Higgs boson discovery & properties

Roger Wolf 17. July 2019

Priv. Doz. Dr. Roger Wolf http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

- 1962: Spontaneous symmetry breaking in super conductivity.
- **1964: Higgs mechanism** in particle physics.
- 1967: Formulation of electroweak SM.
- 1971: Proof of renormalizability.

1974-77: Discovery of *charm*, τ and *bottom*.

1983: Discovery of W and Z.

1995: Discovery of top.

2000: Discovery of ν_{τ} .

2012: Discovery of Higgs boson.

2013: Nobel prize to Peter Higgs and Francois Englert.

Historical context

- 1961: First formulation of a unification of electromagnetic and weak force.
- 1962: Spontaneous symmetry breaking in super conductivity.
- **1964: Higgs mechanism** in particle physics.
- 1967: Formulation of electroweak SM.

1971: Proof of renormalizability.

1974-77: Discovery of *charm*, τ and *bottom*.

1983: Discovery of W and Z.

1995: Discovery of top.

2000: Discovery of ν_{τ} .

2012: Discovery of Higgs boson.

2013: Nobel prize to Peter Higgs and Francois Englert.

Historical context

- 1961: First formulation of a unification of electromagnetic and weak force.
- 1962: Spontaneous symmetry breaking in super conductivity.
- **1964: Higgs mechanism** in particle physics.
- 1967: Formulation of electroweak SM.
- 1971: Proof of renormalizability.

1974-77: Discovery of *charm*, τ and *bottom*.

1983: Discovery of W and Z.

1995: Discovery of top.

2000: Discovery of $\nu_{ au}$.

2012: Discovery of Higgs boson.

2013: Nobel prize to Peter Higgs and Francois Englert.

^{3/36} Direct Higgs boson searches today ...

Higgs Boson...

Google-Suche

Auf gut Glück!

Google.de angeboten auf: English

^{4/36} Direct Higgs boson searches @ LEP

• Main production mode in e^+e^- :

- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

^{4/36} Direct Higgs boson searches @ LEP

• Main production mode in e^+e^- :

- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

Integrated luminosities in pb^{-1}								
	ALEPH	DELPHI	L3	OPAL	LEP			
$\sqrt{s} \ge 189 \text{ GeV}$	629	608	627	596	2461			
$\sqrt{s} \ge 206 \text{ GeV}$	130	138	139	129	536			

What was the maximal reach on m_H at LEP?

161

1996

172

1997

183

 $E_{\rm CM}$ nominal [GeV]

Year

^{4/36} Direct Higgs boson searches @ LEP

• Main production mode in e^+e^- :

- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

Integrated luminosities in pb^{-1}								
	ALEPH	DELPHI	L3	OPAL	LEP			
$\sqrt{s} \ge 189 \text{ GeV}$	629	608	627	596	2461			
$\sqrt{s} \ge 206 \text{ GeV}$	130	138	139	129	536			

What was the maximal reach on m_H at LEP? $m_H \approx 117 \text{ GeV}$

1997

183

1996

161

172

 $E_{\rm CM}$ nominal [GeV]

Year

LEP result (2000)

The challenge

Intermezzo: evolution of the $H \to \tau \tau$ signal

July 2012:

Spin & CP? Single particle? Decay width? Mass? Coupling structure?

THE (X) FILES

13/36 Spin & CP

 0^+ $e^-\#$

 0^{-}

q**q**→X

any

any

any qq→X

any

 $gg \rightarrow X q\overline{q} \rightarrow X$ any $gg \rightarrow X gg \rightarrow X gg \rightarrow X$

Priv. Doz. Dr. Roger Wolf http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

 $\mathcal{A}^{+} \mathcal{U} \neq \mathcal{U}^{Z} \qquad \mathcal{J}^{P} = 0^{+} \qquad \mathcal{U}^{-} \mathcal{V}$

 $+\sqrt{\frac{1}{3}}|1,-1\rangle\otimes|1,1\rangle$

m₄₁ (GeV)

 $\Gamma_{\rm H}$ (MeV)

Priv. Doz. Dr. Roger Wolf http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

17/36 Mass

PHYSICAL REVIEW LETTERS.

