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Termine: Bisher

Date Room Type Topic

Wed Apr 24. Kl. HS B LE 01 1. Organisation and introduction: particle physics at colliders + W/Z/H history
Tue Apr 30. 30.23 11/12 — no class
Wed May 01. Kl. HS B — no class
Tue May 07. 30.23 11/12 LE 02 2.1 Gauge theory & 2.2 The electroweak sector of the SM I
Wed May 08. Kl. HS B LE 03, EX 01 2.3 Discovery of the W and Z bosons & EX gauge theories
Tue May 14. 30.23 11/12 LE 04 2.4 The Higgs mechanism
Wed May 15. Kl. HS B EX 02 Exercise “SM Higgs mechanism”
Tue May 21. 30.23 11/12 — no class
Wed May 22. Kl. HS B LE 05 2.5 The electroweak sector of the SM II (Higgs mechanism + Yukawa couplings)
Tue May 28. 30.23 11/12 SP 01 Specialisation of 2.4 and 2.5
Wed May 29. Kl. HS B LE 06 3.1 From theory to observables & 3.2 Reconstruction + analysis of exp. data
Tue Jun 04. 30.23 11/12 EX 03 Exercise “Trigger efficiency measurement”
Wed Jun 05. Kl. HS B LE 07 3.3 Measurements in particle physics (part 1)
Tue Jun 11. 30.23 11/12 EX 04 Exercise on statistical methods
Wed Jun 12. Kl. HS B LE 08 3.3 Measurements in particle physics (part 2)
Tue Jun 18. 30.23 11/12 SP 02 Specialisation “Limit setting”
Wed Jun 19. Kl. HS B SP 03 Specialisation “Unfolding”
Tue Jun 25. 30.23 11/12 LE 09 4.1 Determination of SM parameters
Wed Jun 26. Kl. HS B LE 10 4.2 Measurement and role of W/Z bosons at the LHC
Tue Jul 02. 30.23 11/12 EX 05 Paper seminar “Z pole measurements”
Wed Jul 03. Kl. HS B LE 11 4.3 Processes with several W/Z bosons
Tue Jul 09. 30.23 11/12 EX 06 Paper seminar Higgs
Wed Jul 10. Kl. HS B LE 12 5.1 Discovery and first measurements of the Higgs boson
Tue Jul 16. 30.23 11/12 EX 07 Exercise “Machine learning in physics analysis”
Wed Jul 17. Kl. HS B LE 13 5.2 Measurement of couplings and kinematic properties
Tue Jul 23. 30.23 11/12 EX 08 Presentations: results of ML challenge
Wed Jul 24. Kl. HS B LE 14 5.3 Search for Higgs physics beyond the SM & 5.4 Future Higgs physics
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Termine: NEU

Date Room Type Topic

Wed Apr 24. Kl. HS B LE 01 1. Organisation and introduction: particle physics at colliders + W/Z/H history
Tue Apr 30. 30.23 11/12 — no class
Wed May 01. Kl. HS B — no class
Tue May 07. 30.23 11/12 LE 02 2.1 Gauge theory & 2.2 The electroweak sector of the SM I
Wed May 08. Kl. HS B LE 03, EX 01 2.3 Discovery of the W and Z bosons & EX gauge theories
Tue May 14. 30.23 11/12 LE 04 2.4 The Higgs mechanism
Wed May 15. Kl. HS B EX 02 Exercise “SM Higgs mechanism”
Tue May 21. 30.23 11/12 — no class
Wed May 22. Kl. HS B LE 05 2.5 The electroweak sector of the SM II (Higgs mechanism + Yukawa couplings)
Tue May 28. 30.23 11/12 SP 01 Specialisation of 2.4 and 2.5
Wed May 29. Kl. HS B LE 06 3.1 From theory to observables & 3.2 Reconstruction + analysis of exp. data
Tue Jun 04. 30.23 11/12 EX 03 Exercise “Trigger efficiency measurement”
Wed Jun 05. Kl. HS B LE 07 3.3 Measurements in particle physics (part 1)
Tue Jun 11. 30.23 11/12 EX 04 Exercise on statistical methods
Wed Jun 12. Kl. HS B LE 08 3.3 Measurements in particle physics (part 2)
Tue Jun 18. 30.23 11/12 SP 02 Specialisation “Limit setting”
Wed Jun 19. Kl. HS B LE 09 4.1 Determination of SM parameters
Tue Jun 25. 30.23 11/12 SP 03 Specialisation “Unfolding”
Wed Jun 26. Kl. HS B LE 10 4.2 Measurement and role of W/Z bosons at the LHC
Tue Jul 02. 30.23 11/12 EX 05 Paper seminar “Z pole measurements”
Wed Jul 03. Kl. HS B LE 11 4.3 Processes with several W/Z bosons
Tue Jul 09. 30.23 11/12 EX 06 Paper seminar Higgs
Wed Jul 10. Kl. HS B LE 12 5.1 Discovery and first measurements of the Higgs boson
Tue Jul 16. 30.23 11/12 EX 07 Exercise “Machine learning in physics analysis”
Wed Jul 17. Kl. HS B LE 13 5.2 Measurement of couplings and kinematic properties
Tue Jul 23. 30.23 11/12 EX 08 Presentations: results of ML challenge
Wed Jul 24. Kl. HS B LE 14 5.3 Search for Higgs physics beyond the SM & 5.4 Future Higgs physics
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Analysis Chain

