

Teilchenphysik 2 — W/Z/Higgs an Collidern

Sommersemester 2019

Matthias Schröder und Roger Wolf | Vorlesung 4

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

www.kit.edu

2. The Electroweak Sector of the Standard Model

2. Electroweak Sector of the Standard Model

- 2.1 Gauge theory
 - Global and local phase transformations
 - Example: QED
 - Abelian and non-Abelian gauge theories
- 2.2 The electroweak sector of the Standard Model I
 - Properties of the weak interaction, weak isospin
 - Formulation of the Standard Model (without masses)
- 2.3 Discovery of W and Z bosons
 - History towards discovery
 - Experimental methods
- 2.4 The Higgs mechanism
 - Problem of massive gauge bosons and massive fermions
 - Idea of the Higgs mechanism: examples of spontaneous symmetry breaking
- 2.5 The electroweak sector of the Standard Model II
 - The Standard Model Higgs mechanism
 - Yukawa couplings and fermion masses
 - The Higgs boson

Status Standard Model

All fundamental interactions as consequence of local gauge invariance

- Invariance requires introduction of gauge fields
- Geometrical interpretation: gauge bosons transport phase information between space-time points
- $\circ~$ Gauge groups of the Standard Model: $SU(3)_{\mathcal{C}} \times SU(2)_L \times U(1)_Y$
- $\circ~$ Electroweak gauge group $SU(2)_L \times U(1)_Y$ has peculiar structure
 - Physical gauge boson (W^{\pm} , Z, γ) superposition of underlying gauge fields W^{a} (from SU(2)_L) and B (from U(1)_Y)
 - Chiral theory: interaction different for left- and right-handed states, e.g. leading to parity violation

2. Electroweak Sector of the Standard Model

- 2.1 Gauge theory
 - Global and local phase transformations
 - Example: QED
 - Abelian and non-Abelian gauge theories
- 2.2 The electroweak sector of the Standard Model I
 - Properties of the weak interaction, weak isospin
 - Formulation of the Standard Model (without masses)
- 2.3 Discovery of W and Z bosons
 - History towards discovery
 - Experimental methods

2.4 The Higgs mechanism

- Problem of massive gauge bosons and massive fermions
- Idea of the Higgs mechanism: examples of spontaneous symmetry breaking
- 2.5 The electroweak sector of the Standard Model II
 - The Standard Model Higgs mechanism
 - Yukawa couplings and fermion masses
 - The Higgs boson

2.4 The Higgs mechanism

2.4.1. Problem of massive gauge bosons and massive fermions

Problem of Massive Gauge Bosons

- Invariance of \mathcal{L} under local gauge transformation achieved by introduction of vector field(s) with specific transformation behaviour → cause of interactions
- Example QED: from invariance under local U(1) transformations
 - $\circ~$ Vector field (photon) transforms as ${\sf A}_{\mu} \to {\sf A}'_{\mu} = {\sf A}_{\mu} \frac{1}{a} \partial_{\mu} \alpha$
 - Transformation of mass terms

$$\begin{split} \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} &\to \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}^{\prime}\mathsf{A}^{\prime\mu} \\ &= \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} - \frac{1}{q}m_{A}^{2}\left(\mathsf{A}_{\mu}\partial^{\mu}\alpha + \mathsf{A}^{\mu}\partial_{\mu}\alpha\right) + \frac{1}{2q^{2}}m_{A}^{2}\partial_{\mu}\alpha\partial^{\mu}\alpha \\ &\neq \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} \end{split}$$

- X Gauge-boson mass terms break local gauge invariance
 - Property of all gauge-field theories
- **Fundamental problem**: W and Z bosons have masses!

Problem of Massive Fermions?

- Invariance of \mathcal{L} under local gauge transformation achieved by introduction of vector field(s) with specific transformation behaviour → cause of interactions
- Example QED: from invariance under local U(1) transformations
 - $\circ \ \ \text{Spinor transforms as} \ \psi \to \psi' = \mathrm{e}^{i\alpha}\psi \ \text{and} \ \overline{\psi} \to \overline{\psi}' = \overline{\psi}\mathrm{e}^{-i\alpha}$
 - Transformation of mass terms ("Dirac mass" term)

$$m_f \overline{\psi} \psi \longrightarrow m_f \overline{\psi}' \psi' = m_f \overline{\psi} \psi$$

No problem with fermion masses for U(1) transformations
 Similarly, no problem in SU(3) (non-Abelian gauge group)

Problem of Massive Fermions!