ATLAS+CMS LHC run-1 combination:

 $125.06 \pm 0.21 \,({\rm stat.}) \pm 0.19 \,({\rm syst.}) \,{\rm GeV}$

Coupling structure

18/36

ATLAS+CMS LHC run-1 combination:

- Event categories 574•
- 4268Nuisance parameters: •

 $\mu = \sigma / \sigma_{SM} = 1.09 \pm 0.11$

CMS-PAS-HIG-15-002

Considered production modes:

The κ model

- Dress each coupling at tree-level with a scaling factor κ_i .
- Loops are resolved according to SM or treated as effective couplings.
- Comprise κ_i 's to obtain simplified models.

 $\approx (1.26\kappa_W - 0.26\kappa_t)^2$

	Production	Loops	Interference	Multip	licative factor
.5	$\sigma(ggF)$	\checkmark	b-t	$\kappa_{\rm g}^2 \sim$	$1.06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b}$
2	$\sigma(VBF)$	-	-	~	$0.74 \cdot \kappa_{\rm W}^2 + 0.26 \cdot \kappa_{\rm Z}^2$
R.	$\sigma(WH)$	_	_	~	$\kappa_{\rm W}^2$
	$\sigma(qq/qg \to ZH)$	-	-	~	$\kappa_{\rm Z}^2$
ed	$\sigma(gg \to ZH)$	\checkmark	Z - t	~	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
nr	$\sigma(ttH)$	_	-	~	$\kappa_{\rm t}^2$
Л	$\sigma(gb \to WtH)$	_	W-t	~	$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
'e	$\sigma(qb \to tHq)$	_	W-t	~	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
	$\sigma(bbH)$	_	_	~	$\kappa_{\rm b}^2$
	Partial decay width				-
	Γ^{ZZ}	—	-	~	$\kappa_{\rm Z}^2$
1	Γ^{WW}	_	-	~	$\kappa_{\rm W}^2$
	$\Gamma^{\gamma\gamma}$	\checkmark	W-t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_{\mathrm{W}}^2 + 0.07 \cdot \kappa_{\mathrm{t}}^2 - 0.66 \cdot \kappa_{\mathrm{W}} \kappa_{\mathrm{t}}$
	$\Gamma^{\tau\tau}$	-	-	~	κ_{τ}^2
-1	Γ^{bb}	-	-	~	$\kappa_{\rm b}^2$
-	$\Gamma^{\mu\mu}$	_	_	~	κ_{μ}^2
	Total width for $BR_{BSM} = 0$				
35				/	$0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 +$
46	$\Gamma_{\rm H}$	\checkmark	_	$\kappa_{\rm H}^2 \sim$	+ $0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
1					+ 0.0023 $\cdot \kappa_{\gamma}^2$ + 0.0016 $\cdot \kappa_{Z\gamma}^2$ +
					$+ 0.0001 \cdot \kappa_{s}^{2} + 0.00022 \cdot \kappa_{\mu}^{2}$
9/2					

Non measurable couplings tied to measurable ones: $\kappa_c = \kappa_t$, $\kappa_\mu = \kappa_\tau$, $\kappa_s = \kappa_b$.

Coupling estimates

• Determine couplings from production mode & decay channel:

- Coupling to gluon can be f or effective ^(*).
- Coupling to γ can be effective or a mixture of f + V.
- Direct measurement not possible, since κ_i appear in nominator and denominator of BR:

$$BR_i = \frac{\kappa_i}{\Gamma_h} = \frac{\kappa_i}{\sum_j \kappa_j}$$

 $\mathbf{O} V: \ \kappa_{\rm HVV} = \frac{2m_V^2}{2m_V^2}$

• Assume $\Gamma_H \ll m_H$, which is well justified by $\Gamma_H = 4.04 \text{ MeV}$ and $m_H = 125 \text{ GeV}$.

• Propagator:
$$\frac{1}{(q^2 - m^2 + m^2\Gamma^2)} \rightarrow \frac{\pi}{m\Gamma}\delta(q^2 - m^2)$$
 for $\Gamma \rightarrow 0$.

- i.e. put propagating particle on shell.
- Calculate cross section as $\sigma \times {\rm BR}$.

• BR_X =
$$\frac{\Gamma_X}{\Gamma_H}$$
, $\Gamma_H = \sum_i \Gamma_i$.

