Singlet Extension of the SM Higgs Sector

David Sommer

KIT

December 3, 2015

Overview

Motivation for an extension of the Higgs sector

Addition of a real singlet scalar (xSM)

Addition of a complex singlet scalar (cxSM)

Cosmological mystery: the 'missing mass' problem

Jan Oort (1900-1992)

Fritz Zwicky (1898-1974)

Motion of galaxies and stars in the universe \Rightarrow dark matter.
Estimated to account for about 85% of the mass in the universe.
But where does it come from?

MACHOs and WIMPs

Massive compact halo object

Weakly interacting massive particle

MACHOs and WIMPs

Properties of WIMPs

- Little interaction with SM particles.
- large mass (for a particle).
- Readily predicted by simple extensions of the SM Higgs sector.

We study the addition of a real ($\times \mathrm{SM}$) as well as a complex ($c x S M$) singlet scalar to the Higgs doublet.

Let H be the SM Higgs doublet and s be a single gauge singlet real scalar field.

Consider the potential

$$
\begin{aligned}
V= & \mu^{2}\left(H^{\dagger} H\right)+\lambda\left(H^{\dagger} H\right)^{2} \\
& +a_{1}\left(H^{\dagger} H\right) s+a_{2}\left(H^{\dagger} H\right) s^{2} \\
& +\frac{b_{2}}{2} s^{2}+\frac{b_{3}}{3} s^{3}+\frac{b_{4}}{4} s^{4} .
\end{aligned}
$$

Note: V is \mathbb{Z}_{2} symmetric in s for $a_{1}=b_{3}=0$ (i.e. symmetric under $s \rightarrow-s$).

$$
\begin{aligned}
V= & \mu^{2}\left(H^{\dagger} H\right)+\lambda\left(H^{\dagger} H\right)^{2} \\
& +a_{1}\left(H^{\dagger} H\right) s+a_{2}\left(H^{\dagger} H\right) s^{2} \\
& +\frac{b_{2}}{2} s^{2}+\frac{b_{3}}{3} s^{3}+\frac{b_{4}}{4} s^{4} .
\end{aligned}
$$

What are the conditions on V ?

- It must be bounded from below (existence of a vacuum).
- It must accomodate electroweak symmetry breaking \Rightarrow $\langle H\rangle \neq 0$.
- It should yield a massive stable scalar s.

The stationary conditions

We write

$$
H=\frac{1}{\sqrt{2}}\binom{0}{h}, \text { with } h \text { real (unitary gauge) }
$$

and denote the vacuum expectation values of h and s with v and v_{s}.
With this, the stationary conditions of V

$$
\left.\frac{\partial V}{\partial h}\right|_{(h, s)=\left(v, v_{s}\right)}=\left.\frac{\partial V}{\partial s}\right|_{(h, s)=\left(v, v_{s}\right)}=0
$$

yield

$$
\begin{aligned}
\mu^{2} & =-\lambda v^{2}-v_{s}\left(a_{1}+a_{2} v_{s}\right) \\
a_{1} & =-a_{2} v_{s}-\frac{2 b_{2} v_{s}}{v^{2}}-\frac{2 b_{3} v_{s}^{2}}{v^{2}}-\frac{2 b_{4} v_{s}^{3}}{v^{2}}
\end{aligned}
$$

Using the equation for μ^{2} we now calculate the mass squared matrix

$$
\begin{aligned}
M^{2} & =\left.\left(\begin{array}{cc}
\frac{\partial^{2} V}{\partial h^{2}} & \frac{\partial^{2} V}{\partial h \partial s} \\
\frac{\partial^{2} V}{\partial s \partial h} & \frac{\partial^{2} V}{\partial s^{2}}
\end{array}\right)\right|_{(h, s)=\left(v, v_{s}\right)} \\
& =\left(\begin{array}{cc}
2 \lambda v^{2} & a_{1} v+2 a_{2} v v_{s} \\
a_{1} v+2 a_{2} v v_{s} & a_{2} v^{2}+b_{2}+2 b_{3} v_{s}+3 b_{4} v_{s}^{2}
\end{array}\right) .
\end{aligned}
$$

Note: $\mathrm{A} \mathbb{Z}_{2}$ symmetry $\left(a_{1}=b_{3}=0\right)$ is not sufficient to eliminate the mixing terms.