SU(2)_L × U(1)_Y transformations act differently on chiral components
 Decomposition of mass term

$$m_{f}\overline{\psi}\psi = m_{f}\left(\overline{\psi}_{R}\psi_{L} + \overline{\psi}_{L}\psi_{R}\right)$$

Left- and right-handed components transform differently!

$$\psi_L \rightarrow \psi'_L = e^{i\alpha^a \tau^a + i\alpha Y} \psi_L$$
 (component of isospin doublet, $I = \frac{1}{2}$)
 $\psi_R \rightarrow \psi'_R = e^{i\alpha Y} \psi_R$ (isospin singlet, $I = 0$)

× Left- and right-handed fermions transform differently under $SU(2)_L \times U(1)_Y$

X Fermion mass terms in chiral theory are not gauge invariant

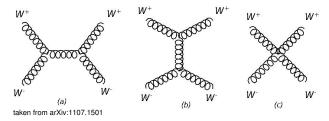
Status Standard Model

• All fundamental interactions as consequence of local gauge invariance

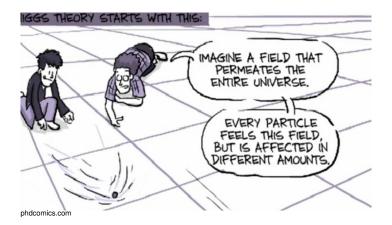
- Invariance requires introduction of gauge fields
- Geometrical interpretation: gauge bosons transport phase information between space-time points
- $\circ~$ Gauge groups of the Standard Model: SU(3)_C \times SU(2)_L \times U(1)_Y
- Electroweak gauge group $SU(2)_L \times U(1)_Y$
 - $\circ~$ Chiral theory: interaction different for left- and right-handed states
- Fundamental problem of the Standard Model
 - Gauge-boson mass terms violate gauge invariance (gauge theories in general)
 - Fermion mass terms violate invariance under electroweak $(SU(2)_L \times U(1)_Y)$ symmetry (because of the chiral structure)

Unitarity Violation

- $\circ\,$ Several Standard Model scattering cross-sections violate unitarity, i. e. become divergent at large $\sqrt{s},$ for example
 - $\circ~e^+e^-
 ightarrow$ (for $m_e
 eq 0$)
 - $\circ \ \mathsf{WW} \to \mathsf{WW} \ \mathsf{scattering}$



 \rightarrow theory becomes non-renormalisable



2.4.2. Idea of the Higgs mechanism

- Concept of **spontaneous symmetry breaking** (SSB)
 - Applied to the Standard Model: the Higgs mechanism (1960s)

• Concept of spontaneous symmetry breaking (SSB)

• Applied to the Standard Model:

the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism (1960s)

F. Englert and R. Brout,

Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321-323.

P. W. Higgs,

Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132-133.

P. W. Higgs,

Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508-509.

G. Guralnik, C. Hagen, and T. Kibble,

Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585-587.

P. W. Higgs,

Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156-1163.

T. Kibble,

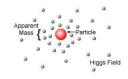
Symmetry breaking in non-Abelian gauge theories, Phys. Rev. 155 (1967) 1554-1561.

17/49

- Concept of spontaneous symmetry breaking (SSB)
 - Applied to the Standard Model: the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (1960s)
- New background field that has non-zero amplitude v in ground state everywhere
 - Particles interact with the field and get
 'slowed down': movement as if they have mass
 - Mass explained as restoring force

 $m \propto v$ (*v* = field amplitude)

Higgs Mechanism

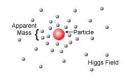


- Concept of spontaneous symmetry breaking (SSB)
 - Applied to the Standard Model: the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (1960s)
- New background field that has non-zero amplitude v in ground state everywhere
 - Particles interact with the field and get
 'slowed down': movement as if they have mass
 - Mass explained as restoring force

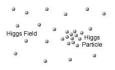
 $m \propto v$ (*v* = field amplitude)

 $\circ~$ Detection: excitation of background field \rightarrow new particle

Higgs Mechanism

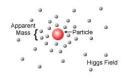


Higgs Particles

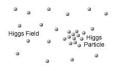


- Concept of spontaneous symmetry breaking (SSB)
 - Applied to the Standard Model: the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (1960s)
- In the Standard Model
 - Weak interactions themselves have infinite range and are described by gauge-invariant theory
 - Interactions are screened by background field: effective masses for the gauge bosons
 - SSB: field spontaneously takes ground-state which does not have symmetry
 - But mechanism would be better called 'hidden gauge symmetry' (background field hiding the gauge invariance)