Nature
⇓

Detector: data recording
calibrated digitised data
online selection (trigger)

?↔ Theory
⇓

MC simulation
physics process
detector signals

⇓
Physics object reconstruction

Event selection

⇓
Statistical analysis: results

Comparison with theory
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3. From Theory to Experiment (and Back)

3.1 From theory to observables
◦ Cross-section calculation: basic picture
◦ Fermion propagator and perturbation theory
◦ Scattering matrix and Feynman rules

3.2 Reconstruction of experimental data
◦ Reminder: accelerators and particle detectors
◦ Trigger
◦ Reconstruction of physics objects

3.3 Measurements in particle physics
◦ Parameter estimation
◦ Hypothesis testing
◦ Search for new physics (exclusion limits)

3.4 Monte Carlo simulation
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3.3 Measurements in particle physics

Matthias Schröder – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 8 6/70



Statistics and Stochastic (Probability)
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Statistics and Particle Physics

Experiment

◦ All measurements are derived
from counting experiments

◦ Millions of billions of particle
collision events each year

◦ Each event independent from
and (to many extents) identical to
all others

Theory

◦ Nature intrinsically stochastic

◦ QM wave functions interpreted as
probability density functions

◦ Event-by-event simulation using
Monte Carlo methods

Particle physics experiments perfect application of statistics
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Literature

◦ R. J. Barlow, “Statistics: A Guide to the Use of Statistical Methods in
the Physical Sciences”, The Manchester Physics Series highly
recommended

◦ G. Cowan, “Statistical Data Analysis”, Oxford Science Publications

◦ Review “Statistics”, Chin. Phys. C, 40, 100001 (2016) very good
review

◦ The ATLAS and CMS Collaborations, “Procedure for the LHC Higgs
boson search combination in Summer 2011”, CMS-NOTE-2011-005,
ATL-PHYS-PUB-2011-11 expert document
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Particle Data Group, http://pdg.lbl.gov/2017/reviews/rpp2016-rev-statistics.pdf
https://cds.cern.ch/record/1379837
https://cds.cern.ch/record/1379837
https://cds.cern.ch/record/1379837


Likelihood
◦ Likelihood L(nobs; k) =

∏
i P(nobs,i ; k) quantifies compatibility

of the observed data with a given model
◦ i : independent counting experiments, e. g. bins of a histogram
◦ nobs = {nobs, i}: number of observed events in i , distributed as P
◦ k = {kj}: model parameters in P
→ function of model parameters and observed data

◦ Example
◦ Data: observed events in 20 bins
◦ Model: known SM process

(background)

L(nobs; b) =
∏

i Poisson(nobs,i , b)
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Likelihood
◦ Likelihood L(nobs; k) =

∏
i P(nobs,i ; k) quantifies compatibility

of the observed data with a given model
◦ i : independent counting experiments, e. g. bins of a histogram
◦ nobs = {nobs, i}: number of observed events in i , distributed as P
◦ k = {kj}: model parameters in P
→ function of model parameters and observed data

◦ Example
◦ Data: observed events in 20 bins
◦ Model: known SM process

(background)

L(nobs; b) =
∏

i
(npred,i )

nobs,i

nobs,i !
e−npred,i

npred,i (b) = b · e−αxi︸ ︷︷ ︸
background
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Likelihood
◦ Likelihood L(nobs; k) =

∏
i P(nobs,i ; k) quantifies compatibility

of the observed data with a given model
◦ i : independent counting experiments, e. g. bins of a histogram
◦ nobs = {nobs, i}: number of observed events in i , distributed as P
◦ k = {kj}: model parameters in P
→ function of model parameters and observed data

◦ Example
◦ Data: observed events in 20 bins
◦ Model: known SM process

(background) + signal

L(nobs; b, s) =
∏

i
(npred,i )

nobs,i

nobs,i !
e−npred,i

npred,i (b, s) = b · e−αxi︸ ︷︷ ︸
background

+ s · e−(m−xi )
2︸ ︷︷ ︸

signal
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Likelihood
◦ Likelihood L(nobs; k) =

