Singlet Extension of the SM Higgs Sector

David Sommer

KIT

December 3, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation for an extension of the Higgs sector

Addition of a real singlet scalar (xSM)

Addition of a complex singlet scalar (cxSM)

Cosmological mystery: the 'missing mass' problem

Jan Oort (1900-1992)

Fritz Zwicky (1898-1974)

Motion of galaxies and stars in the universe \Rightarrow dark matter. Estimated to account for about 85% of the mass in the universe. But where does it come from?

cxSM - complex singlet addition

MACHOs and WIMPs

Massive compact halo object

Weakly interacting massive particle

MACHOs and WIMPs

Properties of WIMPs

- Little interaction with SM particles.
- large mass (for a particle).
- Readily predicted by simple extensions of the SM Higgs sector.

We study the addition of a real (xSM) as well as a complex (cxSM) singlet scalar to the Higgs doublet.

5/22

Let H be the SM Higgs doublet and s be a single gauge singlet real scalar field.

Consider the potential

$$V = \mu^{2} \left(H^{\dagger} H \right) + \lambda \left(H^{\dagger} H \right)^{2}$$
$$+ a_{1} \left(H^{\dagger} H \right) s + a_{2} \left(H^{\dagger} H \right) s^{2}$$
$$+ \frac{b_{2}}{2} s^{2} + \frac{b_{3}}{3} s^{3} + \frac{b_{4}}{4} s^{4}.$$

Note: V is \mathbb{Z}_2 symmetric in s for $a_1 = b_3 = 0$ (i.e. symmetric under $s \to -s$).

・ロン ・四 と ・ ヨ と ・ ヨ

6/22

$$V = \mu^{2} \left(H^{\dagger} H \right) + \lambda \left(H^{\dagger} H \right)^{2}$$
$$+ a_{1} \left(H^{\dagger} H \right) s + a_{2} \left(H^{\dagger} H \right) s^{2}$$
$$+ \frac{b_{2}}{2} s^{2} + \frac{b_{3}}{3} s^{3} + \frac{b_{4}}{4} s^{4}.$$

What are the conditions on V?

- It must be bounded from below (existence of a vacuum).
- It must accomodate electroweak symmetry breaking $\Rightarrow \langle H \rangle \neq 0.$
- It should yield a massive stable scalar s.

The stationary conditions

We write

$$H=rac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ h \end{pmatrix}, ext{ with } h ext{ real (unitary gauge)},$$

and denote the vacuum expectation values of h and s with v and v_s .

With this, the stationary conditions of V

$$\frac{\partial V}{\partial h}\Big|_{(h,s)=(v,v_s)} = \frac{\partial V}{\partial s}\Big|_{(h,s)=(v,v_s)} = 0$$

yield

$$\mu^{2} = -\lambda v^{2} - v_{s}(a_{1} + a_{2}v_{s}),$$

$$a_{1} = -a_{2}v_{s} - \frac{2b_{2}v_{s}}{v^{2}} - \frac{2b_{3}v_{s}^{2}}{v^{2}} - \frac{2b_{4}v_{s}^{3}}{v^{2}}.$$

7 / 22

Using the equation for μ^2 we now calculate the mass squared matrix

$$M^{2} = \begin{pmatrix} \frac{\partial^{2}V}{\partial h^{2}} & \frac{\partial^{2}V}{\partial h\partial s} \\ \frac{\partial^{2}V}{\partial s\partial h} & \frac{\partial^{2}V}{\partial s^{2}} \end{pmatrix} \Big|_{(h,s)=(v,v_{s})}$$
$$= \begin{pmatrix} 2\lambda v^{2} & a_{1}v + 2a_{2}vv_{s} \\ a_{1}v + 2a_{2}vv_{s} & a_{2}v^{2} + b_{2} + 2b_{3}v_{s} + 3b_{4}v_{s}^{2} \end{pmatrix}.$$

Note: A \mathbb{Z}_2 symmetry $(a_1 = b_3 = 0)$ is **not** sufficient to eliminate the mixing terms.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

9/22

This is because the acquisition of a nonzero vev $v_s \neq 0$ of the scalar *s* breaks the \mathbb{Z}_2 symmetry (if imposed) spontaneously.