Higgs Mechanism

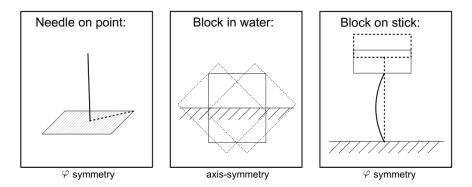


Higgs Particles



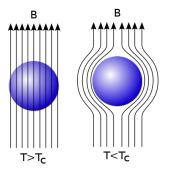
SSB in Classical Mechanics

- Symmetry is present in the system (i. e. the Lagrangian)
- But it is broken in the energy ground-state



Analogy: Meißner–Ochsenfeld Effect

- Below critical temperature: magn. field expulsed from superconductor
 - $\circ~$ Only small penetration depth λ of the magnetic field
- Expulsion occurs due to interaction of photons of magnetic field with Cooper pairs in the superconductor
- If one ignores 'background field' of Cooper pairs: appears as if photons have acquired a mass $M \propto \frac{1}{\lambda}$



- Concept of spontaneous symmetry breaking (SSB)
 - Applied to the Standard Model: the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (1960s)

o Introduce a background field with a specific potential that

- $\circ~$ keeps the full Lagrangian invariant under SU(2) $_L \times$ U(1) $_Y,$
- o but will make the energy ground-state not invariant under this symmetry

ightarrow Higgs mechanism

- o Solves all the discussed problems
- Introduces a fundamental scalar particle: the Higgs boson

Examples: Spontaneous Symmetry Breaking

- 1) Introducing the Higgs potential & spontaneous symmetry breaking
- 2) Breaking global gauge symmetry
- 3) Breaking local gauge invariance: the Higgs mechanism

1) Introducing the Higgs potential & spontaneous symmetry breaking

- Illustrate idea of Higgs field and spontaneous symmetry breaking
- Real scalar field $\phi(x)$ in specific potential $V(\phi)$

$$\mathcal{L} = \underbrace{\frac{1}{2} \left(\partial_{\mu} \phi(x) \right) \left(\partial^{\mu} \phi(x) \right)}_{T(\phi)} - \underbrace{\left[\frac{1}{2} \mu^{2} \phi^{2}(x) + \frac{1}{4} \lambda \phi^{4}(x) \right]}_{V(\phi)}$$

- $\circ \;\; \mathcal{L}$ symmetric under global phase transformation $\phi(x)
 ightarrow -\phi(x)$
- $\circ~\lambda >$ 0: V has absolute minimum
- $\circ~$ Two possibilities for sign of μ^2
- Investigate particle spectrum: investigate *L* around energy ground-state (vacuum expectation value or short vacuum)

Energy ground-state at minimum of Hamiltonian density $\mathcal{H} = \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi)} (\partial_0 \phi) - \mathcal{L} = \frac{1}{2} [(\partial_0 \phi)^2 + (\nabla \phi)^2] + V(\phi)$ Lowest energy if $\phi(x) = \phi_0 = \text{const}$ and $V(\phi_0)$ minimal

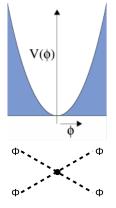
$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$$

• Case $\mu^2 > 0$:

- Minimum of $V(\phi)$ at $\phi(x) = \phi_0 = 0$: ground state
- $\circ~$ Ground state retains symmetry in $\phi \rightarrow -\phi$

$$\mathcal{L} = \underbrace{\left[\frac{1}{2}\left(\partial_{\mu}\phi\right)\left(\partial^{\mu}\phi\right) - \frac{1}{2}\mu^{2}\phi^{2}\right]}_{\text{free particle, mass }\mu} - \underbrace{\frac{1}{4}\lambda\phi^{4}}_{\text{interaction}}$$

- $\rightarrow\,$ free scalar particle with mass μ and four-point self-interaction
 - Mass = excitation against "restoring force"



on

$$\mathcal{L} = rac{1}{2} \left(\partial_{\mu} \phi
ight) \left(\partial^{\mu} \phi
ight) - \left[rac{1}{2} \mu^{2} \phi^{2} + rac{1}{4} \lambda \phi^{4}
ight]$$

• Case $\mu^2 < 0$: particle with imaginary mass?