∏
i P(nobs,i ; k) quantifies compatibility

of the observed data with a given model
◦ i : independent counting experiments, e. g. bins of a histogram
◦ nobs = {nobs, i}: number of observed events in i , distributed as P
◦ k = {kj}: model parameters in P
→ function of model parameters and observed data

◦ L is not the probability of a model!
◦ Also not the probability of observing

the data given the model

◦ L is the product of pdfs of the model,
used to quantify the compatibility of
the data with the model
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3.3.1. Parameter estimation

Matthias Schröder – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 8 14/70



Parameter Estimation

◦ Which parameters of a given model describe best the data?

◦ Maximum likelihood (ML) method (“maximum likelihood fit”):
Which parameter values lead to the maximum of L?

→ Maximum likelihood estimators k̂ of the true values

max [L(nobs, k)] = L(nobs, k̂)

◦ Technically: minimisation of negative log-likelihood

NLL(nobs, k) = −2 lnL

◦ Logarithm is monotonic: retains minimum
◦ Turns product of pdfs into sum: easier to minimise

◦ Arbitrarily complex problem, vast amount of techniques and literature
◦ e. g. ATLAS+CMS Higgs couplings combination: ≈ 4250 parameters
◦ e. g. CMS tracker-alignment problem: O(106) parameters
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Maximum-Likelihood Method

◦ Example: which signal-strength modifier µ describes best the data?
◦ Common in Higgs physics: µ = (σ · B)/(σSM · BSM)

npred,i (µ) = b · e−αxi︸ ︷︷ ︸
background

+µ · sSM · e−(m−xi )
2︸ ︷︷ ︸

signal

L(nobs;µ) =
∏

i

(npred,i )
nobs,i

nobs,i !
e−npred,i
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→ µ̂: maximises L(nobs;µ)
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Maximum-Likelihood Method

◦ Example: which signal-strength modifier µ describes best the data?
◦ Common in Higgs physics: µ = (σ · B)/(σSM · BSM)

npred,i (µ) = b · e−αxi︸ ︷︷ ︸
background

+µ · sSM · e−(m−xi )
2︸ ︷︷ ︸

signal

L(nobs;µ) =
∏

i

(npred,i )
nobs,i

nobs,i !
e−npred,i
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→ µ̂: minimises −2 lnL(nobs;µ)
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Maximum-Likelihood Method

◦ Example: which signal-strength modifier µ describes best the data?
◦ Common in Higgs physics: µ = (σ · B)/(σSM · BSM)

◦ Important case: Gaussian
distributed measurements
◦ e. g. approximation of Poisson for

large number of events
(in practice > 10)

◦ NLL becomes

−2 lnL =
∑

i

(nobs,i−npred,i)
2

npred,i
+ const

χ2 ≡
∑

i

(nobs,i−npred,i)
2

npred,i
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Maximum-Likelihood Method

◦ Example: which signal-strength modifier µ describes best the data?
◦ Common in Higgs physics: µ = (σ · B)/(σSM · BSM)

ML method obtains parameter
values most compatible with the

data for a given model — a ML fit
does not find the correct model!

ML estimator is function of the observed data
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Maximum-Likelihood Method

◦ Uncertainty on µ̂ from scan of NLL = −2 lnL around minimum

◦ Uncertainty due to fluctuations of data: “statistical uncertainty”

◦ For Gaussian pdfs: parabola, standard deviation σ follows from

∆(NLL) = NLL(µ̂± r · σ)− NLL(µ̂) = r

µ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(-
2l

nL
)

∆

0.0

0.5

1.0

1.5

2.0

2.5

3.0
◦ Other cases can often be

approximated by Gaussian case
(and true for n→∞)
◦ For strongly asymmetric NLL
◦ Often asymmetric intervals

quoted
◦ Better: variable transformation

such that NLL symmetric
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Uncertainty vs. Error

◦ Uncertainty reflects degree of precision with which one can deduce a
parameter value from the data if one does everything correctly
◦ Statistical uncertainties stem from the inherent stochastic nature of the

data and finite number of observed events (can not be eliminated, only
minimised)

◦ Systematic uncertainties stem e. g. from the limited knowledge of the
precision of the detector or approximations in theory calculations

◦ Uncertainties can (in principle) be quantified

◦ In contrast, errors are mistakes
◦ e. g. a lose cable or a wrong method
◦ Errors can (and should) be eliminated