- \Rightarrow unwanted mixing terms.
- \Rightarrow instability of the mass eigenstates.
- \Rightarrow no DM candidate.

So, in order to obtain a viable dark matter candidate, we now assume

$$a_1 = b_3 = \langle s \rangle = 0.$$

Constraints on the potential

After electroweak symmetry breaking, for which we shift $h \equiv v + h$, the potential reads

$$V = -\frac{\mu^4}{4\lambda} - \mu^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4 + \frac{1}{2} (b_2 + a_2 v^2) s^2 + \frac{b_4}{4} s^4 + a_2 v s^2 h + \frac{a_2}{2} s^2 h^2.$$

Necessary conditions:

- Existence of a vacuum: $\lambda, b_4 \ge 0$ and $\lambda b_4 \ge a_2^2$ for negative a_2 .
- The mass squared matrix $M^2 = \text{diag}(2\lambda v, b_2 + a_2v^2)$ must be positive definite.

Note: The phenomenological properties of this model are completely determined by a_2 and b_2 , or a_2 and $m_s^2 = b_2 + a_2 v^2$.

Experimental and theoretical constraints on the parameters

Figure: taken from Lei Feng, S. Profumo, L. Ubaldi, [arXiv:1412.1105] Highly constrained parameter space for the xSM!

Another cosmological mystery: the baryon asymmetry

Number of baryons \gg number of antibaryons in the **observable** universe.

Possible Explanations:

- There **is** as much antimatter, as there is matter, but its all clunked together far away.
- The universe **began** with a small preference for matter.
- The universe was initially perfectly symmetric, but somehow matter was favoured over time.

This requires the electroweak symmetry breaking to be a first order phase transition.

In the context of SM, this requires $m_h \lesssim 70 \text{ GeV}$. In the context of xSM, this requires $\langle S \rangle \neq 0$.

xSM - Conclusive remarks

The xSM Model

yields either a stable CDM candidate , that doesn't affect EWPT ($\langle S \rangle = 0),$ or

generates strong first order EWPT, but only yields unstable mass eigenstates ($\langle S \rangle \neq 0$).

So, it is impossible to explain both these mysteries in the context of a single xSM.

Unsatisfactory?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

14 / 22

Let S = S + iA be a single gauge singlet complex scalar field. Consider the U(1) and \mathbb{Z}_2 symmetric Potential

$$V = \frac{m^2}{2} \left(H^{\dagger} H \right) + \frac{\lambda}{4} \left(H^{\dagger} H \right)^2 + \frac{\delta_2}{2} H^{\dagger} H \left| \mathbb{S} \right|^2 + \frac{b_2}{2} \left| \mathbb{S} \right|^2 + \frac{d_2}{4} \left| \mathbb{S} \right|^4$$

Let S = S + iA be a single gauge singlet complex scalar field. Consider the U(1) and \mathbb{Z}_2 symmetric Potential

$$V = \frac{m^2}{2} \left(H^{\dagger} H \right) + \frac{\lambda}{4} \left(H^{\dagger} H \right)^2 + \frac{\delta_2}{2} H^{\dagger} H \left| \mathbb{S} \right|^2 + \frac{b_2}{2} \left| \mathbb{S} \right|^2 + \frac{d_2}{4} \left| \mathbb{S} \right|^4$$

Glodstone's theorem: $\langle \mathbb{S} \rangle \neq 0 \Rightarrow$ massless particle (Spontaneous breaking of the U(1) symmetry).

Let $\mathbb{S}=S+\mathit{iA}$ be a single gauge singlet complex scalar field. Consider the \mathbb{Z}_2 symmetric Potential

$$V = \frac{m^2}{2} \left(H^{\dagger} H \right) + \frac{\lambda}{4} \left(H^{\dagger} H \right)^2 + \frac{\delta_2}{2} H^{\dagger} H \left| \mathbb{S} \right|^2 + \frac{b_2}{2} \left| \mathbb{S} \right|^2 + \frac{d_2}{4} \left| \mathbb{S} \right|^4 + \left(\frac{|b_1|}{4} e^{i\phi_{b_1}} \mathbb{S}^2 + c.c. \right)$$

Glodstone's theorem: $\langle \mathbb{S} \rangle \neq 0 \Rightarrow$ massless particle (Spontaneous breaking of the U(1) symmetry).