- Example to the left: $\sigma \propto (\kappa_t \kappa_\tau)^2 \propto (\kappa_u \kappa_d)^2 \propto (\kappa_q \kappa_f)^2 \propto (\kappa_g \kappa_f)^2$
- For each production mode and decay channel collect κ_i and express Γ_H as sum of individual κ_i .

- Cross section $H \to ff$: $\sigma \propto (\kappa_f \kappa_f)^2 + (\kappa_V \kappa_f)^2$
- Cross section $H \to \gamma \gamma$: $\sigma \propto (\kappa_f^2 - \kappa_f \kappa_V)^2 + (\kappa_V \kappa_f - \kappa_V^2)^2$
- $H \rightarrow \gamma \gamma$ resolves sign ambiguities due to interference term.

"Money plot"

Simplified template cross section (STXS)

- Define common phasespace regions based on pseudo-observable objects and quantities:
 - Convention facilitates combination of final states and across experiments.
 - Kinematic bins help to reduce influence of theory uncertainties (e.g. in $p_{\rm T}^{\rm H}$ or $N_{\rm Jet}$) on measurement.

^{25/36} Simplified template cross section (STXS)

• Defined for analysis of LHC Run-2 data by LHC HXSWG:

Simplified template cross section (STXS):

 E.g. Higgs production in VBF & gluon fusion.

Fiducial cross section:

- Obey detector acceptance and stick to measurable quantities.
- E.g. Higgs production in association w/ two jets w/ $m_{\rm jj} > 350~{\rm GeV}.$

Signal extraction

- Signal derived from maximum likelihood fit to NN output of each event category.
- Pure background categories help to constrain backgrounds in signal categories.

CMS-PAS-HIG-18-032

NN inputs

• Use one NN for each final state and separated btw. 2016 & 2017 ($_{\rightarrow}$ 8 NNs):

Variable	eμ	$e\tau_h$	$\mu \tau_{ m h}$	$ au_{\mathrm{h}} au_{\mathrm{h}}$	Variable	eμ	$e\tau_h$	$\mu au_{ m h}$	$ au_{\rm h} au_{\rm h}$
$m_{ au au}^{ m SV}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$p_{\mathrm{T}}^{\mathrm{jj}}$	$\mathbf{A}_{\mathbf{A}}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$m_{T\tau\tau}^{SV}$	$\checkmark\checkmark$				$p_{\rm T}({\rm b~jet}_1)$		$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$p_{T au au}^{SV}$	$\checkmark\checkmark$				$p_{\rm T}({\rm b~jet_2})$		$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$m_{\rm vis}$	√ −	\checkmark –	\checkmark –	$\checkmark\checkmark$	$p_{ m T}^{ m miss}$ $^-$	$-\checkmark$	$\checkmark\checkmark$	\checkmark –	\checkmark –
$p_{ m T}^{ m vis}$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark –	\checkmark –	D_{ζ}	$\checkmark\checkmark$			
$p_{\mathrm{T}}^{ar{ au}_1}$			\checkmark –	\checkmark	$m_{\mathrm{T}}^{\mathrm{e}}$		$\checkmark\checkmark$		
$p_{\mathrm{T}}^{ar{ au}_2}$	 ✓ – 	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark –	$m_{ m T}^{ar{\mu}}$	$\checkmark\checkmark$		$\checkmark\checkmark$	
$\Delta R^{e\mu}$	$\checkmark\checkmark$				$m_{ m T}^{{ m ar e}+\mu}$	√ –			
$p_{\rm T}({\rm jet}_1)$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark –	$\max(m_{\rm T}^{\mu}, m_{\rm T}^{\rm e})$	$\checkmark\checkmark$			
η (jet ₁)	\checkmark –				$m_{\mathrm{T}}^{\tau_{\mathrm{h}}}$		$\checkmark\checkmark$	\checkmark –	$\checkmark\checkmark$
$p_{\rm T}({\rm jet}_2)$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$p_{\mathrm{T}}^{ au au+\mathrm{miss}}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
η (jet ₂)	√ -				$p_{ extsf{T}}^{ au au extsf{j}+ extsf{miss}}$	$-\checkmark$			
$m_{\rm ii}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$N_{\rm b\ iet}$		$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
$\Delta \ddot{\eta}_{ m jj}$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	√ √	Njet	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$-\checkmark$

Variables in use: 21(19) 18(13) 17(16) 16(12)

NN inputs

• Use one NN for each final state and seperated btw. 2016 & 2017 (\rightarrow 8 NNs):

Making sure that input variables are well described by our model exploiting goodness-of-fit (GoF) test in 1d...