◦ In context of statistical data analysis, we mean uncertainties
◦ NB: “Error bars” denote uncertainties!
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Incorporation of Systematic Uncertainties
◦ Often, background (and signal) models subject to systematic

uncertainties
◦ Some (theory or experimental) parameters not exactly known,

e. g. cross section or trigger efficiency

◦ For example, background normalisation b not precisely known but
with some uncertainty
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Incorporation of Systematic Uncertainties
◦ Often, background (and signal) models subject to systematic

uncertainties
◦ Some (theory or experimental) parameters not exactly known,

e. g. cross section or trigger efficiency

◦ For example, background normalisation b not precisely known but
with some uncertainty→ affects determination of signal
◦ Generally leads to larger uncertainty on µ̂
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Incorporation of Systematic Uncertainties
◦ Often, background (and signal) models subject to systematic

uncertainties
◦ Some (theory or experimental) parameters not exactly known,

e. g. cross section or trigger efficiency

◦ For example, background normalisation b not precisely known but
with some uncertainty→ affects determination of signal
◦ Generally leads to larger uncertainty on µ̂
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Incorporation of Systematic Uncertainties
◦ Incorporated into likelihood via nuisance parameters θ

L(nobs;µ, θ) =
∏

i P(nobs i ;µ, θ) · Pθ̃(θ̃|θ)

◦ Background normalisation becomes function of θ: b → b(θ)

◦ θ: assumed true value, parameter of the fit
◦ θ̃: best knowledge, e. g. estimate from independent measurement,

distributed as Pθ̃(θ̃|θ)
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Incorporation of Systematic Uncertainties
◦ Incorporated into likelihood via nuisance parameters θ

L(nobs;µ, θ) =
∏

i P(nobs i ;µ, θ) · Pθ̃(θ̃|θ)

◦ Background normalisation becomes function of θ: b → b(θ)

◦ ML fit can adjust θ to a value different than θ̃ to achieve better
description of data but at the cost of reducing value of Pθ̃(θ̃|θ)
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Incorporation of Systematic Uncertainties
◦ Incorporated into likelihood via nuisance parameters θ

L(nobs;µ, θ) =
∏

i P(nobs i ;µ, θ) · Pθ̃(θ̃|θ)

◦ Nomenclature
◦ µ: parameter of interest (POI)
◦ θ: nuisance parameter (NP)

generally, (anti-)correlated with µ: increased uncertainty on µ̂
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Incorporation of Systematic Uncertainties
◦ Incorporated into likelihood via nuisance parameters θ

L(nobs;µ, θ) =
∏

i P(nobs i ;µ, θ) · Pθ̃(θ̃|θ)

◦ Nomenclature
◦ µ: parameter of interest (POI)
◦ θ: nuisance parameter (NP)

generally, (anti-)correlated with µ: smaller sensitivity
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Incorporation of Systematic Uncertainties
◦ Incorporated into likelihood via nuisance parameters θ

L(nobs;µ, θ) =
∏

i P(nobs i ;µ, θ) · Pθ̃(θ̃|θ)

◦ Nomenclature
◦ µ: parameter of interest (POI)
◦ θ: nuisance parameter (NP)

◦ L function of µ and θ, but only interested in µ
→ can rewrite θ as function of µ

Profile likelihood Lp(µ) ≡ L(µ, θ̂(µ))

θ̂(µ) maximises L for given µ (“profiled values” of θ)

◦ Lp in practice computationally advantageous
◦ e. g. need only to consider µ instead of full parameter space (µ, θ) when

computing uncertainties
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Typical Choices for Pθ(θ|θ̃)

(truncated) Gaussian
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Sidebands and Control Regions

sidebands

Summer Semester 2017Particle Physics II – Higgs Physics (4022181) – Lecture #8

Sidebands: Toy Example

Traditional sideband 
approach for peaking signals: 

Measure number of 
background events in 
sidebands, usually above and 
below signal region 
Extrapolate to number of 
events in signal region 
assuming background model 
= functional form of background 
distribution signal (e.g. linear or 
exponential) 

Alternative: combined (maximum-likelihood) fit of signal model 
(here: Gaussian) and background model (here: linear) to data 
(Open question: uncertainty/bias due to choice of signal/background models)
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Profile-Likehood Fits

So far: a-priori expectation of background normalization of shape 
in signal region from MC simulation or data-driven method 

Signal extraction in many Higgs analyses: profile-likelihood fit 
Simultaneous fit of signal and control 
region(s) → background determined in 
control region(s) constrains 
background in signal region 
Systematic uncertainties included as 
nuisance parameters  
(e.g. QCD background normalization and 
shape from ABCD method as nominal 
value, uncertainty from closure test) 
Assumptions: fit model adequate, 
correlations between signal and control 
regions well modeled
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Profile-Likehood Fits