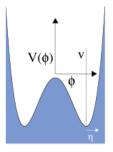
 No stable minimum of V(φ) at φ(x) = 0 (perturbation theory will not converge)

$$\circ~~{
m Ground~state(s)}~{
m located~at}~~\phi_{0}=\sqrt{-rac{\mu^{2}}{\lambda}}\equiv {\it v}$$

• Study states close to minimum:

$$\phi(x) \equiv v + \eta(x)$$
 (perturbations $\eta(x)$ around v_{i}

Kinetic term:
$$T = \frac{1}{2} [\partial_{\mu} (v + \eta) \partial^{\mu} (v + \eta)]$$
$$= \frac{1}{2} (\partial_{\mu} \eta) (\partial^{\mu} \eta) , \qquad \text{since } \partial_{\mu} v = 0$$
Potential term:
$$V = \frac{1}{2} \mu^{2} (v + \eta)^{2} + \frac{1}{4} \lambda (v + \eta)^{4}$$
$$= \lambda v^{2} \eta^{2} + \lambda v \eta^{3} + \frac{1}{4} \lambda \eta^{4} - \underbrace{\frac{1}{4} \lambda v^{4}}_{\text{const}}, \text{ since } \mu^{2} = -\lambda v^{2}$$



$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$$

• Case $\mu^2 < 0$: particle with imaginary mass?particle with imaginary mass?

• No stable minimum of $V(\phi)$ at $\phi(x) = 0$ (perturbation theory will not converge)

$$\circ~~$$
 Ground state(s) located at $\left| \phi_0 = \sqrt{-rac{\mu^2}{\lambda}} \equiv v
ight|$

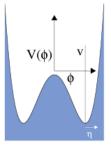
• Study states close to minimum:

$$\mathcal{L} = \left[rac{1}{2} \left(\partial_{\mu} \eta
ight) \left(\partial^{\mu} \eta
ight) - \lambda \mathbf{v}^2 \eta^2
ight] - \lambda \mathbf{v} \eta^3 - rac{1}{4} \lambda \eta^4$$

• Scalar particle η with mass $\left| \frac{1}{2} m_{\eta}^2 \equiv \lambda v^2 = -\mu^2 \Rightarrow m_{\eta} = \sqrt{2\lambda v^2} \right|$

Additional 3- and 4-point self-interactions

Symmetry in ϕ retained but ground state not symmetric in η : $\mathcal{L}(\eta) \neq \mathcal{L}(-\eta)$ \rightarrow spontaneous symmetry breaking (SSB)



Summary

- Lagrangian for scalar field ϕ without mass terms + potential $V(\phi)$ with minimum (= ground-state of system) at $\phi \equiv v \neq 0$
- $\circ~$ Particle spectrum obtained by investigating ${\cal L}$ close to the minimum: expansion of ϕ around the minimum v
- Adding *V* leads to massive scalar particle (consequence of 'restoring force' in potential) with self-interaction
 - Keeps the full Lagrangian invariant under the original symmetry
 - But makes the energy ground-state not invariant under this symmetry
- ightarrow tools needed for the Higgs mechanism

2) Breaking global gauge symmetry

• Example: complex scalar field $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)$ (NB: field for charged particles, see Exercise No. 1.2)

Higgs potential
$$V(\phi) = \mu^2 |\phi|^2 + \lambda |\phi|^4$$

- Lagrangian $\mathcal{L} = (\partial_{\mu}\phi^*)(\partial^{\mu}\phi) V(\phi)$
- $V = V(|\phi|^2) \rightarrow \text{invariant under}$ global U(1) transformations

0

$$\begin{array}{ll} \phi & \rightarrow {\rm e}^{i\alpha}\phi \\ \phi^* \rightarrow {\rm e}^{-i\alpha}\phi^* & \alpha = {\rm const} \end{array}$$

- $\mu^2 > 0$: ground state at $|\phi_0| = 0$
 - \rightarrow 2 massive scalar particles with additional self-interaction

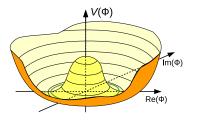
• Example: complex scalar field $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)$ (NB: field for charged particles, see Exercise No. 1.2)

Higgs potential
$$V(\phi) = \mu^2 |\phi|^2 + \lambda |\phi|^4$$

- $\circ~$ Lagrangian $\mathcal{L} = \left(\partial_\mu \phi^*
 ight) \left(\partial^\mu \phi
 ight) V(\phi)$
- $V = V(|\phi|^2)$ → invariant under global U(1) transformations