This is because the acquisition of a nonzero vev $v_{s} \neq 0$ of the scalar s breaks the \mathbb{Z}_{2} symmetry (if imposed) spontaneously. \Rightarrow unwanted mixing terms.
\Rightarrow instability of the mass eigenstates.
\Rightarrow no DM candidate.
So, in order to obtain a viable dark matter candidate, we now assume

$$
a_{1}=b_{3}=\langle s\rangle=0
$$

Constraints on the potential

After electroweak symmetry breaking, for which we shift $h \equiv v+h$, the potential reads

$$
\begin{aligned}
V= & -\frac{\mu^{4}}{4 \lambda}-\mu^{2} h^{2}+\lambda v h^{3}+\frac{\lambda}{4} h^{4} \\
& +\frac{1}{2}\left(b_{2}+a_{2} v^{2}\right) s^{2}+\frac{b_{4}}{4} s^{4}+a_{2} v s^{2} h+\frac{a_{2}}{2} s^{2} h^{2} .
\end{aligned}
$$

Necessary conditions:

- Existence of a vacuum: $\lambda, b_{4} \geq 0$ and $\lambda b_{4} \geq a_{2}^{2}$ for negative a_{2}.
- The mass squared matrix $M^{2}=\operatorname{diag}\left(2 \lambda v, b_{2}+a_{2} v^{2}\right)$ must be positive definite.
Note: The phenomenological properties of this model are completely determined by a_{2} and b_{2}, or a_{2} and $m_{s}^{2}=b_{2}+a_{2} v^{2}$.

Experimental and theoretical constraints on the parameters

Figure: taken from Lei Feng, S. Profumo, L. Ubaldi, [arXiv:1412.1105]
Highly constrained parameter space for the $\times S M$!

Another cosmological mystery: the baryon asymmetry

Number of baryons \gg number of antibaryons in the observable universe.
Possible Explanations:

- There is as much antimatter, as there is matter, but its all clunked together far away.
- The universe began with a small preference for matter.
- The universe was initially perfectly symmetric, but somehow matter was favoured over time.
This requires the electroweak symmetry breaking to be a first order phase transition.
In the context of SM, this requires $m_{h} \lesssim 70 \mathrm{GeV}$. In the context of $x S M$, this requires $\langle S\rangle \neq 0$.

xSM - Conclusive remarks

The xSM Model
yields either a stable CDM candidate, that doesn't affect EWPT ($\langle S\rangle=0$), or generates strong first order EWPT, but only yields unstable mass eigenstates $(\langle S\rangle \neq 0)$.

So, it is impossible to explain both these mysteries in the context of a single $\times S M$.

Unsatisfactory?

Let $\mathbb{S}=S+i A$ be a single gauge singlet complex scalar field.
Consider the $U(1)$ and \mathbb{Z}_{2} symmetric Potential

$$
V=\frac{m^{2}}{2}\left(H^{\dagger} H\right)+\frac{\lambda}{4}\left(H^{\dagger} H\right)^{2}+\frac{\delta_{2}}{2} H^{\dagger} H|\mathbb{S}|^{2}+\frac{b_{2}}{2}|\mathbb{S}|^{2}+\frac{d_{2}}{4}|\mathbb{S}|^{4}
$$

Let $\mathbb{S}=S+i A$ be a single gauge singlet complex scalar field.
Consider the $U(1)$ and \mathbb{Z}_{2} symmetric Potential

$$
V=\frac{m^{2}}{2}\left(H^{\dagger} H\right)+\frac{\lambda}{4}\left(H^{\dagger} H\right)^{2}+\frac{\delta_{2}}{2} H^{\dagger} H|\mathbb{S}|^{2}+\frac{b_{2}}{2}|\mathbb{S}|^{2}+\frac{d_{2}}{4}|\mathbb{S}|^{4}
$$

Glodstone's theorem: $\langle\mathbb{S}\rangle \neq 0 \Rightarrow$ massless particle (Spontaneous breaking of the $U(1)$ symmetry).

Let $\mathbb{S}=S+i A$ be a single gauge singlet complex scalar field.
Consider the \mathbb{Z}_{2} symmetric Potential

$$
\begin{aligned}
V= & \frac{m^{2}}{2}\left(H^{\dagger} H\right)+\frac{\lambda}{4}\left(H^{\dagger} H\right)^{2}+\frac{\delta_{2}}{2} H^{\dagger} H|\mathbb{S}|^{2}+\frac{b_{2}}{2}|\mathbb{S}|^{2}+\frac{d_{2}}{4}|\mathbb{S}|^{4} \\
& +\left(\frac{\left|b_{1}\right|}{4} e^{i \phi_{b_{1}}} \mathbb{S}^{2}+\text { c.c. }\right)
\end{aligned}
$$

Glodstone's theorem: $\langle\mathbb{S}\rangle \neq 0 \Rightarrow$ massless particle (Spontaneous breaking of the $U(1)$ symmetry).
We therefore break the $U(1)$ symmetry explicitly.