So far: a-priori expectation of background normalization of shape 
in signal region from MC simulation or data-driven method 

Signal extraction in many Higgs analyses: profile-likelihood fit 
Simultaneous fit of signal and control 
region(s) → background determined in 
control region(s) constrains 
background in signal region 
Systematic uncertainties included as 
nuisance parameters  
(e.g. QCD background normalization and 
shape from ABCD method as nominal 
value, uncertainty from closure test) 
Assumptions: fit model adequate, 
correlations between signal and control 
regions well modeled
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◦ Signal-depleted sideband/control region
◦ Determine rate of background process
◦ Determine shape of background processes
◦ Constrain uncertainties on background prediction

◦ Can be incorporated into likelihood fit via nuisance parameters:
simultaneous determination of POI and background parameters
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Confidence Intervals

◦ Experiment to determine value of some parameter x measures xobs

◦ e. g. from maximum likelihood estimate, tag-and-probe measurement

◦ Want to quote “uncertainty”: interval that reflects statistical precision of
measurement
◦ Can be estimate of standard deviation from likelihood fit
◦ More generally, in particular if non-Gaussian P : confidence interval

◦ Confidence interval covers on average the true value with a given
probability
◦ e. g. 90 % confidence level : if experiment repeated many time, the interval

covers the true value in 90 % of the cases
◦ Careful: this is not the probability of the true value to lie within the interval

(there is only one true value either within or not)!
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Confidence Intervals
Neyman construction
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Matthias Schröder – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 8 35/70



Confidence Intervals
Neyman construction

x
obs

measurement

m
od

el
 p

a
ra

m
e

te
r

x
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Confidence Intervals
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Confidence Intervals
Neyman construction
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Confidence interval is [xmin, xmax]
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Application: Uncertainty of Efficiency
(see Exercises No. 3)

◦ Efficiency: numberator = subset of denominator
→ fully correlated, don’t use Gaussian error propagation!
◦ Good description: binomial uncertainties
◦ Given true efficiency ε
◦ Draw from a population of N events: expect 〈n〉 = εN events on average
◦ Variance of n

V [n] ≡ σ2
n = Nε(1− ε)

◦ But don’t know true efficiency: replace with estimator ε̂ from measurement
(random sample)

ε→ ε̂ =
n
N
, σ̂2

n = N ε̂(1− ε̂)

◦ Uncertainty on efficiency estimator

σ2
ε̂ =

1
N2 σ̂

2
n =

ε̂(1− ε̂)
N
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Application: Uncertainty of Efficiency
(see Exercises No. 3)

◦ Problem with binomial uncertainty from measured efficiency:
variance→ 0 for ε̂→ 0, 1

◦ Solution: construction of proper 68 % confidence level intervals

Summer Semester 2017Particle Physics II – Higgs Physics (4022181) – Lecture #5

Uncertainty of Efficiencies

Problem with binomial uncertainty: variance → 0 for ε → 0, 1 

Way out: construct proper 68% confidence level intervals using 
Neyman construction 

Current PDG standard: 
Clopper-Pearson intervals 

Construction used connection 
between beta distribution and 
binomial distribution 
Implemented in ROOT method 
TGraphAsymmErrors::Divide() 
Problem: tends to over-cover 
frequentist confidence interval
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3.3.2. Hypothesis testing
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p Value
◦ How well is the data described by my hypothesis (model)?

◦ For example, how likely that observed peak in data just upward
fluctuation of the background, i. e. no Higgs boson present?

◦ Assume simple counting experiment
◦ b: expected number of background

events (=model)
◦ nobs: number of observed events

◦ “p value”: probability of upward
fluctuation as large as or larger than
observed in data

p ≡ P(n ≥ nobs|b) =
∫∞

nobs
dnP(n|b)

n

b obsn

pd
f

0.00

0.02

0.04

0.06

0.08

0.10

0.12

p value is not the probability of a hypothesis
p quantifies level of (dis-)agreement between model and data:
→ judgement call whether to keep model or reject it
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Test Statistic

◦ Typically problems not as simple as a single measured quantity
◦ Multiple channels/measurements, e. g. binned distribution
◦ Prediction depends on several parameters, e. g. POI, nuisance params.

◦ Formally: use appropriate test statistic t : RD → R
◦ In general any function that combines relevant information from an

experiment, e. g. number of observed events per bin, into one single
number reflecting the agreement between data and hypothesis

◦ Likelihood is example for test statistic

◦ t can be used to compute p value for
complex models

p =
∫∞

tobs
P(t) dt

mass
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Test Statistic

◦ Typically problems not as simple as a single measured quantity
◦ Multiple channels/measurements, e. g. binned distribution
◦ Prediction depends on several parameters, e. g. POI, nuisance params.