We therefore break the U(1) symmetry explicitly.

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

14 / 22

Let $\mathbb{S} = S + iA$ be a single gauge singlet complex scalar field. Consider the Potential

$$V = \frac{m^2}{2} \left(H^{\dagger} H \right) + \frac{\lambda}{4} \left(H^{\dagger} H \right)^2 + \frac{\delta_2}{2} H^{\dagger} H \left| \mathbb{S} \right|^2 + \frac{b_2}{2} \left| \mathbb{S} \right|^2 + \frac{d_2}{4} \left| \mathbb{S} \right|^4 + \left(\frac{|b_1|}{4} e^{i\phi_{b_1}} \mathbb{S}^2 + |a_1| e^{i\phi_{a_1}} \mathbb{S} + c.c. \right)$$

In the same fashion, we explicitly break the \mathbb{Z}_2 symmetry.

Let S = S + iA be a single gauge singlet complex scalar field. Consider the Potential

$$V = \frac{m^2}{2} \left(H^{\dagger} H \right) + \frac{\lambda}{4} \left(H^{\dagger} H \right)^2 + \frac{\delta_2}{2} H^{\dagger} H \left| \mathbb{S} \right|^2 + \frac{b_2}{2} \left| \mathbb{S} \right|^2 + \frac{d_2}{4} \left| \mathbb{S} \right|^4 + \left(\frac{|b_1|}{4} e^{i\phi_{b_1}} \mathbb{S}^2 + |a_1| e^{i\phi_{a_1}} \mathbb{S} + c.c. \right)$$

We study the cases

A1 $\langle \mathbb{S} \rangle = 0$; $a_1 = b_1 = 0$. (Unbroken U(1)) A2 $\langle \mathbb{S} \rangle = 0$; $a_1 = 0$, $b_1 \neq 0$. (explicitly broken U(1)) B1 $\langle \mathbb{S} \rangle \neq 0$; $a_1 = b_1 = 0$. (spontaneously broken U(1)) B2 $\langle \mathbb{S} \rangle \neq 0$; $a_1 \neq 0$, $b_1 \neq 0$. (explicitly broken U(1) and \mathbb{Z}_2)

Constraints on the potential

$$V = \frac{m^2}{2} \left(H^{\dagger} H \right) + \frac{\lambda}{4} \left(H^{\dagger} H \right)^2 + \frac{\delta_2}{2} H^{\dagger} H \left| \mathbb{S} \right|^2 + \frac{b_2}{2} \left| \mathbb{S} \right|^2 + \frac{d_2}{4} \left| \mathbb{S} \right|^4 \\ + \left(\frac{|b_1|}{4} e^{i\phi_{b_1}} \mathbb{S}^2 + |a_1| e^{i\phi_{a_1}} \mathbb{S} + c.c. \right)$$

- Existence of a vacuum (v, v_S) : We take $\lambda > 0$, $d_2 > 0 \Rightarrow$ if $\delta_2 < 0$ then $\lambda d_2 > \delta_2^2$.
- For simplicity, we take $\phi_{b_1} = \phi_{a_1} = \pi \implies \langle A \rangle = 0.$
- The vacuum must be a local minimum, so the mass squared matrix must be positive definite.

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

16/22

Case A:
$$\langle \mathbb{S} \rangle = 0$$
.

The mass matrix in (v, 0) is $M^2 = \text{diag}\left(M_h^2, M_S^2, M_A^2\right)$,where

$$\begin{split} M_h^2 &= \frac{1}{2} \lambda v^2, \\ M_5^2 &= -\frac{1}{2} |b_1| + \frac{1}{2} b_2 + \frac{\delta_2 v^2}{4}, \\ M_A^2 &= \frac{1}{2} |b_1| + \frac{1}{2} b_2 + \frac{\delta_2 v^2}{4}. \end{split}$$

For case A1, that is $b_1 = 0$, we obtain two phenomenologically aquivalent particles.