Let $\mathbb{S}=S+i A$ be a single gauge singlet complex scalar field.
Consider the Potential

$$
\begin{aligned}
V= & \frac{m^{2}}{2}\left(H^{\dagger} H\right)+\frac{\lambda}{4}\left(H^{\dagger} H\right)^{2}+\frac{\delta_{2}}{2} H^{\dagger} H|\mathbb{S}|^{2}+\frac{b_{2}}{2}|\mathbb{S}|^{2}+\frac{d_{2}}{4}|\mathbb{S}|^{4} \\
& +\left(\frac{\left|b_{1}\right|}{4} e^{i \phi_{b_{1}} \mathbb{S}^{2}}+\left|a_{1}\right| e^{i \phi_{a_{1}}} \mathbb{S}+\text { c.c. }\right)
\end{aligned}
$$

In the same fashion, we explicitly break the \mathbb{Z}_{2} symmetry.

Let $\mathbb{S}=S+i A$ be a single gauge singlet complex scalar field.
Consider the Potential

$$
\begin{aligned}
V= & \frac{m^{2}}{2}\left(H^{\dagger} H\right)+\frac{\lambda}{4}\left(H^{\dagger} H\right)^{2}+\frac{\delta_{2}}{2} H^{\dagger} H|\mathbb{S}|^{2}+\frac{b_{2}}{2}|\mathbb{S}|^{2}+\frac{d_{2}}{4}|\mathbb{S}|^{4} \\
& +\left(\frac{\left|b_{1}\right|}{4} e^{i \phi_{b_{1}}} \mathbb{S}^{2}+\left|a_{1}\right| e^{i \phi_{a_{1}}} \mathbb{S}+\text { c.c. }\right)
\end{aligned}
$$

We study the cases
A1 $\langle\mathbb{S}\rangle=0 ; \quad a_{1}=b_{1}=0 . \quad$ (Unbroken $U(1)$)
A2 $\langle\mathbb{S}\rangle=0 ; \quad a_{1}=0, b_{1} \neq 0$. (explicitly broken $U(1)$)
B1 $\langle\mathbb{S}\rangle \neq 0 ; \quad a_{1}=b_{1}=0 . \quad$ (spontaneously broken $U(1)$)
$\mathrm{B} 2\langle\mathbb{S}\rangle \neq 0 ; \quad a_{1} \neq 0, b_{1} \neq 0$. (explicitly broken $U(1)$ and \mathbb{Z}_{2})

Constraints on the potential

$$
\begin{aligned}
V= & \frac{m^{2}}{2}\left(H^{\dagger} H\right)+\frac{\lambda}{4}\left(H^{\dagger} H\right)^{2}+\frac{\delta_{2}}{2} H^{\dagger} H|\mathbb{S}|^{2}+\frac{b_{2}}{2}|\mathbb{S}|^{2}+\frac{d_{2}}{4}|\mathbb{S}|^{4} \\
& +\left(\frac{\left|b_{1}\right|}{4} e^{i \phi_{b_{1}} \mathbb{S}^{2}}+\left|a_{1}\right| e^{i \phi_{a_{1}}} \mathbb{S}+\text { c.c. }\right)
\end{aligned}
$$

- Existence of a vacuum $\left(v, v_{S}\right)$:

$$
\text { We take } \lambda>0, d_{2}>0 \Rightarrow \text { if } \delta_{2}<0 \text { then } \lambda d_{2}>\delta_{2}^{2}
$$

- For simplicity, we take $\phi_{b_{1}}=\phi_{a_{1}}=\pi \Rightarrow\langle A\rangle=0$.
- The vacuum must be a local minimum, so the mass squared matrix must be positive definite.

Case $A:\langle\mathbb{S}\rangle=0$.
The mass matrix in $(v, 0)$ is $M^{2}=\operatorname{diag}\left(M_{h}^{2}, M_{S}^{2}, M_{A}^{2}\right)$, where

$$
\begin{aligned}
& M_{h}^{2}=\frac{1}{2} \lambda v^{2} \\
& M_{S}^{2}=-\frac{1}{2}\left|b_{1}\right|+\frac{1}{2} b_{2}+\frac{\delta_{2} v^{2}}{4} \\
& M_{A}^{2}=\frac{1}{2}\left|b_{1}\right|+\frac{1}{2} b_{2}+\frac{\delta_{2} v^{2}}{4} .
\end{aligned}
$$

For case A1, that is $b_{1}=0$, we obtain two phenomenologically aquivalent particles.
$\longrightarrow \times S M$.