◦ Formally: use appropriate test statistic t : RD → R
◦ In general any function that combines relevant information from an

experiment, e. g. number of observed events per bin, into one single
number reflecting the agreement between data and hypothesis

◦ Likelihood is example for test statistic

◦ t can be used to compute p value for
complex models

p =
∫∞

tobs
P(t) dt

◦ Requires pdf P(t) of the test statistic t :
typically from simulation (toy data)

t
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pd
f
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pdf(t|b model)
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Test Statistic

◦ Typically problems not as simple as a single measured quantity
◦ Multiple channels/measurements, e. g. binned distribution
◦ Prediction depends on several parameters, e. g. POI, nuisance params.

◦ Formally: use appropriate test statistic t : RD → R
◦ In general any function that combines relevant information from an

experiment, e. g. number of observed events per bin, into one single
number reflecting the agreement between data and hypothesis

◦ Likelihood is example for test statistic

◦ t can be used to compute p value for
complex models

p =
∫∞

tobs
P(t) dt

◦ Requires pdf P(t) of the test statistic t :
typically from simulation (toy data)

t

0 1 2 3 4 5 6 7 8

pd
f

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

observed t
pdf(t|s+b model)

 background like→       ←signal like 
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Significance
◦ Often, p value converted into equivalent significance Z :

upward fluctuation from 0 by Z of normal-distributed variable
corresponding to same p value
◦ Corresponds to Z standard deviations σ of the Gaussian distribution

Z = Φ−1(1− p) Φ: cumulative (=quantile) function of normal distribution
0
.0

0
.1

0
.2

0
.3

0
.4

−2σ −1σ 1σ−3σ 3σ0 2σ

34.1% 34.1%

13.6%
2.1%

13.6% 0.1%0.1%
2.1%

wikipedia

◦ Convention to classify effects by significance
◦ 3σ: evidence for signal (0.3% chance of background fluctuation)
◦ 5σ: discovery of signal (0.00006% chance of background fluctuation)
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Distinguishing Hypotheses

◦ Cannot determine whether a hypothesis is true (frequentist)

◦ But can define rules how to reject hypothesis in favour of an alternative
hypothesis

◦ Can determine probability of wrong choice: how often wrong choice is
made would the experiment be repeated very often
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Distinguishing Hypotheses

◦ Classification problem: how to interpret outcome of an experiment?
◦ Want to distinguish between two alternative hypotheses, e. g.
◦ H0: there are only background events, e. g. no Higgs boson
◦ H1: there is a signal, e. g. a Higgs boson, contribution to the data

◦ Define test statistic t , e. g. L
◦ Construct pdf P(t|Hi) of t under

H0 and H1

◦ In reality often from simulation

◦ How compatible is tobs with Hi?

→ Set a critical value tc and reject H0

in favour of H1 if tobs < tc

t
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Distinguishing Hypotheses

◦ Classification problem: how to interpret outcome of an experiment?
◦ Want to distinguish between two alternative hypotheses, e. g.
◦ H0: there are only background events, e. g. no Higgs boson
◦ H1: there is a signal, e. g. a Higgs boson, contribution to the data

◦ Types of errors
I: reject H0 although it is true
II: accept H0 although H1 is true

I: P(t < tc |H0) =
∫ tc
−∞ dt P(t|H0) ≡ α

II: P(t > tc |H1) =
∫∞

tc
dt P(t|H1) ≡ β

α : significance of test

1− β : power of test

t
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Matthias Schröder – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 8 54/70



Distinguishing Hypotheses

◦ Classification problem: how to interpret outcome of an experiment?
◦ Want to distinguish between two alternative hypotheses, e. g.
◦ H0: there are only background events, e. g. no Higgs boson
◦ H1: there is a signal, e. g. a Higgs boson, contribution to the data

◦ Types of errors
I: reject H0 although it is true
II: accept H0 although H1 is true

I: P(t < tc |H0) =
∫ tc
−∞ dt P(t|H0) ≡ α

II: P(t > tc |H1) =
∫∞

tc
dt P(t|H1) ≡ β

By choice of tc (choice of α): association
to one or the other hypothesis performed

“at the confidence level α”
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Difference Between α and p Value?