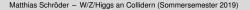
0

$$\begin{array}{ll} \phi & \rightarrow {\rm e}^{i\alpha}\phi \\ \phi^* \rightarrow {\rm e}^{-i\alpha}\phi^* & \alpha = {\rm const} \end{array}$$



• $\mu^2 < 0$: infinitely many ground states on circle with

$$|\phi| = \sqrt{\frac{1}{2}(\phi_1^2 + \phi_2^2)} = \sqrt{\frac{-\mu^2}{2\lambda}} \equiv \frac{\nu}{\sqrt{2}}$$



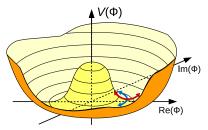
• Œ choose real ground state (U(1) symmetry!)

$$\phi_0 = \frac{v}{\sqrt{2}} = \sqrt{\frac{-\mu^2}{2\lambda}}$$

 \circ Study perturbation around ϕ_0 :

$$\phi(\mathbf{x}) = \frac{1}{\sqrt{2}} \left(\mathbf{v} + \eta(\mathbf{x}) + i\zeta(\mathbf{x}) \right)$$

 $\eta(x), \zeta(x)$: infinitesimal field amplitudes



• \mathbb{C} choose real ground state (U(1) symmetry!)

$$\phi_0 = \frac{v}{\sqrt{2}} = \sqrt{\frac{-\mu^2}{2\lambda}}$$

Study perturbation around ϕ_0 : 0

$$\phi(\mathbf{x}) = \frac{1}{\sqrt{2}} \left(\mathbf{v} + \eta(\mathbf{x}) + i\zeta(\mathbf{x}) \right)$$

finitocimal field amplitudes $\eta(\mathbf{x})$

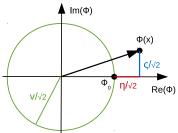
$$T = \frac{1}{2}\partial_{\mu}(\mathbf{v} + \eta - i\zeta)\partial^{\mu}(\mathbf{v} + \eta + i\zeta)$$

$$= \frac{1}{2}(\partial_{\mu}\eta)(\partial^{\mu}\eta) + \frac{1}{2}(\partial_{\mu}\zeta)(\partial^{\mu}\zeta), \quad \partial_{\mu}\mathbf{v} = \mathbf{0}$$

$$V = \mu^{2}|\phi|^{2} + \lambda|\phi|^{4}$$

$$= -\frac{1}{2}\lambda\mathbf{v}^{2}\left[(\mathbf{v} + \eta)^{2} + \zeta^{2}\right] + \frac{1}{4}\lambda\left[(\mathbf{v} + \eta)^{2} + \zeta^{2}\right]^{2}, \quad \mu^{2} = -\lambda\mathbf{v}^{2}$$

$$= +\lambda\mathbf{v}^{2}\eta^{2} + \mathcal{O}(\eta^{3}, \eta^{4}, \zeta^{4}, \eta\zeta^{2}, \eta^{2}\zeta^{2}, \ldots)$$



l

• Full Lagrangian after symmetry breaking

$$\mathcal{L} = \underbrace{\frac{1}{2} \left(\partial_{\mu} \eta \right) \left(\partial^{\mu} \eta \right) - \lambda v^{2} \eta^{2}}_{\text{massive scalar particle}} + \underbrace{\frac{1}{2} \left(\partial_{\mu} \zeta \right) \left(\partial^{\mu} \zeta \right)}_{\text{massless scalar particle}} + \underbrace{\underbrace{\text{higher-order terms}}_{\text{self interaction}}$$

• η : massive scalar particle with $m_{\eta} = \sqrt{2\lambda v^2}$

- Consequence of 'restoring force' in radial direction
- ζ : massless scalar particle "Goldstone Boson"
 - $\circ~$ No restoring force in azimuth, consequence of the global U(1) symmetry

Goldstone Theorem For each generator of a spontaneously broken¹ continuous symmetry², a massless spin-zero particle will appear

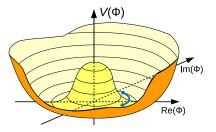
 1 a symmetry of ${\cal L}$ that is not present in the ground state

² that 'connects' the ground states

pprox example: chiral symmetry breaking in QCD (pions = pseudo Goldstone bosons)

Summary

Spontaneously breaking a continuous global symmetry leads to the appearance of a massless Goldstone boson



