have been made to derive the boundaries. In
particular for the lower boundary, the neglected W and Z boson contributions play
an important role as they enter with a different sign than the top quark, even if at
lower magnitude. Furthermore, the considered β function is only at one-loop level;
important modifications of the limits arise from yet higher-order contributions. Still,
the principle argument can be understood with this simplified example.
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