^{30/36} NN inputs

Use one NN for each final state and seperated btw. 2016 & 2017 (→ 8 NNs):

Making sure that input variables are well described by our model exploiting goodness-of-fit (GoF) test in 1d... & 2d.

"Unboxing" the NN

• Decipher what the NN is doing using a Taylor expansion of the full NN output function. Impact analysis like on LEP likelihood, but here on NN output function.

misc -	0.05	0.07	0.05	0.05	0.07	0.03	0.04	0.02	0.12	0.01	0.02	0.07	0.03	0.04	0.03	0.09	0.03	0.05
SS -	0.21	0.24	0.05	0.03	0.05	0.03	0.04	0.04	0.10	0.01	0.02	0.17	0.04	0.02	0.02	0.23	0.04	0.05
tt -	0.04	0.07	0.05	0.07	0.04	0.04	0.09	0.05	0.05	0.03	0.03	0.04	0.04	0.04	0.03	0.08	0.02	0.04
w-	0.11	0.16	0.12	0.04	0.05	0.03	0.07	0.03	0.07	0.04	0.03	0.27	0.09	0.02	0.02	0.20	0.05	0.07
zll-	0.16	0.16	0.10	0.05	0.07	0.04	0.05	0.04	0.18	0.03	0.04	0.27	0.12	0.05	0.04	0.93	0.07	0.16
ztt -	0.08	0.40	0.08	0.04	0.06	0.04	0.06	0.03	0.21	0.03	0.03	0.54	0.03	0.03	0.01	0.51	0.04	0.03
qqh -	0.05	0.09	0.11	0.05	0.03	0.02	0.05	0.04	0.21	0.03	0.02	0.10	0.05	0.14	0.04	0.18	0.09	0.04
ggh -	0.07	0.24	0.09	0.04	0.05	0.03	0.04	0.02	0.23	0.03	0.03	0.15	0.06	0.05	0.03	0.30	0.05	0.05
	pt_1 -	pt_2 -	jpt_1-	jpt_2 -	bpt_1 -	bpt_2 -	njets -	- nbtag	- vs_m	ht_1 -	mt_	ptvis -	pt_tt -	- íĺm	jdeta -	m_vis -	dijetpt -	met -

Relative size of number indicates how sensitive the NN output is on the given input.

"Unboxing" the NN

• Decipher what the NN is doing using a Taylor expansion of the full NN output function. Impact analysis like on LEP likelihood, but here on NN output function.