◦ In one sense, no difference
◦ Both are

∫∞
x dx ′ P(x ′)

◦ But conceptually very different
◦ α is computed before one sees the data: predefined property of the test
◦ p depends on the data (property of the data) and is a random variable
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Neyman-Pearson Lemma

◦ When performing a test between two hypotheses (models) H0 and H1,
the likelihood ratio test, which rejects H0 in favour of H1 if

Q =
LH1

LH0

> Qc with P(Q > Qc|H0) = α

is the most powerful test at a significance level α

◦ The test statistic Q is called likelihood ratio

◦ For a number of reasons, usually

q = −2 ln Q
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Test Statistic at the LHC

◦ Used test statistic in particle-physics experiments evolved with time
◦ Hypothesis test example
◦ H0: background-only hypothesis, e. g. SM without Higgs boson
◦ H1: Higgs boson with fixed mass and signal strength µ present in data

◦ At the LHC commonly: profile likelihood ratio test statistics

qµ = −2 ln
L(nobs;µ, θ̂(µ))

L(nobs; µ̂, θ̂)

◦ Nuisance parameters are profiled in nominator
◦ Global maximum of L under (µ, θ) as denominator with 0 ≤ µ̂ ≤ µ
◦ Allows usage of certain approximations when computing P(qµ|Hi )

(“asymptotic formulae” based on Wilks and Wald theorem1)

1
G. Cowan “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C71:1554 (2011)
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3.3.3. Search for new physics (exclusion limits)
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Excluding Parameters

◦ Assume measurement with a given sensitivity: no signal observed

◦ How much signal can “hide” in the bkg. fluctuations (+uncertainty)?

◦ How large could a signal be at most?
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Excluding Parameters

◦ No signal observed: how large could a signal be at most?

◦ Formally: test statistic q, depending on signal-strength modifier µ

q(µ) = −2 ln
LH1 (µ)

LH0

What is largest signal µ ≡ µ1−α
for which H1 would be rejected at

significance level α?

α =

∫ ∞
qobs

dq P(q(µ1−α)|H1) ≡ CLs+b

i. e. for µ1−α: qobs = qc
q
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Excluding Parameters

◦ No signal observed: how large could a signal be at most?

◦ Formally: test statistic q, depending on signal-strength modifier µ

q(µ) = −2 ln
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LH0
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Excluding Parameters

◦ No signal observed: how large could a signal be at most?

◦ Formally: test statistic q, depending on signal-strength modifier µ

q(µ) = −2 ln
LH1 (µ)

LH0

What is largest signal µ ≡ µ1−α
for which H1 would be rejected at

significance level α?

α =
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Excluding Parameters

◦ No signal observed: how large could a signal be at most?

◦ Formally: test statistic q, depending on signal-strength modifier µ

q(µ) = −2 ln
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Excluding Parameters

◦ No signal observed: how large could a signal be at most?

◦ Formally: test statistic q, depending on signal-strength modifier µ

q(µ) = −2 ln
LH1 (µ)

LH0

What is largest signal µ ≡ µ1−α
for which H1 would be rejected at

significance level α?

α =

∫ ∞
qobs

dq P(q(µ1−α)|H1) ≡ CLs+b
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Excluding Parameters

◦ No signal observed: how large could a signal be at most?

◦ Formally: test statistic q, depending on signal-strength modifier µ

q(µ) = −2 ln
LH1 (µ)

LH0

What is largest signal µ ≡ µ1−α
for which H1 would be rejected at

significance level α?

α =

∫ ∞
qobs

dq P(q(µ1−α)|H1) ≡ CLs+b

i. e. for µ1−α: qobs = qc
q
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µ1−α is called upper limit on µ at confidence level C.L. = 1− α
In particle physics usually 95 % C.L. limit
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(Observed) Upper Limit: Interpretation
◦ “Maximal signal that we would still reject”
◦ 95 % C.L. upper limit on µ: largest value of µ that would still be

rejected in a test with significance 5% given the data
◦ NB: limit is a function of the data (depends on qobs)!

◦ µ for which CLs+b = 0.05:

0.05 =
∫∞

qobs
dq P(q(µ95)|H1)

◦ Upper limit covers true value
(µtrue < µ95) with probability
C.L. = 95%
◦ If the experiment is repeated

many times, µ95 would be larger
than µtrue in 95 % of the cases

◦ Still 5 % chance of wrong
exclusion, i. e. that µtrue > µ95

q
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Expected Limit

◦ Estimate what observed limit would look like in case of no signal
◦ Obtained e. g. from toy dataset
◦ Sample toy data for q under background-only hypothesis from P(q|H0)
◦ Treat each as observation and compute µ95 limit
◦ Obtain quantiles from distribution of all µ95

◦ Expected limit = median of µ95 distribution
◦ 16 and 84% quantiles: 68% confidence interval
◦ 2.5 and 97.5% quantiles: 95% confidence interval
→ “Brazilian band” plots

only pseudo-data and calculate CLs and µ95%CL for each of them, as if they were real data
(Fig. 2 (left)). Then, one can build a cumulative probability distribution of results by
starting integration from the side corresponding to low event yields (Fig. 2 (right)). The
point at which the cumulative probability distribution crosses the quantile of 50% is the
median expected value. The ±1σ (68%) band is defined by the crossings of the 16% and
84% quantiles. Crossings at 2.5% and 97.5% define the ±2σ (95%) band.