3) Breaking local gauge invariance: the Higgs mechanism

Higgs Mechanism: Breaking Local Symmetry

Example QED: local U(1) symmetry

 \circ Invariance under local U(1) gauge transformations

$$\psi(\mathbf{x}) \to \psi'(\mathbf{x}) = \mathsf{e}^{i\alpha(\mathbf{x})}\psi(\mathbf{x})$$

achieved by introduction of covariant derivative

 $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu}$ with $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} - \frac{1}{q}\partial_{\mu}\alpha(x)$

- Adding a complex scalar Higgs field $\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$ (also transforms under U(1)!)
- Local-U(1) gauge-invariant Lagrangian for Higgs and photon field (omitting fermion terms)

$$\mathcal{L} = \left(\mathcal{D}_{\mu} \phi
ight)^{\dagger} \left(\mathcal{D}^{\mu} \phi
ight) - \mathcal{V}(\phi) - rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u}$$

with Higgs potential $V(\phi) = \mu^2 |\phi|^2 + \lambda |\phi|^4$ with $\mu^2 < 0$

Higgs Mechanism: Breaking Local Symmetry

• Higgs field
$$\phi = rac{1}{\sqrt{2}} \left(m{v} + \eta + i \zeta
ight)$$
 close to ground state $m{v} = \sqrt{-\mu^2/\lambda}$

Kinetic and potential term of Lagrangian

$$T = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi)$$

= $\frac{1}{2} [(\partial_{\mu} - iqA_{\mu}) (v + \eta - i\zeta)] [(\partial^{\mu} + iqA^{\mu}) (v + \eta + i\zeta)]$
= $\frac{1}{2} [(\partial_{\mu}\eta) (\partial^{\mu}\eta) + (\partial_{\mu}\zeta) (\partial^{\mu}\zeta)$
+ $q^{2} ((v + \eta)^{2} + \zeta^{2}) A_{\mu}A^{\mu} + 2qvA_{\mu} (\partial^{\mu}\zeta)]$ + higher orders

$$V = +\lambda v^2 \eta^2 + higher orders$$

(see previous example)

$$\rightarrow \mathcal{L} = \underbrace{\frac{1}{2} \left(\partial_{\mu} \eta\right)^{2} - \lambda v^{2} \eta^{2}}_{\text{massive scalar boson}} + \underbrace{\frac{1}{2} \left(\partial_{\mu} \zeta\right)^{2}}_{\text{Goldstone boson}} - \underbrace{\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} q^{2} v^{2} \mathsf{A}_{\mu} \mathsf{A}^{\mu}}_{\text{photon with mass term}} \\ + \underbrace{q v \mathsf{A}_{\mu} \left(\partial^{\mu} \zeta\right)}_{\mathbf{?}} + \text{interaction } \eta / \zeta \mathsf{A}_{\mu} + \text{ self-interaction } \eta / \zeta$$

Rewriting Lagrangian in Unitary Gauge

 $\circ~$ Terms involving $\zeta~$ and A_{μ}

$$\frac{1}{2}\left(\partial_{\mu}\zeta\right)^{2} + \frac{1}{2}q^{2}\nu^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} + q\mathsf{v}\mathsf{A}_{\mu}\left(\partial^{\mu}\zeta\right) = \frac{1}{2}q^{2}\nu^{2}\left[\mathsf{A}_{\mu} + \frac{1}{q\mathsf{v}}\left(\partial^{\mu}\zeta\right)\right]^{2} = \frac{1}{2}q^{2}\nu^{2}\left(\mathsf{A}_{\mu}^{\prime}\right)^{2}$$

• Exploiting local gauge invariance

- \circ A_{μ} fixed up to a term $\frac{1}{q}\partial_{\mu}\alpha(x)$ (because $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} \frac{1}{q}\partial_{\mu}\alpha(x)$)
- Gauge transformation with $\alpha(x) = -\frac{1}{v}\zeta(x)$ (unitary gauge)

$$\begin{aligned} \mathbf{A}'_{\mu} &= \mathbf{A}_{\mu} + \frac{1}{q_{\nu}} \left(\partial_{\mu} \zeta \right) \\ \phi' &= \mathbf{e}^{i\alpha} \phi = \mathbf{e}^{-i\frac{1}{\nu}\zeta} \phi \\ &= \mathbf{e}^{-i\frac{1}{\nu}\zeta} \frac{1}{\sqrt{2}} \left(\nu + \eta + i\zeta \right) \\ &\approx \left(1 - i\frac{1}{\nu}\zeta\right) \frac{1}{\sqrt{2}} \left(\nu + \eta + i\zeta \right) \\ &\approx \frac{1}{\sqrt{2}} \left(\nu + \eta \right) \end{aligned}$$