 $\longrightarrow xSM.$

101

・ロト ・日下・ ・日下・

э

17 / 22

Case A2:
$$\langle S \rangle = 0; \ a_1 = 0, \ b_1 \neq 0$$

$$V = \frac{m^2}{2} \left(H^{\dagger} H \right) + \frac{\lambda}{4} \left(H^{\dagger} H \right)^2 + \frac{\delta_2}{2} H^{\dagger} H |S|^2 + \frac{b_2}{2} |S|^2 + \frac{d_2}{4} |S|^4 + \left(-\frac{|b_1|}{4} S^2 + c.c. \right)$$

$$M_{S/A}^2 = \mp \frac{1}{2} |b_1| + \frac{1}{2} b_2 + \frac{\delta_2 v^2}{4}.$$

/ A

No mixing of the scalars. Stable two-component dark matter scenario.

イロト イポト イヨト イヨト

18/22

Figure: taken from V. Barger et al., [arXiv:0811.0393] Contribution to the relic density over the mass of the light scalar $M_5^2 = -\frac{1}{2} |b1| + \frac{1}{2} b_2 + \frac{\delta_2 v^2}{4}$. $M_H = 120 \text{ GeV},$ $b_2 = 50000 \text{ GeV}^2,$ $d_2 = 1.$

イロン イヨン イヨン イヨン

э

19/22

Case B1:
$$\langle \mathbb{S} \rangle \neq 0$$
; $a_1 = b_1 = 0$.

$$V = \frac{m^2}{2} \left(H^{\dagger} H \right) + \frac{\lambda}{4} \left(H^{\dagger} H \right)^2 + \frac{\delta_2}{2} H^{\dagger} H |\mathbb{S}|^2 + \frac{b_2}{2} |\mathbb{S}|^2 + \frac{d_2}{4} |\mathbb{S}|^4 .$$
$$M^2 = \begin{pmatrix} \lambda v^2/2 & \delta_2 v v_5/2 & 0\\ \delta_2 v v_s/2 & d_2 v_5^2/2 & 0\\ 0 & 0 & 0 \end{pmatrix} .$$

Two unstable mixed scalars. A is stable but massles.

 \Rightarrow no dark matter candidate.

20 / 22

Case B2: $\langle \mathbb{S} \rangle \neq 0$; $a_1 \neq 0$, $b_1 \neq 0$.

$$V = \frac{m^2}{2} \left(H^{\dagger} H \right) + \frac{\lambda}{4} \left(H^{\dagger} H \right)^2 + \frac{\delta_2}{2} H^{\dagger} H \left| \mathbb{S} \right|^2 + \frac{b_2}{2} \left| \mathbb{S} \right|^2 + \frac{d_2}{4} \left| \mathbb{S} \right|^4 \\ + \left(-\frac{|b_1|}{4} \mathbb{S}^2 - |a_1| \mathbb{S} + c.c. \right).$$
$$M^2 = \begin{pmatrix} \lambda v^2/2 & \delta_2 v v_S/2 & 0 \\ \delta_2 v v_s/2 & d_2 v_S^2/2 + \sqrt{2} \left| a_1 \right| / v_S & 0 \\ 0 & 0 & |b_1| + \sqrt{2} \left| a_1 \right| / v_S \end{pmatrix}.$$

Two unstable mixed scalars. *A* remains stable (no mixing) and $M_A^2 = |b_1| + \frac{\sqrt{2}|a_1|}{v_S} > 0$. \Rightarrow *A* candidate for dark matter!

Figure: Contribution to the relic density over the mass M_A . $v_S = 100 \text{ GeV},$ $M_{h_1} = 120 \text{ GeV},$ $M_{h_2} = 250 \text{ GeV}.$ (V. Barger et al., [arXiv:0811.0393])

Figure: Contribution to the relic density over the mass M_A . $v_S = 10 \text{ GeV}$, $M_{h_1} = 120 \text{ GeV}$, $M_{h_2} = 140 \text{ GeV}$. (V. Barger et al., [arXiv:0811.0393])

21 / 22

cxSM - Conclusive remarks

The cxSM model

yields a simple two-component DM scenario, if the U(1) symmetry is explicitly but not spontaneously broken.

yields a single-component DM scenario **and** allows for first order EWPT, as required for electroweak baryogenesis, if the U(1) symmetry is both explicitly and spontaneously broken.