Despite being logically very straightforward, this prescription is not too practical from
the computational point of view due to the high CPU demand. If N is the number of
“toys” being generated in the internal loop of calculations of the desired quantity and
M is a number of pseudo-data sets for which such computation is performed, then the
number of times the likelihoods would have to be evaluated in such a linear procedure is
N ·M .

To save on the CPU consumption, we use the fact that the distributions of the test
statistic for a given µ do not depend on the pseudo-data, so they can be computed only
once. The computation of the p-values for each pseudo-data then requires the test statistic
to be evaluated only once for each trial value of µ, and the total number of evaluations is
proportional to N +M instead of N ·M .
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Figure 2: (Left) An example of differential distribution of possible limits on µ for the
background-only hypothesis (s = 1, b = 1, no systematic errors). (Right) Cumulative
probability distribution of the plot on the left with 2.5%, 16%, 50%, 84%, and 97.5%
quantiles (horizontal lines) defining the median expected limit as well as the ±1σ (68%)
and ±2σ (95%) bands for the expected value of µ for the background-only hypothesis.

3 Quantifying an excess of events for summer 2011

3.1 Fixed Higgs boson mass mH

The presence of the signal is quantified by the background-only p-value, i.e. the probability
for the background to fluctuate and give an excess of events as large or larger than the
observed one. As before, this requires defining a test statistic and the construction of its
sampling distribution. For a given Higgs boson mass hypothesis mH , the test statistic
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only pseudo-data and calculate CLs and µ95%CL for each of them, as if they were real data
(Fig. 2 (left)). Then, one can build a cumulative probability distribution of results by
starting integration from the side corresponding to low event yields (Fig. 2 (right)). The
point at which the cumulative probability distribution crosses the quantile of 50% is the
median expected value. The ±1σ (68%) band is defined by the crossings of the 16% and
84% quantiles. Crossings at 2.5% and 97.5% define the ±2σ (95%) band.

Despite being logically very straightforward, this prescription is not too practical from
the computational point of view due to the high CPU demand. If N is the number of
“toys” being generated in the internal loop of calculations of the desired quantity and
M is a number of pseudo-data sets for which such computation is performed, then the
number of times the likelihoods would have to be evaluated in such a linear procedure is
N ·M .

To save on the CPU consumption, we use the fact that the distributions of the test
statistic for a given µ do not depend on the pseudo-data, so they can be computed only
once. The computation of the p-values for each pseudo-data then requires the test statistic
to be evaluated only once for each trial value of µ, and the total number of evaluations is
proportional to N +M instead of N ·M .
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Figure 2: (Left) An example of differential distribution of possible limits on µ for the
background-only hypothesis (s = 1, b = 1, no systematic errors). (Right) Cumulative
probability distribution of the plot on the left with 2.5%, 16%, 50%, 84%, and 97.5%
quantiles (horizontal lines) defining the median expected limit as well as the ±1σ (68%)
and ±2σ (95%) bands for the expected value of µ for the background-only hypothesis.

3 Quantifying an excess of events for summer 2011

3.1 Fixed Higgs boson mass mH

The presence of the signal is quantified by the background-only p-value, i.e. the probability
for the background to fluctuate and give an excess of events as large or larger than the
observed one. As before, this requires defining a test statistic and the construction of its
sampling distribution. For a given Higgs boson mass hypothesis mH , the test statistic
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Before the Higgs-Boson Discovery
◦ Combination of Higgs-boson search results by CMS [Phys.Lett. B710 (2012) 26]
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◦ Tested hypotheses
◦ H0: no Higgs boson
◦ H1: SM Higgs boson

◦ Test statistic q evaluated for SM
Higgs boson of different mass
(µ = 1 in each case)

◦ Excluding a SM Higgs boson at 95% CL with masses
◦ mH > 118 GeV expected (from toy data under H0)
◦ mH > 127 GeV observed (from real data)
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Before the Higgs-Boson Discovery
◦ Combination of Higgs-boson search results by CMS [Phys.Lett. B710 (2012) 26]
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◦ Tested hypotheses
◦ H0: no Higgs boson
◦ H1: SM Higgs boson

◦ Test statistic q evaluated for SM
Higgs boson of different mass
(µ = 1 in each case)

◦ Observed exclusion weaker than expected (smaller mass range)

◦ Around mH = 125 GeV, qobs differs significantly from expectation:
indication that H0 is wrong!
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