Rewriting Lagrangian in Unitary Gauge

(for simplicity, from now on writing: $\phi' = \phi$, $\mathsf{A}'_\mu = \mathsf{A}_\mu$)

$$\mathcal{L} = (D_{\mu}\phi')^{\dagger} (D^{\mu}\phi') - V(\phi')$$

= $\frac{1}{2} \left[\left(\partial_{\mu} - iqA'_{\mu} \right) \left(v + \eta \right) \right] \left[\left(\partial^{\mu} + iqA^{'\mu} \right) \left(v + \eta \right) \right] - V(\phi')$

Rewriting Lagrangian in Unitary Gauge

(for simplicity, from now on writing: $\phi' = \phi$, $A'_{\mu} = A_{\mu}$)

$$\begin{aligned} \mathcal{L} &= \left(D_{\mu}\phi\right)^{\dagger} \left(D^{\mu}\phi\right) - V(\phi) \\ &= \frac{1}{2} \left[\left(\partial_{\mu} - iqA_{\mu}\right) \left(\nu + \eta\right) \right] \left[\left(\partial^{\mu} + iqA^{\mu}\right) \left(\nu + \eta\right) \right] - V(\phi) \\ &= \frac{1}{2} \left(\partial_{\mu}\eta\right)^{2} + \frac{1}{2}q^{2}(\nu + \eta)^{2}A_{\mu}^{2} - \underbrace{\left(\lambda\nu^{2}\eta^{2} + \lambda\nu\eta^{3} + \frac{1}{4}\lambda\eta^{4} - \frac{1}{4}\lambda\nu^{4}\right)}_{=V(\phi) \text{ (see example 1))}} \\ &= \underbrace{\frac{1}{2} \left(\partial_{\mu}\eta\right)^{2} - \lambda\nu^{2}\eta^{2}}_{\text{massive Higgs boson}} + \underbrace{\frac{1}{2}q^{2}\nu^{2}A_{\mu}^{2}}_{\text{photon mass}} + \underbrace{q^{2}\nu A_{\mu}^{2}\eta + \frac{1}{2}q^{2}A_{\mu}^{2}\eta^{2}}_{\text{Higgs relf-interaction}} - \underbrace{\lambda\nu\eta^{3} - \frac{1}{4}\lambda\eta^{4}}_{\text{Higgs self-interaction}} \end{aligned}$$

Higgs-photon interaction

photon mass

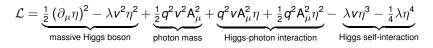
Matthias Schröder - W/Z/Higgs an Collidern (Sommersemester 2019)

Summary: The Higgs Mechanism



- Expansion of φ → φ(η, ζ) around energy ground-state of Higgs potential generates mass term m_A = qv for gauge field A_μ from coupling q²|φ|²A²_μ by covariant derivative
- **Requires non-vanishing** *v*: particular shape of potential ($\mu^2 < 0$)
- $\circ~$ From point-of-view of the gauge field, two interpretations
 - 1. Photon field interacts with external background (Higgs) field: *dynamic* mass term
 - 2. Background field unknown: interpretation as massive photon field

Summary: The Higgs Mechanism

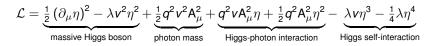


- What about the massless ζ field (Goldstone boson)?
 - Removed by gauge transformation (absorbed into A'_{μ})
 - Responsible for longitudinal component of massive vector field

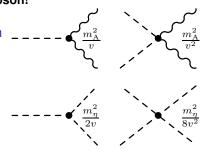
w/o ϕ -A $_{\mu}$ interaction	with ϕ -A $_{\mu}$ interaction
1 η field, $m_\eta = \sqrt{2\lambda v^2}$ 1 ζ field, $m_\zeta = 0$	1 η field, $m_\eta = \sqrt{2\lambda v^2}$
2 states of A_{μ} (helicity ±1)	3 states of A $_\mu$ (helicity \pm 1, 0)

"The gauge boson has eaten up the Goldstone boson and has become fat on it."