misc	0.05	0.07	0.05 0.05 0	.07 0.03 0.04 0.0	0.12 0.01	0.02 0.07 0.03 0.04 0.03 0.09	0.03 0.05
SS	0.21	0.24	ggh m_vis m_vis ptvis m_vis	qqh 1.50 m_vis m_vis 0 0.58 m_sv m_vis 0	.44 pt_2 ptvis 39 ptvis ptvis	zli w 1.14 m.vis m.vis 7.58 m.vis m.vis 0.83 m 1.06 m.sv m.vis 1.29 pt.2 ptvis 0.43	tt ss misc m.vis m.vis 0.16 m.vis m.vis 0.56 m.sv m.sv 0.23 m.sv m.vis 0.11 pt.2 ptvis 0.42 m.sv m.vis 0.22
tt	0.04	0.07	ptvis ptvis pt_2 m_vis pt_2 ptvis m_sv m_vis	0.50 m_sv m_sv 0 0.48 m_sv ptvis 0 0.48 m_sv 0 0 0.45 m_sv dijetpt 0	39 ptvis m_vis 26 m_sv ptvis 21 pt_1 ptvis 20 pt_2 m_vis	0.90 ptvis mLvis 1.28 ptvis 0.41 0.85 m.vis 1.01 ptvis m.vis 0.41 0.67 mLvis 0.89 pt.2 m.vis 0.29 0.63 pt.tt m.vis 0.88 ptvis 0.28	njets 0.09 pt.2 m.vis 0.34 m.vis m.vis 0.20 pt_2 m.vis 0.08 ptvis m.vis 0.34 m.sv ptvis 0.14 jpt_1 0.08 pt.1 ptvis 0.33 m.sv 0.13 pt_2 0.08 ptvis ptvis 0.32 pt_2 ptvis 0.12
w	0.11	0.16	m_sv ptvis pt_l ptvis m_vis pt_l m_vis	0.33 ptvis dijetpt 0 0.31 m_vis 0 0.29 pt_2 m_vis 0 0.29 ptvis m_vis 0 0.29 ptvis m_vis 0	18 pt.2 m.sv 17 m.sv m.sv 16 ptvis 16 m.vis	0.62 ptl m.vis 0.87 ptl ptvis 0.27 p 0.60 pt.2 m.vis 0.73 m.sv m.vis 0.26 0.57 m.vis dijetpt 0.72 jptl ptvis 0.25 0.55 jptl m.vis 0.63 m.sv ptvis 0.22	visi m.vis 0.08 pt.1 pt.2 0.28 ptvis m.vis 0.11 m.vis 0.07 pt.1 m.vis 0.26 ptvis ptvis 0.11 jpt.2 0.07 m.sv ptvis 0.25 pt.2 m.vis 0.09 jpt.1 0.07 pt.2 0.24 pt.1 ptvis 0.09
zll	0.16	0.16	m_vis met m_sv m_sv pt_tt m_vis jpt_l ptvis	0.26 ptvis ptvis 0 0.24 m_vis dijetpt 0 0.23 dijetpt dijetpt 0 0.23 int 1 dijetpt 0	15 pt_2 pt_2 15 m_sv m_vis 14 pt_2 13 ipt 1 ptvis	0.52 ptc/15 ptc/15 0.49 m_vis 0.20 0.45 mjj m_vis 0.49 pt_tt m_vis 0.18 0.40 pt_2 ptvis 0.47 pt_2 0.18 0.32 mt 2 m_vis 0.39 pt 2 pt 2 0.17	m_sv m_sv 0.06 pt_2 pt_2 0.25 pt_2 m_sv 0.09 pt_2 pt_2 0.06 m_vis 0.21 jpt_1 ptvis 0.09 m_sv ptvis 0.06 pt_1 0.21 m_vis 0.09 pt_2 ptvis 0.06 m_sv m_vis 0.20 ptvis 0.08
ztt	0.08	0.40	pt_2 m_sv pt_2 pt_2 ptvis pt_tt	0.22 pt_2 ptvis 0 0.21 jpt_1 ptvis 0 0.20 pt_1 m_vis 0 0.19 m_vis met 0	13 pt_1 m_sv 13 pt_1 pt_2 13 pt_1 pt_2 12 ptvis dijetpt 12 ptvis met	0.31 m.sv ptvis 0.36 m.vis met 0.17 p 0.30 njets m.vis 0.36 pt.1 m.vis 0.17 0.29 pt.1 pt.2 0.33 jpt.1 m.vis 0.16 0.29 jdetä m.vis 0.32 ptvis met 0.16 m	ptris ptris <th< th=""></th<>
qqh	0.05	0.09	m_vis dijetpt pt_2 m_sv ptvis dijetpt pt_1 pt_2	0.19 jpt_l jpt_l 0 0.18 jpt_l m_vis 0 0.18 pt_l m_sv 0 0.17 jpt_l 0	12 jpt_1 m_sv 12 ptvis pt_tt 12 nbtag ptvis 11 bpt_1 ptvis	0.27 bpt.1 m.vis 0.32 pt.1 pt.2 0.16 0.27 ptvis 0.30 pt.2 m.sv 0.14 0.26 bpt.2 m.vis 0.30 njets ptvis 0.13 0.25 ptvis pt.tt 0.30 pf.2 pt.tt 0.13	pt.1 pt.2 0.05 m.sv m.sv 0.13 jpt.1 m.sv 0.07 pt.1 m.vis 0.05 ptvis met 0.12 bpt.1 0.07 pt.1 ptvis 0.05 pt.1 met 0.12 bpt.2 pt.2 pt.1 jpt.1 0.07 pt.2 jpt.1 0.05 m.vis met 0.12 jpt.1 jpt.1 0.07