Case A2: $\langle\mathbb{S}\rangle=0 ; \quad a_{1}=0, b_{1} \neq 0$

$$
\begin{aligned}
V= & \frac{m^{2}}{2}\left(H^{\dagger} H\right)+\frac{\lambda}{4}\left(H^{\dagger} H\right)^{2}+\frac{\delta_{2}}{2} H^{\dagger} H|\mathbb{S}|^{2}+\frac{b_{2}}{2}|\mathbb{S}|^{2}+\frac{d_{2}}{4}|\mathbb{S}|^{4} \\
& +\left(-\frac{\left|b_{1}\right|}{4} \mathbb{S}^{2}+c . c .\right) \\
M_{S / A}^{2} & =\mp \frac{1}{2}|b 1|+\frac{1}{2} b_{2}+\frac{\delta_{2} v^{2}}{4} .
\end{aligned}
$$

No mixing of the scalars.
Stable two-component dark matter scenario.

Figure: taken from V. Barger et al., [arXiv:0811.0393]
Contribution to the relic density over the mass of the light scalar $M_{S}^{2}=-\frac{1}{2}|b 1|+\frac{1}{2} b_{2}+\frac{\delta_{2} V^{2}}{4}$.
$M_{H}=120 \mathrm{GeV}$, $b_{2}=50000 \mathrm{GeV}^{2}$, $d_{2}=1$.

Case B1: $\langle\mathbb{S}\rangle \neq 0 ; \quad a_{1}=b_{1}=0$.

$$
\begin{aligned}
V & =\frac{m^{2}}{2}\left(H^{\dagger} H\right)+\frac{\lambda}{4}\left(H^{\dagger} H\right)^{2}+\frac{\delta_{2}}{2} H^{\dagger} H|\mathbb{S}|^{2}+\frac{b_{2}}{2}|\mathbb{S}|^{2}+\frac{d_{2}}{4}|\mathbb{S}|^{4} . \\
M^{2} & =\left(\begin{array}{ccc}
\lambda v^{2} / 2 & \delta_{2} v v_{S} / 2 & 0 \\
\delta_{2} v v_{s} / 2 & d_{2} v_{S}^{2} / 2 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Two unstable mixed scalars.
A is stable but massles.
\Rightarrow no dark matter candidate.

Case B2: $\langle\mathbb{S}\rangle \neq 0 ; \quad a_{1} \neq 0, b_{1} \neq 0$.

$$
\begin{aligned}
V= & \frac{m^{2}}{2}\left(H^{\dagger} H\right)+\frac{\lambda}{4}\left(H^{\dagger} H\right)^{2}+\frac{\delta_{2}}{2} H^{\dagger} H|\mathbb{S}|^{2}+\frac{b_{2}}{2}|\mathbb{S}|^{2}+\frac{d_{2}}{4}|\mathbb{S}|^{4} \\
& +\left(-\frac{\left|b_{1}\right|}{4} \mathbb{S}^{2}-\left|a_{1}\right| \mathbb{S}+c . c .\right) . \\
M^{2}= & \left(\begin{array}{ccc}
\lambda v^{2} / 2 & \delta_{2} v v_{S} / 2 & 0 \\
\delta_{2} v v_{s} / 2 & d_{2} v_{S}^{2} / 2+\sqrt{2}\left|a_{1}\right| / v_{S} & 0 \\
0 & 0 & \left|b_{1}\right|+\sqrt{2}\left|a_{1}\right| / v_{S}
\end{array}\right)
\end{aligned}
$$

Two unstable mixed scalars.
A remains stable (no mixing) and $M_{A}^{2}=\left|b_{1}\right|+\frac{\sqrt{2}\left|a_{1}\right|}{v_{S}}>0$.
$\Rightarrow A$ candidate for dark matter!

Figure: Contribution to the relic density over the mass M_{A}. $v_{S}=100 \mathrm{GeV}$, $M_{h_{1}}=120 \mathrm{GeV}$, $M_{h_{2}}=250 \mathrm{GeV}$. (V. Barger et al., [arXiv:0811.0393])

Figure: Contribution to the relic density over the mass M_{A}. $v_{S}=10 \mathrm{GeV}$, $M_{h_{1}}=120 \mathrm{GeV}$, $M_{h_{2}}=140 \mathrm{GeV}$. (V. Barger et al., [arXiv:0811.0393])

cxSM - Conclusive remarks

The cxSM model
yields a simple two-component DM scenario, if the $U(1)$ symmetry is explicitly but not spontaneously broken. yields a single-component DM scenario and allows for first order EWPT, as required for electroweak baryogenesis, if the $U(1)$ symmetry is both explicitly and spontaneously broken.