Summary: The Higgs Boson



- $\circ~$ Higgs mechanism predicts massive scalar particle η (Higgs boson) with self interaction
 - NB: Gauge boson mass acquired by interaction with Higgs background field, not with Higgs boson!
- Interaction of photon and Higgs boson
 - Photon-Higgs three-point interaction
 - Photon-Higgs four-point interaction
- Higgs self-interaction
 - Three-point self-coupling
 - Four-point self-coupling



This was just an Example

- Previous discussion was just an example to illustrate the Higgs mechanism: Apparently, there is no charged Higgs field with v > 0 because the **photon is massless**!
- $\circ~$ But principle can be applied to $SU(2)_L \times U(1)_Y$ symmetry of the Standard Model

Examples: Spontaneous Symmetry Breaking

- 1) Lagrangian for scalar field ϕ without mass terms
 - + Higgs potential $V(\phi)$ with ground state at $\phi_0 \equiv v \neq 0$
 - Lagrangian invariant under global phase transformation but ground state ϕ_0 is not → spontaneous symmetry breaking
 - $\circ~$ Massless $\phi \to$ massive scalar particle (consequence of 'restoring force' in potential) with self-interaction
- 2) Breaking global gauge symmetry: complex scalar field ϕ with $V(\phi)$
 - Massive scalar particle ('restoring force' in radial direction)
 - Massless scalar particle (along circle of ground states): "Goldstone boson"
- 3) Breaking local gauge symmetry: complex scalar field ϕ with $V(\phi)$
 - Mass terms of gauge boson (via covariant derivative of ϕ)
 - Massless scalar particle (Goldstone boson) removed by gauge transformation (d.o.f. appears as mass of vector boson)
 - Massive scalar particle (Higgs boson) with self-interaction and interaction with gauge boson

Programme

Date	Room	Туре	Торіс
Wed Apr 24.	KI. HS B	LE 01	1. Organisation and introduction: particle physics at colliders + W/Z/H history
Tue Apr 30.	30.23 11/12	_	no class
Wed May 01.	KI. HS B	_	no class
Tue May 07.	30.23 11/12	LE 02	2.1 Gauge theory & 2.2 The electroweak sector of the SM I
Wed May 08.	KI. HS B	LE 03, EX 01	2.3 Discovery of the W and Z bosons & EX gauge theories
Tue May 14.	30.23 11/12	LE 04	2.4 The Higgs mechanism
Wed May 15.	KI. HS B	EX 02	Exercise "SM Higgs mechanism"
Tue May 21.	30.23 11/12	_	no class
Wed May 22.	KI. HS B	LE 05	2.5 The electroweak sector of the SM II (Higgs mechanism + Yukawa couplings)
Tue May 28.	30.23 11/12	SP 01	Specialisation of 2.4 and 2.5
Wed May 29.	KI. HS B	LE 06	3.1 From theory to observables & 3.2 Reconstruction + analysis of exp. data
Tue Jun 04.	30.23 11/12	EX 03	Exercise "Trigger efficiency measurement"
Wed Jun 05.	KI. HS B	LE 07	3.3 Measurements in particle physics (part 1)
Tue Jun 11.	30.23 11/12	EX 04	Exercise on statistical methods
Wed Jun 12.	KI. HS B	LE 08	3.3 Measurements in particle physics (part 2)
Tue Jun 18.	30.23 11/12	SP 02	Specialisation "Limit setting"
Wed Jun 19.	KI. HS B	SP 03	Specialisation "Unfolding"
Tue Jun 25.	30.23 11/12	LE 09	4.1 Determination of SM parameters
Wed Jun 26.	KI. HS B	LE 10	4.2 Measurement and role of W/Z bosons at the LHC
Tue Jul 02.	30.23 11/12	EX 05	Paper seminar "Z pole measurements"
Wed Jul 03.	KI. HS B	LE 11	4.3 Processes with several W/Z bosons
Tue Jul 09.	30.23 11/12	EX 06	Paper seminar Higgs
Wed Jul 10.	KI. HS B	LE 12	5.1 Discovery and first measurements of the Higgs boson
Tue Jul 16.	30.23 11/12	EX 07	Exercise "Machine learning in physics analysis"
Wed Jul 17.	KI. HS B	LE 13	5.2 Measurement of couplings and kinematic properties
Tue Jul 23.	30.23 11/12	EX 08	Presentations: results of ML challenge
Wed Jul 24.	KI. HS B	LE 14	5.3 Search for Higgs physics beyond the SM & 5.4 Future Higgs physics

49/49