ggh	0.07	0.24	ptvis met pt_l m_sv ptvis jpt_l m_sv	0.16 jpt_l m_sv 0 0.15 pt_tt m_vis 0 0.15 ptvis 0 0.15 m_vis 0	11 pt_l pt_l 11 njets ptvis 11 m.sv 10	0.25 ptl ptl 0.29 ptvis dijetpt 0.13 0.24 m_sv m_sv 0.29 m_vis dijetpt 0.13 p 0.23 ptvis met 0.28 jptl jptl 0.13 0.23 jpt.2 m_vis 0.28 pt.2 jptl 0.12	pt.2 m.sv 0.05 jpt_l m.vis 0.11 pt_l pt_2 0.06 pt_tt m.vis 0.05 ptvis pt_tt 0.11 ptvis dijetp 0.06 nbtag 0.05 pt_tt m.vis 0.11 jpt_l 0.06 m.sv 0.04 pt_2 jpt_l 0.11 m.sv pt_tt 0.06
	pt_1 -	pt_2 -	mjj m_vis bpt_1 ptvis pt_1 pt_1 njets m_vis njets ptvis	0.14 pt_2 0 0.14 pt_2 m_sv 0 0.14 dijetpt 0 0.13 m_sv pt_tt 0 0.13 m_sv mjj 0	10 m_sv dijetpt 09 pt_2 pt_tt 09 bpt_2 ptvis 09 pt_2 jpt_1 09 m_sv pt_tt	0.22 jpt.1 ptvis 0.27 pt.1 pt.1 0.12 0.19 nbtag m.vis 0.26 bpt.1 ptvis 0.12 0.18 ptvis digetpt 0.26 pttt 0.12 0.18 pt.2 pt.2 0.25 pt.1 0.12 0.17 pt.1 m.sv 0.23 jpt.1 0.12 0.17 pt.1 m.sv 0.23 jpt.1 0.12	jpt_1 m_sv 0.04 ptvis dijetpt 0.11 m_vis met 0.06 ptvis 0.04 bpt_1 ptvis 0.10 met 0.06 jpt_1 dijetpt 0.04 jpt_1 m_sv 0.10 m_vis dijetpt 0.06 m_vis dijetpt 0.04 njets ptvis 0.10 ptvis pt_tt 0.06 pt_tt 0.04 m_sv 0.10 jpt_2 m_sv 0.06
			pt.2 jpt.1 bpt.1 m_vis jpt.1 jpt.1 m_sv dijetpt pt.2 pt.tt mt.2 m_vis jpt.2 m_vis jpt.2 ptvis jpt.2 ptvis jdta m_vis m_sv met pt.2 dijetpt nbtag m_vis pt.2 dijetpt nbtag m_vis pt.1 jpt.1	0.13 pt_l ptv1s 0 0.12 pt_2 pt_2 pt_2 0.11 m_sv met 0 0.11 m_sv met 0 0.11 pt_1 dijetpt 0 0.11 jpt_2 dijetpt 0 0.11 jpt_1 mjj 0 0.10 jpt_1 njt_2 0 0.10 mjj dijetpt 0 0.10 mjj dijetpt 0 0.09 pt_2 jpt_1 0 0.09 pjt_2 m_vis 0 0.09 jpt_1 njts 0 0.09 njets ptvis 0	00 pt⊥ pt⊥ pt⊥ 08 pt⊥ m_vis 08 pt⊥ m_vis 08 pt⊥ jpt⊥ 08 pt⊥ dijetpt 07 m_t met 07 pt⊥ ipt⊥ 07 pt⊥ ipt⊥ 07 pt⊥ ipt⊥ 07 pt⊥ ipt⊥ 07 pt⊥ m_vis 07 pt⊥ mots 07 pt⊥ m_vis 07 pt⊥ m_vis	0.17 pt.2 m.sv 0.25 jpt.1 m.sv 0.12 0.16 m.sv dijetpt 0.21 nbtag ptvis 0.11 0.16 m.sv dijetpt 0.21 nbtag ptvis 0.11 0.15 m.sv 0.19 m.sv m.sv 0.11 0.15 pt.1 met 0.18 jpt.2 ptvis 0.10 0.15 pt.2 jpt.1 0.17 pt.1 jpt.1 0.10 n 0.15 pt.2 jpt.1 0.17 pt.1 met 0.09 0.14 jpt.2 ptvis 0.17 pt.2 met 0.09 0.14 jpt.2 ptvis 0.16 mjj m.vis 0.09 0.13 pt.1 m.vis 0.16 bpt.1 djetpt 0.08 0.12 pt.1 0.15 mt.2 ptvis 0.08 0.12 pt.1 jpt.1 0.14 jpt.2 m.vis 0.08 0.12 pt.2 pt.t 0.14 jpt.2 ptvis 0.08 0.12 pt.2 met 0.13 jpt.1 njets 0.08 0.12 pt.2 met 0.14 jpt.2 dijetpt 0.08 0.12 pt.2 met 0.13 jpt.1 njets 0.08 0.12 pt.2 met 0.13 jpt.1 njets 0.08	pt.2 njets 0.04 m.vis aljetpt 0.09 pt.1 pt.1 pt.1 0.05 itvis dijetpt 0.04 pt.1 jpt.1 0.04 pt.1 pt.1 0.05 pt.1 pt.1 0.04 pt.2 pt.tt 0.09 pt.tt m.vis 0.05 pt.1 pt.1 0.04 pt.2 dijetpt 0.08 pt.2 jpt.1 0.05 ijets m.vis 0.04 pt.2 njets 0.08 pt.2 jpt.1 0.05 ijets m.vis 0.04 pt.2 njets 0.08 pt.1 pt.05 0.05 pt.1 m.sv 0.04 pt.2 m.vis 0.05 pt.2 0.05 pt.1 0.04 pt.2 ptvis 0.08 m.sv met 0.05 pt.1 0.04 pt.2 pt.0 njets 0.05 ijetp 0.05 pt.1 0.04 njets m.vis 0.08 ijet.2 m.vis 0.05 pt.1 m.vis 0.04
							lot about the NN task and how

it is solved.

How well can the NN do?

- Confusion matrix tells how well the NN can identify each individual process:
- In this representation: all columns normalized to unity.
- 72% of all **qqH** events can be identified as such.
- Assess success of NN by comparison to random association (prob. 1/8=12.5%).

		μτ _h (2	017)	CMS Simulation Preliminary							
	ggH	0.27	0.08	0.08	0.07	0.01	0.05	0.11	0.08		
SS	qqH	0.21	0.72	0.07	0.06	0.06	0.12	0.05	0.06		
nt clas	ztt	0.23	0.06	0.63	0.26	0.01	0.09	0.14	0.18		
d ever	qcd	0.02	0.01	0.02	0.17	0.02	0.06	0.04	0.13		
dicted	tt	0.01	0.04	0.01	0.06	0.75	0.23	0.01	0.02		
N pre	misc	0.02	0.04	0.06	0.07	0.14	0.28	0.02	0.09		
Z	zll	0.17	0.03	0.08	0.13	0.00	0.04	0.53	0.14		
	wj	0.07	0.02	0.06	0.19	0.02	0.13	0.10	0.31		
		ggH	Hpp	ztt	dcd	tt	misc	zll	wj		
CMS	смз-раз-нід-18-032 True event class										

STXS classification

• After classification of ggH and qqH events are split into STXS bins, based on selection requirements on theory-related quantities after reconstruction:

Results (inclusive)

Inclusive signal (sorted by log(S/(S+B)))

Signal strength: (top) split by final state and (bottom) inclusive

• Clear signal seen, though a bit on the low side, compared to other Higgs decay modes.

Results (STXS)

• More differential measurement in 9 predefined STXS bins:

Correlation matrix

Summary

- Higgs boson fully established. Properties unique and so far as expected by SM.
- Higgs mechanism indeed realized in nature! Last missing piece \rightarrow self-coupling.
- THE Higgs boson or just A Higgs Boson?
- Look for deviations in coupling structure \rightarrow prime measurement.
- Differential taking kinematic properties of production and decay into account \rightarrow STXS.
- Quantify deviations via generic effective field operator expansion \rightarrow EFT.
- Look for more Higgs bosons in a more complex Higgs sector \rightarrow prime searches.

Landkarte der "Neuen Welt"

